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Abstract: We study existence of solution in the presence of upper and lower solutions of some second-order nonlinear
coupled ordinary differential system (ODS for short) depending on first order derivatives with nonlinear coupled boundary
conditions (CBCs for short). Our method for nonlinear coupled system with nonlinear CBCs is new and it unifies the treatment
of many different second order problems. Nagumo condition is used to define bound for the derivative of the solution. Coupled
lower and upper solutions, Arzela-Ascoli theorem and Schauder's fixed point theorem play an important role in establishing the
arguments.
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1. Introduction

[2, 9, 12, 14]. Our considered System (1.1)-(1.2) deals with
the latter case.

The other productive aspect of the article is the
generalization of the classical concepts that had been
discussed in [3, 5, 7, 8, 10, 13,17]. We mean to say if

In this paper, we study existence of solution in the
presence of upper and lower solutions of some second-order
nonlinear coupled ODS with nonlinear CBCs of the type

—u" (1) = f (tu@),v(0),u'(0),v'(0)), ¢L[0,1],

1.1 . . .
—u"(t) = g(t,u(t),v(t),u'(t),v'(t)), t0[0,1], (b Aj,k,l,m,n,0)=(~n,m=0) and Y(j,k)=(=j,~k), then
' ’ ’ ' (1.2) implies the periodic boundary conditions (BCs for
@u(0),v(0),u'(0),v'(0),2'(1),v'(1)) = (0,0), (1.2) short).  Also if @(j.k,l,m,n,0)=(+n,m+0)  and

P (0),v(0)) + (u(1), »(1)) = (0,0),

where f,g:[0,1]]XRxRXRxR -~ R, ¢@:R°® - R’ and

Y:R* 5 R? functions. A
motivation factor for the study of the above system has been
the applications of the nonlinear differential equations to the
areas of mechanics; population dynamics; optimal control;
ecology; biotechnology; harvesting; and physics [11, 15, 16].
Moreover, while dealing with nonlinear ODS mostly authors
only focus on attention to the differential systems with
uncoupled boundary conditions [1, 4, 6].

But, on the other hand, very few research work is available
where the differential systems are coupled not only in the
differential systems but also through the boundary conditions

W(j,k)=(Jj,k), then (1.2) implies the anti-periodic BCs. In
order to obtain a solution satisfying some initial or BCs and
lying between a subsolution and supersolution, we need
additional conditions. For example, in the periodic case it
suffices that

are continuous significant
a,(0) 2 a}(1), @(0) = a; (1),
a,() =a,(0), a,() = a,(0),
B(0) < B1), B(0)< B(1),
B =B0), 1) =5(0),

(1.3)

and in the anti-periodic case it suffices that
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a/(0)2-4/(1), a,(0) =2 -5,(),
-a,(0)=41), —a,(0)=5,(1),
B sa(l), B(0)<s-a,(1),

a, () =-4(0), a,(1) ==4,(0),

(1.4)

so to generalize the classical results (1.3) and (1.4), the
concept of coupled lower and upper solutions is defined in
Section 2 that allows us to obtain a solution in the sector

[a,, B1x[a,,3,]. Also (2.1) implies (1.3) and (1.4).
Definition 1.1. We say that a  function
(a,,a,)0C?[0,1]xC?[0,1] is a sub solution of (1.1) if

—o/(0) < [, (1), a, (1), a1(0), a5 (1)), ¢ 0[0,1],

a0 < gt a, 0 d @), oo, )

In the same way, a super solution is a function
(B,53,)0C*[0,1]xC?[0,1], that

inequalities in reverse order. For u,vOC 2[0, 1], we define the

satisfies the same

set
L, v = {w O C?[0,1]: u(e) < w(t) < v(£), O[0,1]}.

