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Abstract: Diagnostic accuracy relates to the ability of a test to discriminate between the target condition and health. This 

discriminative potential can be quantified by the measures of diagnostic accuracy such as sensitivity and specificity, 

predictive values, likelihood ratios, error rates, the area under the ROC curve, Youden's index and diagnostic odds ratio. 

Different measures of diagnostic accuracy relate to the different aspects of diagnostic procedure: while some measures are 

used to assess the discriminative property of the test, others are used to assess its predictive ability. Measures of diagnostic 

accuracy are not fixed indicators of a test performance, some are very sensitive to the disease prevalence, while others to 

the spectrum and definition of the disease. Furthermore, measures of diagnostic accuracy are extremely sensitive to the 

design of the study. Studies not meeting strict methodological standards usually over- or under-estimate the indicators of 

test performance as well as they limit the applicability of the results of the study. STARD initiative was a very important 

step toward the improvement of the quality of reporting of studies of diagnostic accuracy. STARD statement should be 

included into the Instructions to authors by scientific journals and authors should be encouraged to use the checklist 

whenever reporting their studies on diagnostic accuracy. Such efforts could make a substantial difference in the quality of 

reporting of studies of diagnostic accuracy and serve to provide the best possible evidence to the best for the patient care. 

This brief review outlines some basic definitions, formulas and characteristics of the measures of diagnostic accuracy. 
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1. Introduction 

There is no single statistic that can adequately represent 

the agreement between a diagnostic test and a reference 

standard. Many different statistics have a part to play in the 

analysis of such studies. This discriminative ability can be 

quantified by the measures of diagnostic accuracy: 

Sensitivity, Specificity, Receiver operating characteristic 

curve (ROC curve) ,Likelihood ratio (LR) for positive test, 

Likelihood ratio (LR) for negative test, Odds ratio 

(OR),Positive predictive value (PPV), Youden's index, 

Negative predictive value (NPV),Error rates and 

Confidence interval. Diagnostic accuracy of any diagnostic 

procedure or a test gives us an answer to the following 

question: "How well this test discriminates between certain 

two conditions of interest (health and disease; two stages of 

a disease etc.)?".  Different measures of diagnostic 

accuracy relate to the different aspects of diagnostic 

procedure. Some measures are used to assess the 

discriminative property of the test, others are used to assess 

its predictive ability (Irwig et al,2002). While 

discriminative measures are mostly used by health policy 

decisions, predictive measures are most useful in predicting 

the probability of a disease in an individual (Raslich et 

al,2007). Furthermore, it should be noted that measures of a 

test performance are not fixed indicators of a test quality 

and performance. Measures of diagnostic accuracy are very 

sensitive to the characteristics of the population in which 

the test accuracy is evaluated. Some measures largely 

depend on the disease prevalence, while others are highly 

sensitive to the spectrum of the disease in the studied 

population. It is therefore of utmost importance to know 

how to interpret them as well as when and under what 

conditions to use them. 
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2. Diagnostic Effectiveness 

Another global measure of diagnostic accuracy is so 

called diagnostic accuracy (effectiveness), expressed as a 

proportion of correctly classified subjects (TP+TN) among 

all subjects (TP+TN+FP+FN). Diagnostic accuracy is 

affected by the disease prevalence. With the same 

sensitivity and specificity, diagnostic accuracy of a 

particular test increases as the disease prevalence decreases. 

This data, however, should be handled with care. In fact, 

this does not mean that the test is better if we apply it in a 

population with low disease prevalence. It only means that 

in absolute number the test gives more correctly classified 

subjects. This percentage of correctly classified subjects 

should always be weighed considering other measures of 

diagnostic accuracy, especially predictive values. Only then 

a complete assessment of the test contribution and validity 

could be made. 

Consider table 1 below which indicates the test status 

and disease condition of patient from where some common 

indicators of test performance will be derived. Some of 

these indicators are the sensitivity of the test, its specificity, 

the positive and negative predictive values, Odds ratio, 

error rates and the positive and negative likelihood ratios 

(Sackett, 1991). 

Table 1. Cross –classification of test results by Test status and disease status 

(Test status) Positive ( )B  Negative ( )B  Total 

Positive ( )A   

Negative ( )A  

Total 

A =TP B =FP A+B=TP+FP=P 

C =FN D =TN C+D=FN+TN= P′  

A+C=TP+FN= Q B+D=FP+TN= Q′  N= TP+FN+FP+TN 

 

A frequent application of Bayes’ theorem is in evaluating 

the performance of a diagnostic test intended for use in a 

screening program. From table 1 above, let B denote the 

event that a person has the disease in question; B the event 

that he does not have the disease; let A be the event that he 

gives a positive response to the test; and A  the event that 

he gives a negative response. Let P be the Prevalence of the 

disease. Prevalence is the number of cases of a disease that 

are present in a particular population at a given time 

(Dohoo et al, 2003). Based on the above table, it is given 

by P=mean (pi) while Q is the level of the test given by 

Q=mean (qi).But P′=1-P and Q′ =1-Q. From this table 1, 

TP is true positive, FN is false positive, TN is true negative 

and FP is false positive while N is the total number of 

patients/subject considered. The first step in the calculation 

of sensitivity and specificity is to make a 2x2 table with 

groups of subjects divided according to a gold standard or 

(reference method) in columns, and categories according to 

test in rows as seen in table 1 above. 

3. Sensitivity and Specificity 

The first step in the calculation of sensitivity and 

specificity is to make a 2x2 table with groups of subjects 

divided according to a gold standard or (reference method) 

in columns, and categories according to test in rows (Table 

1.). 

