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Abstract: The idea of symmetric super-implicit linear multi-step methods (SSILMMs) necessitates the use of not just past 

and present solution values of the ordinary differential equations (ODEs), but also, future values of the solution. Such methods 

have been proposed recently for the numerical solution of second-order ODEs. One technique to obtain more accurate 

integration process is to construct linear multi-step methods with hybrid points employing future solution values. In this regard, 

we construct families of Stӧrmer-Cowell type hybrid SSILMMs having higher order than that of the symmetric super-implicit 

method recently proposed for the same step number using the Taylors series approach. The newly derived hybrid SSILMMs 

are p-stable with accurate results when tested on some special second order IVPs.  
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1. Introduction 

Consider the initial value problem (IVP), 

������ = ���, ����
; ����� = ��, ������ = ��,    (1) 

in ordinary differential equations (ODEs) in which there is no 

explicit first derivative appearing. There is vast literature for 

the numerical solution of (1), see [13], [5], and references 

therein. The linear multi-step methods for solving the second 

order IVP (1) is, 

∑ ������ ���� = ℎ� ∑ ������ ,���� �� ≠ 0.            (2) 

The first and second characteristic polynomials are, 

���� = ∑ ������ �� , ���� = ∑ �������� .          (3) 

The LMM (2) has an associated local truncation error 

(LTE) difference operator, 

������; ℎ� = ∑ ����� + !ℎ� − ℎ����� ∑ ������#��$����� =
%&��ℎ&����&������� + '�ℎ�&�(�
,             (4) 

where %&��ℎ&����&������� is the LTE at the point �� ,  ) is 

the order of the method, and %&�� is the error constant given 

by,  

%* = 1
,!.!*���!��� − ,�, − 1���


�

���
 

−∑ �/01
�*2��!�� ,���3�� 	, > 2.                           (5) 

As the usual convention, method (2) is assumed to satisfy 

the following conditions, 

1. �� = 1, |��| + |��| ≠ 0 (real parameters), 

2. ���� and ���� have no common factor (irreducibility), 

3. ��1� = ���1� = 0, �′′�1� = 2��1� (consistency), 

4. zero-stable. 

The method (2) is symmetric if �� = ��2� and �� = ��2� 
for ! = 0�1�9. The stability of method (2) is determined by 

the application on the periodic test problem, 

��� + :�� = 0,:, � ∊ ℜ.                          (6) 

Some preliminary definitions are given. 

Definition 1 [14]: The LMM (2) is said to have an interval 

of periodicity �0, =��, if for all =� in this interval, the roots 

of, 
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>��, =�� = ���� + =����� = 0, = = :ℎ,            (7) 

satisfy, �3 = ?@A�B�, �� = ?2@A�B�, |�C| ≤ 1, E ≥ 3,… , 9, I�=� ∊ ℜ. 

Definition 2 [14]: The LMM (2) is said to be p-stable, if its 

interval of periodicity is (0,∞). 

Definition 3 [18]: Method (2) is almost p-stable, if its 

interval of periodicity is (0,∞) – d, where d is a set of distinct 

points. 

The result put forward by [13] have shown that no LMM 

(2) of order greater than p = 2 can be p-stable. Also, [8] has 

proved to support [13]’s claim. Precisely, [8]’s result is 

stated. 

Theorem 4 [8]: Consider an irreducible, convergent, 

symmetric multi-step method (2). Define the function, 

J�I� = 2K�LMN

O�LMN
                                 (8) 

Then, the method (2) has a non-vanishing interval of 

periodicity if and only if, 

(1) J�I�  has a non-zero double roots in the interval I ∊ �0, P�, 
(2) J′′�I� is positive on all the non-zero double roots of J�I� in interval I ∊ �0, P�. 
Cash [1] independently showed that the order barrier on 

attainable order of a p-stable LMM (2) could be bypassed by 

considering certain hybrid two-step methods. An example of 

the method from this family is given by, 

���� − 2���3 + �� = ℎ� Q233(R� ����� + ��� + (
�����3 +

S3
T� U���V1 + ���W1XY.                           (9) 

The order is p = 4, %Z�� = 3[
\[R�, with hybrid pair, 

���V1 =
3
S���� + ���3 − 3

S �� + ℎ� ]2(S^ ���� + T
S^���3_, 

and			���W1 =
3
� ���3 + 3

��� + ℎ� ] T
3T����� − 3\

TR ���3 − 3
RS��_. 

