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Abstract: The arrangement of the sensors in the air pollutant distribution space was designed by segmented array. A data 

prediction model for RBF neural network was created. Other air pollution data at the unknown positions were predicted by the data 

measured by the arranged sensors in order to reduce the sensor arrangement cost. According to the measured values and the 

predicted data, Gaussian plume diffusion model for air pollution was created, and the quadratic optimization model and inversion 

method for inverse calculation of single pollution source and multi pollution source were built. Single pollution source and double 

pollution source was inversely optimized by three different intelligent optimized algorithms in experimental simulation in order to 

obtain the accurate information on pollution sources. The validity of this method was verified so as to provide a reference for 

subsequent research. 
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1. Introduction 

In recent years, the increasing vehicles and factories and 

mines consume a lot of fossil energy, resulting in increasing air 

pollutant emissions, and more and more serious air pollution [1]. 

In fact, pollutant diffusion in air is very complicated and 

involved in several space dimensions [2]. In addition, pollutant 

type, meteorological condition, and geographic location all 

influence the pollutant distribution. As two main factors of 

influencing the pollutant diffusion, pollution source position 

and intensity have been experimentally and simulatively studied 

by different researchers. 

The neural network model has been used for inverse 

calculation of air pollutants more often because of its advantages, 

including low resource consumption, more acquired data, etc., 

over the measured pollutant data. Although the air pollution value 

is predicted based on basic equation of air diffusion, the accuracy 

of numerical solution is influenced by different aspects, resulting 

in accuracy difference, including (1) initial errors determined by 

initial field, such as instrument error during measurement, and 

adverse representative influence of instrument mounting position, 

etc.; (2) numerical pattern randomicity: the difference between 

dynamic pattern or chemical mechanism pattern and real air 

always exists to some extent, certainly resulting in the deviation 

of the predicted result from real air; (3) intrinsic randomicity of 

air motion process: the average wind speed and wind direction 

measured at different points in the meso scale flat area naturally 

vary randomly because of turbulent flow; and (4) uncertainty of 

pollution source intensity and parameters: the random change of 

pollution source intensity certainly greatly increases the difficulty 

in air pollution prediction and discreteness of prediction results. 

Thus, the current studies on neural network model-based accurate 

calculation of pollutants still are facing many difficulties [3]. 

Different researchers’ inverse calculation of pollutant source 

concentrations and positions by the pollutant concentration data 

and meteorological condition measured by the sensors in the 

space showed that inverse calculation could be achieved on the 

premise of enough pollutant concentration distribution data [4-6]. 

The method of solving the problems about inverse calculation of 

pollution sources mainly include: (1) Gaussian plume diffusion 

model-based inverse calculation of pollution sources by 

intelligent optimized algorithm, which always applies to pollutant 
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diffusion on flat landform and within several miles [7]: Annunzio 

[8] and Chen Junming et al. [9] used the genetic optimized 

algorithm to calculate the position and source intensity a single 

pollution source; Zhang Jiufeng et al. [10] used the particle 

swarm optimization algorithm for inverse calculation of pollution 

source, and studied the effect of each parameter on the 

optimization efficiency in order to reduce the inverse calculation 

cost; (2) Use of Kalman filtering [11] and Lagrangian Particle [12] 

for calculation of key data of the air pollution diffusion model in 

order to reconstruct the model, with some results: Shen Xiaoyan 

et al. [13] established the equation of gas concentration vs. time as 

a state equation, and used Kalman filtering for improvement to 

effectively eliminate noise interference during monitoring; (3) 

Bayesian Probability-based reconstruction of the air pollution 

diffusion model [7, 14, 15]: Johannesson et al. [16] used Markov 

chain and Monte Carlo method for reconstruction of the air 

pollution model, with some results; Senoca et al. [17] created a 

Bayes’ theorem-based data driven approach to calculate the 

parameters of Gauss plume diffusion model for turbulent flow, 

but Feng Fan et al. [18] believed that such statistics-based method 

was very sensitive to observation error, posterior estimation error, 

etc.; and (4) use of the parallel computation method for air 

pollution in 3-D space to longitudinally divide the space into 

several layers, each of which is divided into several grids 

according to the same resolution in order to perform inverse 

calculation of air pollutant emission at each layer [19, 20]. Such 

method can effectively solve such problems about inverse 

calculation of air pollution as low efficiency, long time, etc. 