Let π  and θ  be sensitivity and specificity of the tests 

respectively. The results of this trial of the screening test 

may be represented by the two conditional probabilities 

( )P A B  and ( )P A B . Sensitivity is expressed in 

percentage and defines the proportion of true positive 

subjects with the disease in a total group of subjects with 

the disease (TP/TP+FN). Actually, sensitivity is defined as 

the probability of getting a positive test result in subjects 

with the disease (T+|B+). Hence, it relates to the potential 

of a test to recognize subjects with the disease. The 

sensitivity( π ) given as ( )P A B is the conditional 

probability of a positive response given that the person has 

the disease; the larger is  ( )P A B , the more sensitive is the 

test. From table 1, conditional probability in terms of 

sensitivity is also given by 

( 1 1) Pr( )
TP

P T D T D
TP FN

= = = + + =
+                 (1) 

While ( )P A B is the conditional probability of a 

negative response given that the person is free of the 

disease; the smaller is ( )P A B , the more specific is the test. 

We can also define that 1 ( 0 1)P T Dπ− = = = . Specificity 

is a measure of a diagnostic test accuracy, complementary 

to sensitivity. It is defined as a proportion of subjects 

without the disease with negative test result in total of 

subjects without disease (TN/TN+FP). In other words, 

specificity represents the probability of a negative test 

result in a subject without the disease (T-|B-). Therefore, we 

can postulate that specificity relates to the aspect of 

diagnostic accuracy that describes the test ability to 

recognize subjects without the disease, i.e. to exclude the 

condition of interest. From table 1 also, specificity is given 

by 

( 0 0 ) P r( )
T N

P T D T D
F P T N

= = = − − =
+            (2) 

Also 1 ( 1 0)P T Dθ− = = = . Neither sensitivity nor 

specificity is not influenced by the disease prevalence, 

meaning that results from one study could easily be 

transferred to some other setting with a different prevalence 

of the disease in the population. Nonetheless, sensitivity 

and specificity can vary greatly depending on the spectrum 
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of the disease in the studied group. Worthy of note also is 

the predictive values which includes the positive predictive 

values (PPV) and negative predictive values (NPV). 

Positive predictive value (PPV) defines the probability of 

having the state/disease of interest in a subject with positive 

result (B+|T+). Therefore PPV represents a proportion of 

patients with positive test result in total of subjects with 

positive result (TP/TP+FP). PPV is defined as the 

probability of a positive diagnosis when the test is positive. 

Therefore, PPV represents a proportion of patients with 

positive test result in total of subjects with positive result .It 

is also seen as the ratio of the number of true positives to 

the total number of positive tests (Staquett et al 1981). In 

terms of Bayes formula, it is given by  

( ) ( )

) ( . ) / /

( )

(
P T D P D

T SE P Q TP Q

P T

PPV P D
+ + +

+ = = =

+

= +     (3) 

where Q TP FP level of the test= + =  

Negative predictive value (NPV) describes the 

probability of not having a disease in a subject with a 

negative test result (B-|T-). NPV is defined as a proportion 

of subjects without the disease with a negative test result in 

total of subjects with negative test results (TN/TN+FN). 

Also the NPV in terms of Bayes formula is the probability 

of negative diagnosis when the test is negative or the 

proportion of subjects without the disease with a negative 

test result in total of subjects with negative test results and 

it is given by  

( ) ( )
( ) /

( )

P T D P D
NPV P D T TN Q where Q TN FN

P T

− − −
′ ′= − − = = = +

−       (4) 

According to the table 1 above for conditional 

probability, the predictive values are defined 

mathematically  as: 

( ) ( )
TP

PPV P D T or P T D
TP FP

= = + + + +
+

         (5) 

( ) ( )

a n d

T N
N P V P D T o r P T D

F N T N
= = − − − −

+
       (6) 

 

Also the two can be defined 

as Pr( 1 1) Pr( 0 0)PPV D T and NPV D T= = = = = = . 

Unlike sensitivity and specificity, predictive values are 

largely dependent on disease prevalence in examined 

population. Unlike sensitivity and specificity, predictive 

values are largely dependent on disease prevalence in 

examined population. Therefore, predictive values from 

one study should not be transferred to some other setting 

with a different prevalence of the disease in the population. 

Prevalence affects PPV and NPV differently. PPV is 

increasing, while NPV decreases with the increase of the 

prevalence of the disease in a population. Whereas the 

change in PPV is more substantial, NPV is somewhat 

weaker influenced by the disease prevalence. Therefore, 

predictive values from one study should not be transferred 

to some other setting with a different prevalence of the 

disease in the population. Prevalence affects PPV and NPV 

differently. PPV is increasing, while NPV decreases with 

the increase of the prevalence of the disease in a population. 

Whereas the change in PPV is more substantial, NPV is 

somewhat weaker influenced by the disease prevalence. It 

is important to say that there exist error rates to be expected 

if the test is actually used in a screening program. If a 

positive result is taken to indicate the presence of the 

disease, then the false positive rate (FPR) or say 
F

P + is the 

proportion of people, among those responding positive, 

who are actually free of the disease. It can also be denoted 

as ( )P B A . According to Bayes’ theorem and based on 

the table 1, 

( ) ( ) ( )(1 ( ))
( ) ( 1 0) 1

( ) ( )
F

P A B P B P A B P B
P P B A P T D

P A P A
θ+

−
= = = = = − = =     (7) 

( ) 1 ( ).Since P B P B= −  

The false negative rate (FNR) or say 
F

P − , is the 

proportion of people, among those responding negative on 

the test, who nevertheless have the disease, or 

( )P B A .Again by Bayes’ theorem, 

( ) ( ) (1 ( )) ( )
( ) 1 ( 0 1)

( ) 1 ( )
F

P A B P B P A B P B
P P B A P T D

P A P A
π−

−
= = − = = = = =

−    (8) 

( ) 1 ( ) ( ) 1 ( ).Since P A B P A B and P A P A= − = −  

Looking at the mathematical definitions of FPR and FNR 

above, one discovers that P (A) and P(B) has to be clearly 

defined so as to make the formulas complete. 