The interval of periodicity of (9) is (0, ∞), and it is p-

stable. 

As [1] further noted, [12] claimed to have derived high 

order p-stable linear multi-step methods but their concept of 

p-stability is considerably different from that given in [14]. 

The work in [2] further stressed on the work in [1], by 

considering the free parameters available in their proposed 

linear multi-step methods which can reduce the work to two 

functional evaluations, and also, reduces the work with 

respect to implementation for nonlinear problems of (1). 

Fatunla [4] derived a one-leg scheme found to be 

advantageous in terms of functions evaluations. Only one 

function evaluation and k values of y need to be stored for 

use in the next integration step. Fatunla et al [6] used the 

concept of Padé approximation to obtain a p-stable linear 

multi-step method, 

���� − 2���3 + �� = ℎ�� U���3, 33� ���� + \
R���3 + 3

3� �� + ℎ� ] 233SS���� + \
[����3 + 23

3SS��_X,                          (10) 

with order p = 4, %&�� = 3[
\[R�, which is an extension of the 

scheme in [4]. The concept of p-stability based on [14] 

(definition (2)) which was also employed in [1] and [6] will 

be adopted in this paper. Several methods based on LMM 

have been proposed see for example, [21], [22], [23], and 

[25]. Neta [16] considered a very special class of (2), the 

symmetric super-implicit linear multi-step method given by, 

∑ �������+��2�

`
1��� = ℎ� ∑ �������+��2�
.

`a
1���    (11) 

The ���
���  are arbitrarily chosen to satisfy zero-

stability condition, and ���
���  are the coefficients to be 

determined. This and like the methods to be proposed 

require additional formulas to handle the additional 

starting and future values. 

The method (11) is the extension of the work in [8]. 

Example of method (11) derived in [16] is given for k = 4, 9� 
= 8, 

���� − 2���3 + 2�� − 2��23 + ��2� = ℎ� U [S33[�\[R�� + (R�[[3
S\(R�� ����3 + ��23� + S[�\[

S\(R�� ����� + ��2�� − �[�[
S\(R�� ����( + ��2(� +

RS3
3^3SS�� ����S + ��2S�X, p = 10, %&�� = 2S3(T

[T^((R��.                                                  (12) 

However, the Taylors series approach in the sense of the work in [1] will be used to derive the new hybrid extension of (11) 

in [16] while using MATHEMATICA v 8 [11]. 

2. Construction of Hybrid Symmetric Super-Implicit Obreckoff Type LMM 

The class of methods to be considered is in the general class of the hybrid method, 

∑ b������+��2�

`
1��� = ∑ ℎ�cd��3 U∑ ���c��������@2��+��2���@2��


e
1��� X +∑ ℎ�cf�c�����g��@2��+��2g��@2��
*c�3 .      (13) 

This is an Obreckoff type class of methods, where the hybrids are given by, 
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∑ �������+��2�

`
1��� = ∑ ℎ�cd��3 U∑ h��c��������@2��+��2���@2��


e
1��� X,                                      (14) 

∑ i������+��2�

`
1��� = ∑ ℎ�cd��3 U∑ j��c��������@2��+��2���@2��


e
1��� X.                                         (15) 