However, few studies focus on inverse calculation of 

pollutants by neural network, and most of them aim at a single 

pollution source and has insufficient analysis and comparison of 

different intelligent optimized algorithms. To solve the problem, 

the available air pollution concentration data were used to 

predict the pollutant concentration at the unknown positions; the 

built mathematic model for inverse calculation of multi 

pollution source intensity was used to build a constrained 

optimized algorithm; the errors between available downwind air 

pollutant concentration and predicted air pollutant concentration 

and measured concentrations could be regarded as the value of 

target function; intelligent algorithm was used to find the 

optimum solution in order to enhance the calculation efficiency 

and reduce the inverse calculation cost in this paper. 

2. Research Method 

2.1. RBF Neural Network-Based Data Prediction Model 

RBF neural network, which was initiated in 1988 [21], has good 

generalization ability and a simple network structure, and can 

approach any nonlinear function at any accuracy [22, 23]. RBF 

neural network has an input layer, hidden layer and output layer. 

The neuron activation function of hidden layer is a radial basis 

function, ( )h t , and its structural formula is shown in Formula (1): 

( ) ( ) 2

2
exp

2

x t
h t

b

δ 
 = −
 ⋅ 
 

               (1) 

Where 

( )x tδ : Euclidean distance between input parameter vector 

and central vector; 

b : Width of Gaussian function. 

The activation function from the hidden layer to output layer 

is calculated from the following linear weighting function: 

( ) ( )y t h tω= ⋅∑                   (2) 

Where 

ω : Weight of the output layer. 

The Gaussian plume diffusion model-based experimental 

data were used to create a neural network model. The first 200 

groups of data were used for a drill, and the rest 200 groups of 

data were used for comparative simulation of the predicted 

results. The value of concentration was too low, and even about 

10
-5

 during operation. The relative error was very big at the 

absolute error of 10
-5

, so the concentration data were normalized 

first. The comparative simulation results from RBF neural 

network-based data prediction and BP neural network-based 

data prediction were shown in Figure 1~ 3. 

 

Figure 1. Comparison of BP\RBF-based Pollutant Concentration Prediction Results And Actual Value. 



 American Journal of Biological and Environmental Statistics 2018; 4(2): 66-73 68 

 

 

Figure 2. Absolute Error And Relative Error Of Two Algorithms. 

 

Figure 3. Number Of Prediction Data Within The Error Range Of 5%. 

It was known from Figure. 1~ 3 that RBF neural 

network-based pollutant concentration prediction results had 

smaller absolute error and relative error than BP neural 

network-based pollutant concentration prediction results; 

according to the number of prediction data within the error range 

of 5%, RBF neural network-based pollutant concentration 

prediction accuracy was much higher than BP neural 

network-based pollutant concentration prediction accuracy. Thus, 

RBF neural network-based prediction results were more accurate. 

2.2. Data Prediction-Based Sensor Array Design 

The sensor network was used for pollution monitoring. The 

sensors were arranged in the monitoring area in a certain array 

as shown in Figure 4. 
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Figure 4. Air Pollution Sensor Network Arrangement. 

The sensors were generally arranged according to the finite 

difference method as shown in Figure 5 (a). The sensors were 

arranged in the form of array. The arrangement of a sensor at 

each position in the array would lead to a waste of sensors and 

an increase of cost because of broad air pollution ranges. 

According to Chapter 1, RBF neural network –based air 

pollutant concentrations measured by the arranged sensors were 

used for estimation of the air pollutant concentrations at the 

unknown positions, resulting in effective reduction of 

observation cost. The sensor data acquisition and prediction 

points could be arranged in the data observation network 

according to Figure 5 (b). 

 

(a) Array 

 

(b) Actual Sensor Arrangement 

Figure 5. Sensor Array Arrangement Scheme. 

To acquire and predict the pollutant concentrations more 

accurately, the data were acquired and processed by means of 

segmented sampling & segmented prediction. The sensors were 

arranged more densely at the positions with higher value of 

concentration, and more sparsely at the positions with lower 

value of concentration as shown in Figure. 6.  