4. Derivation of the Error Rates 

Formulas 

A perfect diagnostic procedure has the potential to 

completely discriminate subjects with and without disease. 

Values of a perfect test which are above the cut-off are 

always indicating the disease, while the values below the 

cut-off are always excluding the disease. Unfortunately, 

such perfect test does not exist in real life and therefore 

diagnostic procedures can make only partial distinction 

between subjects with and without disease. Values above 

the cut-off are not always indicative of a disease since 

subjects without disease can also sometimes have elevated 

values. Such elevated values of certain parameter of 

interest are called false positive values (FP). On the other 

hand, values below the cut-off are mainly found in subjects 

without disease. However, some subjects with the disease 

can have them too. Those values are false negative values 

(FN). Therefore, the cut-off divides the population of 

examined subjects with and without disease in four 

subgroups considering parameter values of interest. 
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According to table 1 above, we define as follows the 

following terms: 

1 true positive (TP) –subjects with the disease with 

the value of a parameter of interest above the cut-

off 

2 false positive (FP) –subjects without the disease 

with the value of a parameter of interest above the 

cut-off 

3 true negative (TN) –subjects without the disease 

with the value of a parameter of interest below the 

cut-off 

4 false negative (FN) –subjects with the disease with 

the value of a parameter of interest below the cut-

off 

Let us consider ( ) ( )P A and P B for this evaluation 

based on table 1 above. If 

( ) ABA AB AB AB
N N NN N

P A
N N N N

+
= = = +          (9) 

and NA indicates the total number of people who test 

positive, then 
AB

N  denotes the number of people who have 

the disease and respond positive while 
AB

N  denotes the 

number of people who are free of the disease and respond 

positive. Multiplying and dividing the first of the two terms 

on the right-hand side of the above equation by BN , the 

number of people with the disease, we find that  

( ) ( )A B A B B

B

N N N
P A B P B

N N N
= =    (10) 

Similarly, by multiplying and dividing the second term 

by 
B

N ,the number of people without the disease, we find 

that 

 ( ) ( )A B A B B

B

N N N
P A B P B

N N N
= =       (11) 

Substituting the expressions from the above last three 

equations in P(A) defined above, we find that  

( ) ( ) ( ) ( ) ( )P A P A B P B P A B P B= +     (12) 

This equation is a special case of the familiar result that 

an overall rate- ( )P A  is a weighted average of specific 

rates- ( ) ( )P A B an d P A B -with the weights being the 

proportions of people in the specific 

categories ( ) ( )P B and P B .Since ( ) 1 ( )P B P B= − ,then the

 above equation becomes 

( ) ( ) ( ) ( ) (1 ( ) )

( ) ( ) ( ( ) ( ) )

P A P A B P B P A B P B

P A B P B P A B P A B

= + −

= + −
       (13) 

Substituting this equation in the equation of 
F

P +  above 

yields an expression for the FPR  thus, 

( ) (1 ( )

( ) ( ) ( ( ) ( ) )
F

P A B P B
P

P A B P B P A B P A B
+

−
=

+ −            (14) 

Also substituting for ( )P A  in the equation of 
F

P − above 

yields the expression for the FNR or  

(1 ( )) ( )

1 ( ) ( )( ( ) ( ))
F

P A B P B
P

P A B P B P A B P A B
−

−
=

− − −      (15) 

In conclusion, the two error rates are functions of the 

proportions ( ) ( )P A B and P A B which may be estimated 

from the results of a trial of the screening test; and of the 

overall case rate ( )P B , for which an accurate estimate is 

rarely available. 

5. Likelihood Ratios 

Likelihood ratio is a very useful measure of diagnostic 

accuracy. It is defined as the ratio of expected test result in 

subjects with a certain state/disease to the subjects without 

the disease. From a clinical standpoint, a diagnostic test 

should give a sense of how more or less likely the disease 

being tested for is present or not, i.e., does the result of the 

diagnostic test change probability of the disease being 

present or not? .Likelihood ratios can quantify the change 

in the probability of disease given the results of a 

diagnostic test. Likelihood ratios are alternative statistics 

for summarizing diagnostic accuracy, which have several 

particularly powerful properties that make them more 

useful clinically than other statistics (Sackett et al, 2000). 

Each test result has its own likelihood ratio, which 

summarizes how many times more (or less) likely patients 

with the disease are to have that particular result than 

patients without the disease. More formally, it is the ratio of 

the probability of the specific test result in people who do 

have the disease to the probability in people who do not. A 

likelihood ratio greater than 1 indicates that the test result is 

associated with the presence of the disease, whereas a 

likelihood ratio less than 1 indicates that the test result is 

associated with the absence of disease. The further 

likelihood ratios are from 1 the stronger the evidence for 

the presence or absence of disease. Likelihood ratios above 

10 and below 0.1 are considered to provide strong evidence 

to rule in or rule out diagnoses respectively in most 

circumstances (Jaeschke et al, 2002). In other words, it 

indicates large, often clinically significant differences. A 

likelihood ratio of 1 implies that there will be no difference 

between pretest and posttest probabilities. In other words, 

the two ratios are equal, such that the test is of no value. 

Likelihood ratios between 1 and 2 and between 0.5 and 1 

indicate small differences (rarely clinically significant). 