Definition 1.2. We say that / and & satisfies Nagumo

condition relative to the intervals [a,(?),5,(t)] and

[a, (1), B,(1)] respectively, if for

r =max{f3(0)-a,(1)+ B,(0) ~a, (1),
A1) —a,(0)+51)-a,(0),

there exists a constant M such that

M >max{r,sup,,; | a/@®)l, SUP, 7.1 | B®|,
SUP;0,19 | az' @1, SUP;ry0,19 | /82' 1,

and a continuous function € : [0,0) — (0,%) such that

| ft,u(®),v(t),r,s)|<E(r+s]), a,@)<u()< [(1),
a, () <v(t) < B, (@), t0[0,1], r,s OR,
| g(t,u(®),v(1),r,8) IS S| r+s]), ay (1) Su(r) < B(1),
a,)<v(@) < B,(), t0[0,1], r,s OR,

and

Ty
i

We finish this introduction with a lemma
Lemma 1.3. Let

L:C'[0,1]1xC'[0,1] - C,[0,1]xC,[0,1]xR* xR*
be defined by

[L(u,)]@) = @' () —u'(0)— /lju(s)ds, V() =v'(0)— A.t[v(s)ds,

(au(0) +bu(l),cv(0) + dv(1)), (Eu(0) + Fu(1), Gv(0) + Hv(1))),

Where A,a,b,c,d,E,F,G and H are real constants such
that

(ad —be)(EH - FG) e =) £ 0,

and here
C,[0,1]={wDO C*[0,1]: w(0) = 0}.

Then 1! exists and is continuous and defined by

t
[ 02 81 = (Ce™ +Coe ™ 4 [ y(s)ds
0

Lt Hen 7 N o 1 Lt e
—— et $)ds,C.e’ +C,e ™" += [ "™ z(s)ds —= | € z(5)ds),
2{ Y(s)ds.C, ' 2{ (5) 2{ (5)ds)

where

~ 1
' (ad —be)(e”

1 1
= (23(a+be™)~d(a+be ™) [ y(s)ds +d(a+be™ ) [ y(s)ds
—-e 0 0

1 1
“2p(c+de™") +b(c+de™")[ e y(s)ds ~ b +de™ ) [0 y(s)ds),
0 0

B 1
" (ad —be)e N -

2

1 1
28(a+be™)=d(a+be™)[ e y(s)ds +d(a+be™) [ MV y(s)ds
0 0

1 1
“2p(c +de™) +b(c+de’)[ e y(s)ds ~b(c +de™)[ e y(s)ds),
0 0

(1.6

55

)
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1

1 1
C, = QG(E+Fe)~H(E +Fe™")[ e z(s)ds + F(E + Fe ) [ eV 2(5)ds
0 0

* T (BH-FG)(e" e

1 1
UG+ He )+ F(G+ He™ ") [ e z(s)ds ~ F(G + He ) [ eV 2(s)ds),
0 0

and

1

1 1
C, = Q¢(E+Fe™)~H(E+Fe™)[ e z(s)ds + F(E+ Fe')[ ez (s)ds
0 0

Y (EH-FG)e T -eT)

1 1
224G +He' )+ F(G +He' ) [ e z(s)ds = F(G + He') [ e z(5)ds).
0 0

2. Coupled Lower and Upper Solutions

To cover different possibilities for the nonlinear boundary
functions @ and ¥ we introduce the following concept.

Definition 2.1. We say that
(a,,a,),(B,5,)0C[0,11xC?[0,1] are coupled lower and
upper solutions for the problem (1.1) and (1.2) if (@,,4,) is
a sub solution and (B, 5,) is asupersolution for the system

(11), (0’1,0’2) < (,81,182), and

AB,(0), 5,(0), 5(0), £,(0), £ (D), B, (1) < (0,0)
< @a,(0),a,(0),0,(0),a,(0), a; (1), a; (1)),
AB(0), 5,0, 5(0), 5,(0), a; (1), 2, (1)) < (0,0)
< @a,(0),a,(0),0,(0),,(0), B (1), B, (1)),

(a,(D),a, (1) +@(5,(0), 5,(0)) = (0,0),
(B, £, (D) +¢(a,(0),a,(0) = (0,0),
(a,(D),a, (M) +¢(a,(0),a,(0)) = (0,0),
(B, B,M0) +¢(B,(0), 5,(0)) = (0,0).