In particular, is the hybrid SSILMM, 

∑ b������+��2�

`
1��� = ℎ� ∑ �������+��2�


e
1��� +	+	ℎ�f����g+��2g�,                                       (16) 

when m = 1, q = 1 in (13), this is also considered in [15], 

where k and the super-implicit parameter s are even. The 

method (16) is explicit for s = k – 1, implicit for s = k, and 

super-implicit for s > k with λ ∊ [0, 1] as in [1]. Here the b� 
are fixed, say b3= 1, b�  = -1 to satisfy the zero-stability 

condition. The constants �������3�e1 are then determined. The 

method (13) approximates the hybrid quantities ��±gby an 

expression involving the quantities {���±�; ��±�
} only. For 

m = 1 in (14) and (15), we have, 

���g = ∑ �������+��2�

`
1��� + ℎ� ∑ h������+��2�


e
1��� ,  (17) 

��2g = ∑ i������+��2�

`
1��� + ℎ� ∑ j������+��2�
.

e
1���  (18) 

However, the hybrid of interest is  

���g = ∑ ������ ��23�� + ℎ� ∑ h�����
e
1��� ,         (19) 

��2g = ∑ i����� ��23�� + ℎ�∑ j���2�
e
1��� ,         (20) 

where, k and the super-implicit parameter s are even, and  

λ ∊ [0, 1] as in [1]. 

3. Construction of High Order  

Stӧrmer-Cowell Type Hybrid 

SSILMMs 

This section presents the Stӧrmer-Cowell type hybrid 

SSILMMs of order p = 10, and p = 12 respectively with 

hybrid parameter λ. When k = 2, s = 6, and b� are arbitrarily 

chosen as in section (2) and substituted into (16), we have, 

���3 − 2�� + ��23 = ℎ��2���� + ����3 + ��23��3 + ����� + ��2���� + ����( + ��2(��( + ∅����g + ��2g�
.    (21) 

The following consistent simultaneous order condition are obtained as, 

ℎ�:	�1 − 2∅ − 2�� − 2�3 − 2�� − 2�(� 
ℎ� :	 112 �1 − 12n�∅ − 12�3 − 48�� − 108�(� 

ℎS :	 1360 �1 − 30nS∅ − 30�3 − 480�� − 2430�(� 

ℎR :	�1 − 56nR∅ − 56�3 − 3584�� − 40824�(�20160  

ℎ^ :	�1 − 90n^∅ − 90�3 − 23040�� − 590490�(�1814400 . 
For hybrid parameter λ = 

3
�, method (21) become, 

���3 − 2�� + ��23 = ℎ� U���3[T�[�� �� 	+ R[3
(R�^^ ����3 + ��23� − �S3

��R^��� ����� + ��2�� + 3(
S\(R��� ����( + ��2(� + 3^STR

[�^[\ ����g + ��2g�X, (22) 

with order p = 10 and LTE = 
2t�W1��#�$W1
�\(SS��� . For the hybrid, 

���g = �����3 + �3�� + ����23 + ℎ��h��� + h3���3 + h����� + h(���(�.                         (23) 

We obtain the consistent order equations, 

�� = 1
114 �21n − 60n( + 55nS − 18n\ + 2nR� 

�3 = 1
57 �57 − 78n + 60n( − 55nS + 18n\ − 2nR� 

�� = 1
114 �135n − 60n( + 55nS − 18n\ + 2nR� 

h� = −3313n + 3420n
� + 2110n( − 3280nS + 1203n\ − 140nR

6840  
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h3 = −1641n + 1920n
( − 50nS − 279n\ + 50nR
6840  

h� = 321n − 510n
( + 40nS + 189n\ − 40nR

6840  

h( = 2S[g�^�gV23�gv2((gw�3�gx
R^S� . 