When tests report results as being either positive or 

negative the two likelihood ratios are called the positive 

likelihood ratio and the negative likelihood ratio. It is vital 

to note that sensitivity and specificity are combined into 

one to have the likelihood ratio (LR).The likelihood ratio is 
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defined as: “The probability of a subject with the disease 

having the test result divided by the probability of the 

subject without the disease having that same test 

result”(Giard and Hermans,1996).From table 1 above  

Pr

Pr

obability of result in diseased persons
LR

obability of result in nondiseased persons
=       (16) 

When test results are dichotomized, every test has two 

likelihood ratios, one corresponding to a positive test and 

that of negative test. Positive test likelihood ratio (LR
+
) 

tells us how much more likely the positive test result is to 

occur in subjects with the disease compared to those 

without the disease. It is usually higher than 1 because it is 

more likely that the positive test result will occur in 

subjects with the disease than in subject without the disease. 

LR+ is the best indicator for ruling-in diagnosis. The higher 

the LR+ the test is more indicative of a disease. Good 

diagnostic tests have LR+ > 10 and their positive result has 

a significant contribution to the diagnosis. LR+ can be 

simply calculated according to the following formulas: 

Pr

Pr

Pr( ) /

1 Pr( ) /

obability that test is positive in diseased persons
LP

obability that test is positive in non diseased persons

T DSensitivity TP TP FN
LP

Specificity T D FP FP TN

+ =
−

+ + ++ = = =
− + − +

       (17) 

Likelihood ratio for negative test result (LR-) represents 

the ratio of the probability that a negative result will occur 

in subjects with the disease to the probability that the same 

result will occur in subjects without the disease. Therefore, 

LR- tells us how much less likely the negative test result is 

to occur in a patient than in a subject without disease. LR- 

is usually less than 1 because it is less likely that negative 

test result occurs in subjects with than in subjects without 

disease. LR- is calculated according to the following 

formulas: 

Pr

Pr

Pr( )1 /

Pr( ) /

obability that test is negative in diseased persons
LP

obability that test is negative in non diseased persons

T DSensitivity FN TP FN

Specificity T D TN FP TN

− =
−

− +− += = =
− − +

      (18) 

LR- is a good indicator for ruling-out the diagnosis. 

Good diagnostic tests have LR- < 0,1. The lower the LR- 

the more significant contribution of the test is in ruling-out, 

i.e. in lowering the posterior probability of the subject 

having the disease. Since both specificity and sensitivity 

are used to calculate the likelihood ratio, it is clear that 

neither LR+ nor LR- depend on the disease prevalence in 

examined groups. Consequently, the likelihood ratios from 

one study are applicable to some other clinical setting, as 

long as the definition of the disease is not changed. If the 

way of defining the disease varies, none of the calculated 

measures will apply in some other clinical context. 

Meanwhile, it is also important to define mathematically 

the following terms as it relates to table 1 above. 

Pr
Pr (Pr )

1 Pr

Pr (19)

Pr
Pr (20)

1 Pr

1

etest probability
etest probability evalence

etest probability

TP FN
etest probability

TP FP TN FN

evalence TP FN
etest Odds

evalence FP TN

Post test Odds
Posttest probability

post test o

=
−

+=
+ + +

+= =
− +

=
+

(21)

Pr (22)

dds

Posttest Odds etest Odds Likelihood ratio= ×

 

LR directly links the pre-test and post-test probability of 

a disease in a specific patient (Deeks and Altman,2004). 

Simplified, LR tells us how many times more likely 

particular test result is in subjects with the disease than in 

those without disease. Likelihood ratios provide an 

estimation of whether there will be significant change in 

pretest to posttest probability of a disease given the test 

result, and thus can be used to make quick estimates of the 

usefulness of contemplated diagnostic tests in particular 

situations. The simplest method for calculating posttest 

probability from pretest probability and likelihood ratios is 

to use a nomogram. The clinician places a straightedge 

through the points that represent the pretest probability and 

the likelihood ratio and then reads the posttest probability 

where the straightedge crosses the posttest probability line. 

A more formal way of calculating posttest probabilities 

uses the likelihood ratio as follows: Pretest odds × 

Likelihood ratio=Posttest odds. 

6. Odds Ratio 

The Odds ratio or diagnostic odds ratio is the probability 

of the presence of a disease of a specific disease divided by 

the probability of its absence. Diagnostic odds ratio is also 

one global measure for diagnostic accuracy, used for 

general estimation of discriminative power of diagnostic 

procedures and also for the comparison of diagnostic 

accuracies between two or more diagnostic tests. DOR of a 

test is the ratio of the odds of positivity in subjects with 

disease relative to the odds in subjects without disease 

(Glas et al,2003). It is calculated according to the formula: 

DOR = (TP/FN)/(FP/TN). DOR depends significantly on 

the sensitivity and specificity of a test. A test with high 

specificity and sensitivity with low rate of false positives 

and false negatives has high DOR. With the same 

sensitivity of the test, DOR increases with the increase of 

the test specificity. For example, a test with sensitivity > 

90% and specificity of 99% has a DOR greater than 500. 

The Odds ratio reflects the prevalence of the disease in a 

population. For example, the odds are 1:4 for finding a 

disease in a population with a 20% probability of 

occurrence (prevalence).Also odds of 3:1 in favor of the 

first outcome means that the first outcome occurs 3 times 

for each single occurrence of the second outcome. Similarly, 

odds of 5:2 means that the first outcome occurs 5 times for 

each 2 occurrences of the second outcome. To use this 

formulation above, probabilities must be converted to odds, 
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where the odds of having a disease are expressed as the 

chance of having the disease divided by the chance of not 

having the disease.  