@.1)

Theorem 2.2. Assume that (@,,a,), (8,,5,) are coupled
lower and upper solutions for the problem (1.1)-(1.2). Also

assume that f and & satisfies a Nagumo condition relative to
the intervals [a,(t),5,(*)] and [a,(?),5,(t)] respectively.
Suppose that @ is no ndecreasing in the third and fourth

arguments. In addition suppose that the function ¥ in
[a,(0), B,(0)]x[a,(0), 5,(0)] is monotone and the functions

Aoy (X5 ¥)=@a,(0),a,(0),a,(0),a;(0), x, ),
Bp.5,) (%, ) = A B (0), 5,(0), 5(0), £,(0), x, ),
have got the same kind of monotonocity as & then there
exists at least one solution (u,v)O[a,, B 1x[a,,5,] of the
problem (1.1)-(1.2). Furthermore,
(=M ,-M)< '),V () <M, M), tT[0,1].
Proof. Let A >0 and consider the modified system
—u"(t) + Au(t) = F (t,u(t),v(t),u'(t),v' (1)), ¢0[0,1],
=" () + Av(t) = G (t,u(t),v(t),u'(t),v'(t)), ¢0O[0,1], 22)
@ (u(0), (0),u(1), v(1),u'(0),v'(0)) = (u(0),¥(0)), '
(), v(D)) +¢" (u(0),%(0)) = (0,0),

with

F(t,u(0),v(0),r,5) = (1, pt,u(®)), p(t, v(£)),q(r),q(s)) + A p(t,u(1)),
G (t,u(), (1), r,s) = g(t, p(t,u(1)), p(t, (1)), 4(r),q(s)) + A p(t, (1)),

¢*(j’k7l7m’n70) = p(07(j7k) +ﬂj’k7l7m’n70))7
W (k) =@(p(0, (7, k),

(Igl(t)ﬂﬁZ(t)) (an/)(ﬁlaﬁz)
pt,(x, ) =9 (x, ) (@,,0,)(x,)(B,5,)
(), a, (1) (x,y)(a,,q,)

and

M.M)  (x,y)(M,M)

q(x,y) =3(x, ) (=M ,=M)(x,y)(M , M)
(—M,-M) (x,y)(-M,—M).

Note that if (u,v)O[a,, B 1*[a,,B,] is a solution of (2.2),
then (u#,v) is a solution of (1.1)-(1.2).

For the sake of simplicity we divide the proof in three
steps:

Step 1: We define the mappings

L,N:C'[0,1]1xC'[0,1] - C,[0,1]xC,[0,1]xR* xR?,

by
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(LG, )1() = @' (1) = (0) = A fu(s)ds,v' (1) = (0) = A v(s)ds, (u(0), w(0)), (u(1), (1)),

and

[N(u,v)](t) = (IF* (s,u(s),v(s),u'(s),v'(s))ds, J‘G* (s,u(s),v(s),u'(s),V'(s))ds,

@ (u(0),v(0),u(1), v(D),u'(1),v'(D), =" (u(0), ¥(0))).

Clearly N is continuous and compact by the direct
application of Arzela-Ascoli theorem. Also from Lemma 1.3
with a=1, b=0, c=1,d=0 and
E=0,F=1,G=0,H =1, L"" exists and is continuous.

On the other hand, solving (2.2) is equivalent to find a
fixed point of

L'N:C'[0,1]xC'[0,1] — C'[0,1]xC'[0,1].

Now, Schauder's fixed point theorem guarantees the
existence of at least one fixed point sinceis continuous and
compact.

Step 2: If (u,v) is a solution of (2.2), then
(u,v)Ola,, B 1%[a,, 3,1 By definition of @, we see that

((0),v(0)) O[a,(0), B, (0)]x[a,(0), 3,(0)]. Thus, if# is no
ndecreasing, we have by condition (2.1)

(a,(D),a,(D) = = (B,(0), £,(0)) =4 (u(0),%(0)) = (u(D),v(1)) =¢(a,(0),@,(0)) (5(0), 5,(0)). (23)

Similarly, if ¢ is no nincreasing, then (2.3) holds. Hence
(u(),v(1) Ofa, (1), B,M]Ix[a, (1), B,(1)]. Now, it remains to
show that (u,v)UOla,,B1xla,,B1 for tU[0,1]. We claim
w,v)(B,5,). If w,v)(B,5,), then either u [ and/or

v B,.Ifu B, then there exist some #, J[0,1] such that
u(t,)—pB,(t,) >0. So, u—pf, attains apositive maximum at
1, J[0,1]. Thus (u=/)'(t,) =0 and (u = 4)"(5,) <0. But,

(u~- 181 )"(to) >-F" (2, u(ty), v(Z,), u’(to ), V’(to )+ Au(to )+ f (1, ﬁl (%) ﬁz (%) 181'(t0 )> ﬁzl ()
= _f(toa 181 (to )’ 182 (to)su’(to )’ V,(to )) - Aﬁ] (to) + /]u(to) + f(to’ 181 (to)’ ﬁz (to )’ 181,(t0 )’ :Bz' (to ))
==fty, B(t,), B (t,), B (1), By (1)) = AB (1) + Auty) + [ (1, B (), B (4, B (), B (1))

= Au(ty) - £ () >0,

a contradiction. Similarly one can show that (@,,a,) < (4,v). Hence (u,v)O[a,, B1x[a,,B5 ]
Step 3: If (#,V) is a solution of (2.2) then (u,V) satisfies (1.2).