The hybrid (23) becomes,  

���g = R[3
3�3R���3 + �S3

R�^�� + ����23 + ℎ� ]− \�(
S^RS� �� − R(3

[�TR ���3 + ��(
3S\T����� + − 3

S\R���(_,                 (24) 

with LTE = 
\[[t�y��#�$y
\^(R^� . Similarly, for hybrid,  

��2g = i����3 + i3�� + i���23 + ℎ��j��� + j3���3 + j����� + j(���(�.                         (25) 

We have the following expression for the constants, 

i� = 1
114 �135n − 60n( + 55nS − 18n\ + 2nR� 

i3 = 1
57 �57 − 78n + 60n( − 55nS + 18n\ − 2nR� 

i� = 1
114 �21n − 60n( + 55nS − 18n\ + 2nR� 

j� = −3313n + 3420n
� + 2110n( − 3280nS + 1203n\ − 140nR

6840  

j3 = −1641n + 1920n
( − 50nS − 279n\ + 50nR
6840  

j� = 321n − 510n
( + 40nS + 189n\ − 40nR

6840  

j( = −47n + 80n
( − 10nS − 33n\ + 10nR
6840 . 

The hybrid (25) now become, 

��2g = R(
3�3R���3 + �S3

R�^�� + R[3
3�3R��23 + ℎ� ]− \�(

S^RS�� −R(3
[�TR��23 + ��(

3S\T���2�− 3
S\R ��2(_,        (26) 

with the LTE = 
2\[[t�y��#�$y

\^(R^� . 
On the examination of the stability of the new hybrid 

SSILMM (22), the value of the hybrid parameter n has been 

carefully chosen as 
3
� to ensure p-stability. On substituting the 

hybrid pair (24) and (26) into the main method (22) and 

applying the scalar test problem (6) for H = :ℎ  using 

MATHEMATICA v 8 [11], we obtain the interval of 

periodicity (0, ∞). The method is thus p-stable. When k = 2, s 

= 8, we obtain the order p = 12 method, 

���3 − 2�� + ��23 = ℎ� ](\(�T(z{[T^((R + 3^[3[3�z{|W�z{0W�
TT[T��� − \(�z{|1�z{01�

(TT3R^ + R3�z{|V�z{0V�
TT[T��� − z{|v�z{0v

SS(\��� + S�\[R�z{0}�z{|}�
3\\T�\ _,    (27) 

with the LTE = 
SR\�[t�Wv��#�$Wv
3�SR3(TSTSS��� . The hybrids are, 

���g = ℎ� ]2S^3�(z{\\�TR� − ((�(z{|W
(S\R� + [3[3z{|1

�[RS^� − S(z{|V
\[R� + \[[z{|v

\\�TR� _ + ^Tt{0W
�(�S + S^[t{

33\� + 3�S3t{|W
�(�S             (28) 

with the LTE = 
23\[3�(t�~��#�$~

�[^RT3^S� , and  

��2g = ℎ� ]2S^3�(z{\\�TR� − ((�(z{0W
(S\R� + [3[3z{01

�[RS^� − S(z{0V
\[R� + \[[z{0v

\\�TR� _ + 3�S3t{0W
�(�S + S^[t{

33\� + ^Tt{|W
�(�S ,                 (29) 

with the LTE = 
3\[3�(t�~��#�$~
�[^RT3^S� . Following the analysis like 

that of (22) on MATHEMATICA v 8 [11], method (27) is 

thus p-stable. 

4. Implementation of Hybrid SSILMM 

Consider the implementation of the new hybrid methods 

derived to show the accuracy of these methods in solving 

some stiff oscillatory and undamped Duffing problems of (1) 

by resolving the problem of implicitness in the derived 

hybrid methods. However, methods (22) and (27) are 

consider for implementation following the ideas in [1] and 

[6]. Assume that (1) is Lipschitz continuous with reference to 

y (x) for all x ∈ [a, b], 

ǁ�	��, �� − 	�	��, �∗	�ǁ ≤ �ǁ	�	 − 	�∗ǁ,	           (30) 