Recall that  

P r

1 P r

o b a b i l i t y
O d d

o b a b i l i t y
=

−            (23) 

 A
P r a n d P r o b a b i l i t y  =

1 A + B

O d d s
o b a b i l i t y

o d d s
=

+        (24) 

when odds are expressed as a:b. To estimate the potential 

benefit of a diagnostic test, the clinician first estimates the 

pretest odds of disease given all available clinical 

information and then multiplies the pretest odds by the 

positive and negative likelihood ratios. The results are the 

posttest odds, or the odds that the patient has the disease if 

the test is positive or negative. To obtain the posttest 

probability, the odds are converted to a probability as seen 

above. Meanwhile, odds ratio is a measure of effect size, 

describing the strength of association or non independence 

between two binary data values (Cornfield, 1964; 

Mosteller,1968; Edwards,1963). It is used as a descriptive 

statistic, and plays an important role in logistic regression. 

Unlike other measures of association for paired binary data 

such as the relative risk, the odds ratio treats the two 

variables being compared symmetrically, and can be 

estimated using some types of non-random samples.  

7. Derivation of Odds Ratio Formular 

For Ad/Bc  

From table 1 above where we have the test result status 

and disease status categorized/classified into A,B,C and  D. 

We shall have the following:  

Pr exp
exp

1 Pr exp in t

obability of osure in those with disease
Odds of osure with disease

obability of osure hose with disease
=

−    (25) 

But, Pr exp
A

ob of osure in those with the disease
A C

=
+

 

Therefore, 

exp / 1

/

A A
O dds of osure w ith the disease

A C A C

A C A

A C A C C

= −
+ +

= =
+ +

     (26) 

Similarly,  

Pr exp
exp

1 Pr exp

obof osurewithout disease
Oddsof osure without thedisease

obof osurewithout disease
=

−    (27) 

,

P r e x p

B u t

B
o b a b i l i t y o f o s u r e w i t h o u t d i s e a s e

B D
=

+

 

exp / 1

/

B B
odds of osure without the disease

B D B D

B D B

B D B D D

= −
+ +

= =
+ +

     (28) 

, 1
B B D B D

S i n c e
B D B D B D

+ −− = =
+ + +

,  

Based on the above contingency table, the odds ratio is 

interpreted as  

Odds of test result w ith disease
O dds ratio

Odds of sam e result without disease
=       (29) 

or 

exp in t

exp

O dds of osure hose w ith the disease
O dds ratio

O dds of osure in those w ithout the disease
=  

P r ( )
( )

1 P r ( )

o b a b i l i t y D
O d d s D

o b a b i l i t y D

++ =
− +              (30) 

where  

( )
P r ( )

1 ( )

O d d s D
D

O d d s D

++ =
+ +               (31) 

I n  g e n e r a l ,  

( / )
O d d s  r a t i o /

( / )

A C
A D B C

B D
= =           (32) 

8. Definition of Odds Ratio in Terms of 

Group-Wise Odds 

The odds ratio is the ratio of the odds of an event 

occurring in one group to the odds of it occurring in 

another group. The term is also used to refer to sample-

based estimates of this ratio. This group in case of this 

study is a dichotomous classification. If the probabilities of 

the event in each of the groups are p1 (first group) and p2 

(second group), then the odds ratio is:  

1 1 1 1 1 2

2 2 2 2

11 1 2 1 1 2 2

21 22 1 2 2 1 1 2

/ (1 ) /

/ (1 ) //

/p p p q p q

p p p q p q

n n n n

n n n n
== = =

−
−     (33) 

where qx = 1 − px. This is the odds ratio for comparing two 

proportions. According to Glas et al (2003), OR 

is based on likelihood and it is given by 

D iag n o s tic  o d d s  ra tio
like lih o o d ra tio

like lih o o d ra tio ra tio

+=
−    (34) 

It is vital to note the following points about OR. OR 

ranges from 0 to infinity with higher values indicating 

better discriminating test performance. A value of 1 means 

that a test does not discriminate between patients with the 

disorder and those without it. That is it shows no difference 

in risk of group 1 compared to 2.  In other words, an odds 

ratio of 1 indicates that the condition or event under study 

is equally likely to occur in both groups.The DOR does not 

depend on the prevalence of the disease (Glas et al, 2003). 

It tends to be skewed (not symmetric). If OR >1, it 

indicates an increased risk of group 1 compared to 2.This 

means that an odds ratio greater than 1 indicates that the 

condition or event is more likely to occur in the first group. 

If OR is less than 1 it indicates that the condition or event is 

less likely to occur in the first group meaning that it shows 

lower risk(“protective”) in risk of group 1 compared to 2. 

The odds ratio must be nonnegative if it is defined. It is 

undefined if p2q1 equals zero. 
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9. Confidence Intervals 

The p values the authors often cite when reporting their 

results gives a sense of how likely the results reported are 

due to chance. However, p values do not allow us to make 

inferences about the precision of the estimates, which is 

extremely important in evaluating test characteristics. 

Reporting a range of plausible results, also known as 

confidence intervals, is more useful. Confidence intervals 

(CIs) are a measure of how precise an estimate is. The 

range or width of a confidence interval is primarily 

determined by two parameters; the number of observations 

in the study and how widely spread the data are (usually 

expressed as the standard deviation).The fewer the 

observations or the greater the data spread, the wider the 

confidence interval and the greater the uncertainty about 

the precision of the reported estimate. 