 

Figure 6. Air Pollution Sensor Network Arrangement. 

2.3. Inverse Calculation Model for Air Pollution Source 

2.3.1. Gaussian Plume Diffusion Model 

The effect of landform on pollutant diffusion was taken into 

account in this paper. The plume diffusion was regarded as 

bounded, so the air pollutant diffusion could be simulated by 

bounded Gaussian plume diffusion model. Assuming that the 

coordinate of the pollution source was ( )0 0 0, ,x y z , its equation 

was shown in Formula (3) [24]:  
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Where 

( , , )C x y z : Pollutant concentration at ( , , )x y z ;  

Q : Pollution source intensity;  

u : Current downwind wind speed;  

xσ , yσ , zσ : Air pollution diffusion coefficients.  

The corrected Gaussian plume diffusion model considering 

the effect of ambient temperature on pollutant diffusion was 

shown in Formula (4):  

610 ( , , )
( , , )

( 273)
m

T C x y z
C x y z

T

⋅=
+

         (4) 

Where 

( , , )mC x y z : Corrected pollutant concentration at ( , , )x y z ;  

T : Current ambient temperature.  

The air pollutant concentration at one point in the multi 

pollution source space could be approximatively regarded as the 

linear superposition of pollutant concentration of multi 

pollution source at this point. Assuming that there were cN  

different pollution sources in this space, total pollutant 

concentration at ( , , )x y z  was calculated according to the 

formula below:  

1

( , , ) ( , , )
cN

i
z m

i

C x y z C x y z

=

=∑              (5) 

2.3.2. Quadratic Optimization of Pollution Source  

Plumes diffuse downwind during air pollutant diffusion, 

resulting in small impact on upwind environment. All the 

pollution areas were simulated in 3-D space downwind under 

the conditions. Thus, we could calculate the values for cN  

different pollution sources in the space in the following steps:  

Step1: Creation of the target functions with minimal error 

about the concentrations and positions of finite pollution 

sources, i.e.:  

( ) ( )
2

1

min ( , , ) ( , , )
eN

j j
mes z

j

f Q C x y z C x y z

=

= −∑        (6) 

Intelligent optimized algorithm was used to calculate the 

concentrations and positions of the pollution sources according 

to Formula (6).  

Step 2: The optimized pollution sources were ranked along 

x-axis in the ascending sequence to obtain the optimized 

pollution source points ( )1 1 1 1, ,Q x y z , ( )2 2 2 2, ,Q x y z …

( ), ,i i i iQ x y z … ( ), ,Nc Nc Nc NcQ x y z : 1 2 ⋯ ⋯i Ncx x x x< < < , 

( )1 ci N∈ .  

The pollutant concentration at ( )1 1 1 1, ,Q x y z  was measured to 

obtain ( )_1 1 1 1, ,mesQ x y z . If  

( ) ( )
( )

_1 1 1 1 1 1 1 1

_1 1 1 1

, , , ,
100% 5%

, ,

mes

mes

Q x y z Q x y z

Q x y z

−
× < , 

it could be believed that the first pollution source predicted in 

this step was accurate. The data of this pollution source was 

used for positive calculation to obtain the pollutant 

concentration contribution, ( )1 1 11 , ,
j

C x y z , of this pollution 

source at this monitoring point j to each monitoring point.  

Step3: The measured pollutant concentration ( , , )j
mesC x y z was 

deducted from ( )1 1 11 , ,
j

C x y z  to obtain the total pollutant 

diffusion concentration which the pollution source 1cN −
contributed to.  

Step4: According to Steps1~3, the pollution source 1cN −  

was inversely calculated.  

Among the optimized algorithm ins Step1, genetic algorithm, 

particle swarm optimization algorithm and Pattern Search 

Method and other were usually used [9, 10, 25]. This paper aims 

to solve the problem of nonlinear quadratic optimization in 

Formula (6) and minimize the error sum of square in Formula (6) 

in order to identify the pollution sources.  

To solve the problems about single pollution source and multi 

pollution source, genetic algorithm, particle swarm optimization 

algorithm and differential evolution algorithm were used for 

comparative tests in order to achieve ideal inverse calculation of 

pollution source intensity and position under different 

conditions in this paper.  