where L is the Lipschitz constant. The approach of Newton-

Raphson iterative method is used to resolve the implicitness 

in the newly proposed methods. The predictor,  

���� − 2���3 + �� = ℎ����3,                         (31) 

of order p = 2 will be used as the starter for the Newton-

Raphson iteration with LTE = 
3t�v��#�$v

3� . The p-stable method, 

���� − 2���3 + �� = $1
S ����� − 2���3 + ���,         (32) 
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is also employ to generate the future solution values {��±�}	���,( 
in the case of (22) and {��±�}	���,(,S  in the case of (27) 

respectively. So that the Newton-Raphson iteration becomes 

� �C�3���3 = � �C���3 ]��� �C���3
_23 ��� �C���3
, E = 0,1, … , �, (33) 

where the Jacobian is given by,  

���� = 	 ���t��t .                                 (34) 

The numerical methods (22) and (27) is applied to solve 

example 1, 2, 3. In the case of the p-stable method in (22),  

��� �C�3���3 
 = � �C���3− 2�� + ��23 = ℎ� U���3[T�[�� �� 	+ R[3
(R�^^ �� �C���3+ ��23
 − �S3

��R^��� ����� + ��2�� + 3(
S\(R��� ����( + ��2(� +

3^STR
[�^[\ �� �C���g + � �C��2g
X.                                                                         (35) 

Example 1: Orbital problem (Source: [1], [4], [6], [14]) 

��� + � = 0.001?@# ,                          (36) 

��0� = 1, �′�0� = 0.9995�� = −1, 
which the theoretical solution is, 

���� = 	���� + ����� = (����, ����),         (37) 

where ���� = ���� + 0.0005�����  and ���� =	������ − 0.0005������. The IVP (36) represent motion on 

a perturbed circular orbit on the complex plane in which the 

path defined by the point ���� = �����, �����	spirals slowly 

outward such that its distance from the origin at any given 

time � is given by, 

 ���� = ������ + �����,                 (38) 

The interval 0 < � ≤ 40P correspond to 20 orbits of the 

point ����,  
���z
 = ����z
� = 1.00197197653449, �z = 40	P. (39) 

The numerical result is generated using the step size 

ℎ = �
�/ , , = 3�1�13, and can be seen in Table 1, 2, and 3. 

Table 1. Numerical results of method (22) at �z = 40	P. 

q h Method (22) (Ω� Error �Ω���
 − Ω� 
3 P 2(⁄   1.00203401920494 6.20426704474042 e-005 

4 P 2S⁄   1.00200287811217 3.09015776829291 e-005 

5 P 2\⁄   1.00198739738256 1.54208480669382 e-005 

6 P 2R⁄   1.00197967947316 7.70293866714233 e-006 

7 P 2[⁄   1.00197582613246 3.84959797039564 e-006 

8 P 2^⁄   1.00197390086563 1.92433114087898 e-006 

9 P 2T⁄   1.00197293858310 9.62048610331223 e-007 

10 P 23�⁄   1.00197245752955 4.80995061558076 e-007 

11 P 233⁄   1.00197221702471 2.40490217517930 e-007 

12 P 23�⁄   1.00197209677777 1.20243278001198 e-007 

13 P 23(⁄   1.00197203665567 6.01211789241773 e-008 

Table 2. Numerical results of method (27) at �z = 40	P. 

q h Method (27) (Ω� Error �Ω���
 − Ω� 
3 P 2(⁄   1.00203401920494 6.20426704474042 e-005 

4 P 2S⁄   1.00200287811217 3.09015776829291 e-005 

5 P 2\⁄   1.00198739738256 1.54208480669382 e-005 

6 P 2R⁄   1.00197967947316 7.70293866714233 e-006 

7 P 2[⁄   1.00197582613246 3.84959797039564 e-006 

8 P 2^⁄   1.00197390086563 1.92433114087898 e-006 

9 P 2T⁄   1.00197293858310 9.62048610331223 e-007 

10 P 23�⁄   1.00197245752955 4.80995061558076 e-007 

11 P 233⁄   1.00197221702471 2.40490217517930 e-007 

12 P 23�⁄   1.00197209677777 1.20243278001198 e-007 

13 P 23(⁄   1.00197203665567 6.01211789241773 e-008 

Table 3. Numerical results of the hybrid methods when compared with existing methods at �z=40 π. 