10. Receiver Operating Characteristic 

Curve 

ROC (Receiver Operating Characteristic) analysis is 

being used as a method for evaluation and comparison of 

classifiers( Ferri et al, 2002). The ROC gives complete 

description of classification accuracy as given by the area 

under the ROC curve. The ROC curve originates from 

signal detection theory (Hosmer and Lemeshow, 2000); the 

curve shows how the receiver operates the existence of 

signal in the presence of noise.  The ROC curve plots the 

probability of detecting true signal (sensitivity) and false 

signal (1 – specificity) for an entire range of possible cut 

points.  The sensitivity and specificity of a classifier also 

depend on the definition of the cut-off point for the 

probability of predicted classes. A ROC curve demonstrates 

the trade-off between true positive rate and false positive 

rate in binary classification problems.  To draw a ROC 

curve, the true positive rate (TPR) and the false positive 

rate (FPR) are needed. TPR determines the performance of 

a classifier or a diagnostic test in classifying positive cases 

correctly among all positive samples available during the 

test. FPR, on the other hand, defines how many incorrect 

positive results, which are actually negative, there are 

among all negative samples available during the test. 

Because TPR is equivalent to sensitivity and FPR is equal 

to (1 –specificity), the ROC graph is sometimes called the 

sensitivity vs. (1 - specificity) plot. The area under the ROC 

curve has become a particularly important measure for 

evaluating classifiers’ performance because it is the average 

sensitivity over all possible specificities (Bradley 1997). 

The larger the area, the better the classifier performs. If the 

area is 1.0, the classifier achieves both 100% sensitivity 

and 100% specificity. If the area is 0.5, then we have 50% 

sensitivity and 50% specificity, which is no better than 

flipping a coin. This single criterion can be compared for 

measuring the performance of different classifiers 

analyzing a dataset. (Hanley, 1982; Bamber, 1975). After a 

classifier has been made, it is also useful to measure its 

calibration. Calibration evaluates the degree of 

correspondence between the estimated probabilities of a 

specific outcome resulting from a classifier and the 

outcomes predicted by domain experts. This can then be 

tested using goodness-of-fit statistics. This test examines 

the difference between the observed frequency and the 

expected frequency for groups of patients and can be used 

to determine if the classifier provides a good fit for the data. 

If the p-value is large, then the classifier is well calibrated 

and fits the data well. If the p-value is small, then the 

classifier is not well calibrated. There is a pair of diagnostic 

sensitivity and specificity values for every individual cut-

off. To construct a ROC graph, we plot these pairs of values 

on the graph with the 1-specificity on the x-axis and 

sensitivity on the y-axis. Receiver operating characteristic 

curve analysis is often used to help determine the cut-off 

point to optimize sensitivity and specificity. An ROC curve 

is a graphical representation of the trade off between the 

false negative and false positive rates for every possible 

cut-off value (Zweig and Campbell, 1993).Alternatively, 

the ROC curve is the representation of the trade off 

between sensitivity and specificity. In other words, the 

ability of a test using a specific analytic concentration, to 

discriminate disease from non-disease can be graphically 

portrayed by use of ROC curve analysis. A graph can be 

generated in which the sensitivity and specificity are 

determined for each data point obtained in the study. These 

are graphed with sensitivity of each data point on the y-axis 

and the corresponding 1-specificity for each data point on 

the x-axis. Precisely, we plot these pairs of values on the 

graph with the 1-specificity on the x-axis and sensitivity on 

the y-axis. (Note: the ratio of the y-axis/x-axis is the 

likelihood ratio positive or the graph of true positives and 

false positives respectively).For the ideal test, the plot 

would rise from 0 and go straight up to 1.00 and then a 

horizontal line along the 1.00 sensitivity line. This would 

be where there is no overlap in the data points and 

sensitivity and specificity would both be 100% in the left 

hand corner (Zweig and Campbell, 1993).This rarely 

occurs and more commonly a curvilinear plot is observed. 

The greater the area under the curve, the more 

discriminatory (the ability of the test to correctly classify 

those with and without the disease) the test is, ideally, the 

area under a curve of 1.00 is a perfectly discriminatory test 

and a curve that follows the diagonal line in the graph has 

an area under the curve 0.5 which corresponds to the test 

being no better than flipping a coin (Zweig and Campbell, 

1993). The shape of a ROC curve and the area under the 

curve (AUC) helps us estimate how high is the 

discriminative power of a test. The closer the curve is 

located to upper-left hand corner and the larger the area 

under the curve, the better the test is at discriminating 

between diseased and non-diseased. The area under the 

curve can have any value between 0 and 1 and it is a good 

indicator of the goodness of the test. A perfect diagnostic 
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test has an AUC 1.0. whereas a non-discrimination test has 

an area 0.5.The larger the area under the curve, the better 

the diagnostic test in discriminating those with and without 

disease (Zweig and Campbell,1993).Many statistical 

programs can generate a table of the values in the graph 

and calculate sensitivity, specificity, LP+,LP-,and 

proportion or percent correctly identified for each data 

point. Cut-off points are not necessarily chosen to optimize 

the number of patients correctly categorized. One can select 

different cut-off points to optimize sensitivity or specificity. 

For example, when a screening test is used to look for a 

serious disease that if missed could result in serious harm to 

the patient, the sensitivity of that test should be optimized. 