3. Result and Discussion 

For single pollution source, the pollution source intensity was 

taken as 65 10Q = × , source position as ( ) ( )0 0, 0,50x y = , 

atmospheric stability as Grade F, and average wind speed as 

2 m s . Figure 7 showed the identification results of pollution 

source position and concentration from inverse calculation of 

source intensity by differential evolution algorithm, adaptive 

particle swarm optimization algorithm and genetic algorithms. 

It could be seen from Figure 7 that the pollution source position 

and source intensity identified by adaptive particle swarm 

optimization algorithm were closer to the true values.  

For multi pollution source, the first pollution source intensity 

was taken as 6
1 5 10Q = × , and source position as ( ) ( )1 1, 0,50x y = ; 

the second pollution source intensity was taken as 7
2 8 10Q = × , 

and source position as ( ) ( )2 2, 20,0x y = . The results of inverse 

calculation of multi pollution source position and intensity 

under the same other conditions were showed in Figure 8. The 

simulation results showed that this algorithm had worst inverse 

calculation results of position and intensity of multi pollution 

source than those of single source; genetic algorithm had more 

accurate inverse calculation results of pollution source position 

and intensity than the other two algorithms.  
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Figure 7. Single Pollution Source Position And Concentration Inversion Results. 

 

Figure 8. Double Pollution Source Position And Concentration Inversion Results. 

To verify the inversed pollution source diffusion effect, the 

inversed pollution source diffusion residual mean was defined 

as follows:  

( )
2

1

( , , ) ( , , )
eN

j j
e comp mes

j

R N C x y z C x y z

=

= −∑       (7) 

Where 

( , , )
j

compC x y z : The calculated air pollutant concentration at 

the j th point,  

( , , )j
mesC x y z : The measured air pollutant concentration at the

j th point,  

eN : Number of sensors installed downwind of the air 

pollution source.  

The error analysis was shown in Table 1.  
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Table 1. Air Pollutant Emission Inversion Residual Mean.  

Item Optimized Algorithm Residual Mean 

Single pollution source 

Differential Evolution algorithm 
9

1.0306 10
−×  

Particle swarm optimization algorithm 
10

8.0457 10
−×  

Genetic algorithms 
10

9.4853 10
−×  

Double pollution source 

Differential Evolution algorithm 
5

3.6094 10
−×  

Particle swarm optimization algorithm 
5

2.6657 10
−×  

Genetic algorithms 
5

2.0760 10
−×  

 

It was known from Table 1 that for single pollution source, the 

particle swarm optimization algorithm provided the smallest 

residual mean and the best inversion effect; for double pollution 

source, genetic algorithm provided the best inversion effect, and 

much higher residual mean than that for single pollution source, 

indicating that this algorithm was more difficult for inversion of 

multi pollution source, and the optimized algorithm for inversion 

would be selected based on different pollution sources.  

4. Conclusion 

Based on the pollutant data acquired by the sensors in segmented 

array, RBF neural network and different algorithms were used to 

study the air pollution diffusion inversion, and mainly simulate the 

intensity and position of single pollution source and multi pollution 

source in this paper. The followings were concluded:  

(1) The pollutant concentrations predicted by RBF neural 

network had smaller absolute error and relative error than those 

by BP neural network algorithm; the RBF neural network model 

could be used to study the air pollution diffusion.  

(2) The comparison of three different intelligent optimized 

algorithm showed that the pollution source position and source 

intensity identified by adaptive Particle swarm optimization 

algorithm were closer to true values.  

(3) The results of simulation by the quadratic optimization 

model for pollution source concentration and position created 

by the measured data and calculated data according to the built 

Gaussian plume diffusion model showed that for single 

pollution source, particle swarm optimization algorithm 

provided the smallest residual mean and the best inversion 

effect; for double pollution source, genetic algorithms provide 

better inversion effect than other algorithm, but different 

algorithms had worse inversion effect on double pollution 

source than single pollution source.  

In this paper, the study on single pollution source and multi 

pollution source by neural network model and different 

intelligent algorithms showed that the neural network model 

could be used for determination of multi pollution source 

position and intensity. It is very significant to determine 

pollution source under actual urban conditions. However, the air 

diffusion factors are very complicated. The determination of 

pollutant source intensity and position at other factors will still 

be further studied.  
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