q Lambert & Watson [14] Cash [1] Fatunla [4] Fatunla et al [6] Hybrid SSILMMs 

3 0.965645 NA 1.010853 1.009580 1.002034 
4 0.993734 1.004118 1.004106 1.0096427 1.002002 

5 0.999596 1.002856 1.002502 1.006985 1.001987 

6 NA 1.002400 1.002104 1.0048087 1.001979 
7 NA NA 1.002005 1.0035590 1.001975 

8 NA NA 1.001980 1.0025975 1.001973 

9 1.001829 1.002057 1.001974 1.0020842 1.001972 
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Example 2: Stiff oscillatory IVP (Source: [17])  

�’’��� + ������ = 8������ + �
( ����3��,         (40) 

��0� = 1, �’�0� = 0, 
where m = 5. The theoretical solution is, 

���� = 3
( ������� + ����3�� + ����5��
.        (41)  

Where the oscillatory pattern of (40) is generated through 

the theoretical and numerical solution as in figures 1 and 2 

respectively with step size 
�
^ at � = 10P. 

 

Figure 1. Theoretical solution of IVP (40) over one period. 

 

Figure 2. Numerical solution of IVP (40) over five periods. 

Example 3: Undamped Duffing IVP (Source: [2], [17], 

[24]), forced by a harmonic function, 

��� + � + �( = ��������,                 (42) 

with the values of the parameters δ = 0.002 and µ = 1.01, and 

with the initial conditions ��0� = �, ���0� = 0, taking for A 

the value of the Galerkin approximation �   at x = 0. By 

Urabe’s method applied to Galerkin’s procedure, [20] has 

computed the Galerkin’s approximation of order p = 9 to a 

periodic solution having the same period as the forcing term 

with a precision 1023� of the coefficients of, 

�  = ∑ i�@�3�����2� + 1�μ�
\@�� ,                  (43) 

�  = �����μ�i3 + ����3�μ�i( + ����5�μ�i\ + ����7�μ�i[ + ����9�μ�iT + ����11�μ�i33,                     (44) 

where,  

i3 = 0.200179477536, i( = 0.246946143�102(, i\ = 0.304014�102R, i[ = 0.374�102T, iT =0.460964452�1023�, i33 = 0.5676x1023\. 
Where the oscillatory pattern of (42) is generated through 

the theoretical and numerical solution as in figures 3 and 4 

respectively with step size ℎ = �
^ at � = 40P. 

 

Figure 3. Theoretical solution of IVP (42). 

 

Figure 4. Numerical solution of IVP (42). 

5. Conclusion 

This paper has considered the class of methods defined in 

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Re(H)

Im
(H

)

0 5 10 15 20 25 30 35 40
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Re(H)

Im
(H

)

0 5 10 15 20 25 30 35
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Re(H)

Im
(H

)

0 10 20 30 40 50 60
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Re(H)

Im
(H

)



 American Journal of Applied Scientific Research 2017; 3(3): 21-27 27 

 

(16), and p-stable methods based on (16) have been derived. 

In particular, in (16), p-stable methods were derived with 

order as high as p = 10, and 12 which turns to be higher than 

that of the ones proposed in [16] for the same step length. 

The order barrier theorem of [3] which has been extended to 

second-order ODEs by [9] has been bypassed through the use 

of hybrid methods. The numerical results compare 

favourably with theoretical and existing results, see tables 1, 

2, 3, and figures 1, 2, 3, and 4 as well. 
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