Conversely, in situations where therapy could be extremely 

harmful if given to a patient without the disease, one would 

choose a cut-off point that optimizes specificity. In general, 

when optimizing one test characteristic, the other gets 

worse and vice versa. For example, when improving 

sensitivity, specificity decreases and when improving 

specificity, sensitivity decreases. The area under the ROC 

curve can also be used statistically to compare the 

discriminating ability between two diagnostic tests (Zweig 

and Campbell,1993).We can say that the relationship 

between the area under the ROC curve(AUC) and 

diagnostic accuracy can be seen in the table below : 

Table 2.1. Relationship between the area under the ROC curve (AUC) and 

diagnostic accuracy 

Area Diagnostic Accuracy 

0.9-1.0 Excellent 

0.8-0.9 Very good 

0.7-0.8 Good 

0.6-0.7 Sufficient 

0.5-0.6 Bad 

< 0.5 Test not useful 

AUC is a global measure of diagnostic accuracy. It tells 

us nothing about individual parameters, such as sensitivity 

and specificity. Out of two tests with identical or similar 

AUC, one can have significantly higher sensitivity, whereas 

the other significantly higher specificity. Furthermore, data 

on AUC state nothing about predicative vales and about the 

contribution of the test in ruling-in and ruling-out a 

diagnosis. Global measures are there for general assessment 

and for comparison of two or more diagnostic tests. By the 

comparison of areas under the two ROC curves we can 

estimate which one of two tests is more suitable for 

distinguishing health from disease or any other two 

conditions of interest. It should be pointed that this 

comparison should not be based on visual nor intuitive 

evaluation (Obuchowski et al, 2004). For this purpose we 

use statistic tests which evaluate the statistical significance 

of estimated difference between two AUC, with previously 

defined level of statistical significance (P). 

11. Youden's Index 

Youden's index is one of the oldest measures for 

diagnostic accuracy (Youden,1950). It is also a global 

measure of a test performance, used for the evaluation of 

overall discriminative power of a diagnostic procedure and 

for comparison of this test with other tests. Youden's index 

is calculated by deducting 1 from the sum of test’s 

sensitivity and specificity expressed not as percentage but 

as a part of a whole number: (sensitivity + specificity) – 1. 

For a test with poor diagnostic accuracy, Youden's index 

equals 0, and in a perfect test Youden's index equals 1. 

Youden's index is not sensitive for differences in the 

sensitivity and specificity of the test, which is its main 

disadvantage. Namely, a test with sensitivity 0,9 and 

specificity 0,4 has the same Youden's index (0,3) as a test 

with sensitivity 0,6 and specificity 0,7. It is absolutely clear 

that those tests are not of comparable diagnostic accuracy. 

If one is to assess the discriminative power of a test solely 

based on Youden's index it could be mistakenly concluded 

that these two tests are equally effective. Youden’s index is 

not affected by the disease prevalence, but it is affected by 

the spectrum of the disease, as are also sensitivity 

specificity, likelihood ratios and DOR. 

12. Design of Diagnostic Accuracy 

Studies 

Measures of diagnostic accuracy are extremely sensitive 

to the design of the study. Studies suffering from some 

major methodological shortcomings can severely over- or 

under-estimate the indicators of test performance as well as 

they can severely limit the possible applicability of the 

results of the study. The effect of the design of the study to 

the bias and variation in the estimates of diagnostic 

accuracy can be quantified (Rutjes  et al.2006). STARD 

initiative published in 2003 was a very important step 

toward the improvement of the quality of reporting of 

studies of diagnostic accuracy (Bossuyt et al, 2003a; 

Bossuyt et al,2003b). According to some authors, the 

quality of reporting of diagnostic accuracy studies did not 

significantly improve after the publication of the STARD 

statement (Wilczynski,2008 and Bossuyt,2008), whereas 

some others hold that the overall quality of reporting has at 

least slightly improved (Smidt et al,2006), but there is still 

some room for potential improvement (Bossuyt,2006 and 

Bossuyt,2004). Editors of scientific journals are encouraged 

to include the STARD statement into the Journal 

Instructions to authors and to oblige their authors to use the 

checklist when reporting their studies on diagnostic 

accuracy. This way the quality of reporting could be 

significantly improved, providing the best possible 

evidence for health care providers, clinicians and laboratory 

professionals; to the best for the patient care. 
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13. Illustrative Examples  

To illustrate these, for our first example we shall use data 

from a study of diabetic eye tests (Harding et al., 1995). 

This was a cross-sectional study in which diabetic patients 

being screening for eye problems were examined using 

direct opthalmoscopy (the test) and slit lamp stereoscopic 

biomicroscopy (the reference standard). A single sample of 

subjects all received both the diagnostic test and the 

reference standard test. The following table shows the 

results for all eye problems combined: 

Table 2. Reference standard 

 +Ve –Ve Total 

+Ve 40 38 78 

–Ve 5 237 242 

Total 42 275 320 

From this table we can calculate all diagnostic test 

statistics other than a ROC curve: sensitivity = 40/45 = 0.89 

= 89%, specificity = 237/275 = 0.86 = 86%,LR (+ve test) = 

0.89/(1 – 0.86) = 6.4, LR (-ve test) = 0.86/(1 – 0.89) = 7.8, 

OR = 40×237/(38×5) = 49.9, PPV = 40/78 = 51%, NPV = 

237/242 = 98%. We shall now look at what these mean and 

how they were calculated. Sensitivity = the proportion of 

reference positive cases who are positive on the test 

=proportion of true cases that the test correctly identifies. 

Specificity = the proportion of reference negative cases 

who are negative on the test =proportion of true non-cases 

that the test correctly identifies. For eye disease in diabetics, 

there were 45 reference standard positive cases of whom 40 

were positive on the test, 275 reference standard negative 

non-cases of whom 237 were negative on the test. 

Sensitivity = 40/45 = 0.89 = 89%, Specificity = 237/275 = 

0.86 = 86%. A good test will have high sensitivity and high 

specificity. We are looking for values exceeding 80%, 

preferably 90% or 95%. Odds = number of positives 

divided by number of negatives. Odds ratio (OR ) = odds in 

one group divided by odds in another. For eye disease in 

diabetics: Odds test +ve for those reference +ve = 40/5 = 

8.0, OR = (40/5)/(38/237) = 40×237/(38×5) = 49.9. As the 

test and the reference standard should have a strong 

positive relationship, we expect the odds ratio to be much 

greater than 1.0. The likelihood ratio (LR) for a positive 

test = sensitivity/(1 – specificity). We use this as follows. If 

we start with the probability that a subject has the disease, 

which is the prevalence of the disease, we can convert this 

to odds: odds = prevalence/(1 – prevalence). Then if we test 

a subject from a population with this prevalence, we can 

estimate the odds of having the disease if the test is positive: 

odds of disease if test positive = odds of disease × 

likelihood ratio. For eye disease in diabetics: 

Likelihood ratio for a positive test = 0.89/(1 – 0.86) = 6.4. 

Suppose the prevalence of eye problem in the local diabetic 

population is 10% = 0.10. The odds of eye problems is 

0.10/0.90 = 0.11. If a subject has a positive test, the odds of 

eye disease will be increased: odds of disease if test 

positive = 0.11 × 6.4 = 0.70. This corresponds to a 

probability of eye disease = 0.41. (Probability = odds/(1 + 

odds)). Similarly, the likelihood ratio for a negative test = 

specificity/(1 – sensitivity). As before, if we start with the 

probability that the subject does not have the disease = 1 – 

prevalence of disease and convert to odds = (1 – 

prevalence)/prevalence, we can look at the effect on the 

odds of not having the disease if the test is negative: odds 

of not disease if test negative = odds of not disease × 

likelihood ratio Likelihood ratio for a negative test = 

0.86/(1 – 0.89) = 7.8. Suppose the prevalence of eye 

problem in the local diabetic population is 10% = 0.10. The 

odds of no eye problems is 0.90/0.10 = 9.0. If a subject has 

a negative test, the odds of no eye disease will be increased: 

odds of disease if test negative = 9.0 × 7.8 = 70.2. This 

corresponds to a probability of no eye disease = 0.986. The 

positive predictive value (PPV) is the proportion of test 

positives who are reference positive. The negative 

predictive value (NPV) is the proportion of test negatives 

who are reference negative. For eye disease in diabetics, 

there were 78 test positives of whom 40 were positive on 

the reference standard, 242 test negatives of whom 237 

were negative on the reference standard. PPV = 40/78 = 

51%., NPV = 237/242 = 98%. 

Hence if a subject is positive on the test, the probability 

that eye disease will be found using the reference standard 

is 51%. If a subject negative on the test, the probability that 

no eye disease will be found using the reference standard is 

98%. For a receiver operating characteristic (ROC) curve, 

we need a different example. Sanchini et al. (2005) looked 

at the early detection of bladder cancer using a test of 

elevated urine telomerase, an enzyme involved in cell 

proliferation. The reference standard was histologically 

confirmed bladder cancer. This was a case-control study 

conducted in 218 men: 84 healthy individuals and 134 

patients at first diagnosis of histologically confirmed 

bladder cancer. Urine telomerase is a measurement taking a 

range of possible values rather the presence or absence of a 

sign. If we change the value of telomerase which we 

classify as elevated, this will change the sensitivity and 

specificity. We can do this and plot the sensitivity against 

the specificity to see how they vary together. For obscure 

historical reasons, it is usual to plot sensitivity against one 

minus specificity, also called the false positive rate. This is 

the ROC curve, a plot of sensitivity against 1 – specificity. 

(The name comes from telecommunications. As far as we 

are concerned, it is just a name.) This is the ROC curve of 

Sanchini et al. (2005): They have drawn two separate ROC 

curves, one for their whole sample and the other for men 

aged 75 years or older. Sensitivity increases as one minus 

specificity increase, i.e. as specificity decreases. We make 

our test more sensitive at the expense of making it less 

specific. We are looking for a compromise cut-off which 

will give both high sensitivity and high specificity. 

Sanchini et al. (2005) chose 50 as being a reasonable 

compromise between a test which is sensitive, so finding 



72 Okeh UM et al.:  Statistical Evaluation of Indicators of Diagnostic Test Performance 

 

 

most cases with the disease, and specific, so does not pick 

up a lot of people who do not have the disease. The 

diagnostic tests on a ROC curve do not have to determined 

by a continuous measurement, though they often are. All 

we need to plot the curve is more than one test. Sanchini et 

al. (2005) also show a different, non-numerical test: urine 

cytology, not sensitive but fairly specific. For the detection 

of bladder cancer using as a test that urine telomerase > 50 

against a reference standard of histologically confirmed 

bladder cancer, the 2 by 2 table is: 

Table 3. Reference standard 

 +Ve –Ve Total 

+Ve 120 10 130 

–Ve 14 74 88 

Total 134 84 218 

We can calculate most of the statistics as before: 

sensitivity = 120/134 = 0.90 = 90%, specificity = 74/84 = 

0.88 = 88%. LR (+ve test) = 0.90/(1–0.88) = 7.5. LR (-ve 

test) = 0.88/(1–0.90) = 8.8. OR = 120×74/(10×14) = 63.4 

However, the row totals would be meaningless and they 

are not shown in the table. This is because we took two 

separate groups of subjects. The row totals will depend on 

what ratio of cases to controls we used. They do not tell us 

anything about how many people would be test positive or 

test negative. As a result, PPV and NPV cannot be found in 

this study. We cannot estimate PPV and NPV in a case-

control study. Their values depend on the prevalence of the 

disease in the population being tested. See Bland (2004) for 

more information. 
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