We claim
(a,(0), a,(0)) ((0), v(0)) + @Au(0),v(0),u'(0),v'(0),u'(1),v'(1)) 2.4)
(5,(0), 5,(0))
If
(a,(0),a,(0)) (u(0), v(0)) + @u(0),v(0),'(0),v'(0),u'(1),v'(1)),
then
((0),v(0)) = ¢ (u(O),v(O),u(l),v(ll),u'(Q), v’(O')) , 2.5)
= p(0,((0),v(0)) + @u(0),v(0),u'(0),v'(0),u'(1),v'(1)) = (,(0),@,(0))
Similarly if & is no ndecreasing then we have
(@), v(1)) =~ (u(0),v(0)) = ~¢(a,(0),a,(0) = (B,(1), B, (1)). (2.6)

Using (2.5), (2.6) and Step 2, we have (#'(0),'(0)) (a/(0),;(0)) and (u'(1), V() (B (D, B;(1)). But
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(@(0),v(0)) = @u(0), v(0), u(1), v(1),u’(0),v'(0))
=(a,(0),0,(0)) + ¢ a,(0),,(0),4'(0),v'(0), (D), v'(D)(@,(0), @, (0)) + A, (0), @, (0), @} (0), @, (0), ' (1), V(1))
=(@,(0),0,(0) + ¢, o, @' (D), V(D) (@,(0),0,(0)) + A, (0),2,(0),0{(0),a,(0), B (1), B, (1) (@,(0),a,(0)),

2.7)

a contradiction. Similarly if% is no nincreasing we get same We claim (u',v) (M,M). If (u',v") (M, M), then either
contradiction. Consequently, (2.4) holds. By definition of (/" u' M andlor v\ M. If u'" M then there exists?, [0,1]
such that u'(t)) 2 M. Moreover using the Lagrange Theorem

there exists s, J[0,1] with #'(s,) =u(1) —u(0). So,

and Step 2, the second boundary condition is obvious.
Consequently, (u,V) satisfies (1.2).

Step 3: If (u,v) DC*[0,1]xC?[0,1] is a solution of (2.2)
then (=M ,—M) (u'(1),V'(¢)) (M, M).

M <-n< a1(1)_ﬂ1(0)+a2(1)_:82(0) Su'(So)"'V'(So)S BI(O)_GI(O)+B2(O)_U2(O) <K <M.
Now consider an interval[t,,Z,] or[¢,,%] such that «'(¢,) +v'(t,)) =7, and u'(z,) +V'(t,) = M, with
rEu' (@) HV (@) Su'(@O) V(@) Ssu'() V() =M, 0, t)

or

nEu' )V @) Su'@OHV @O Su' () V() =M, 1 0,,1).

In the first situation we obtain form (1.2) that

u'(L)+v'(t)

M
A =
u' () +V' (1) Q((y) 7 E(y)

u'(t,)+v' (1) d t,
Y

_ I u"(t) +V'(1) dt:‘j

u'(1)

Using (1.6), Step 2 and M 2u'()+V' (1) 27 20, for all

t0(1,,1,), we get a contradiction.

N I V'(£)

b €0 e o) Y ea o) Ewo o)

_ ’J% =F" (t,u(t),v(t),u'(1),V' (1)) + Au(r) P ’J- =G’ (t,u(t),v(t),u'(1),v'(1)) + Av(r) P

S (@) +v'()

i '@ +v'(1)

- [LEEOIOLON D), f2EHONDL DY),
£

R0V (1)

@) +v'(1)

g(t,u(0),v(0),u'(1),v'())| ”

@' () +v'(D)

s’j.|f(t,u(t),V(f)a”'(’)’vl(tmdt +

S () +V'()

$@' (@) +v'(0)

By HUIGLAIO) Y OGO P s

Similarly in the second situation we get a contradiction.
Hence (u'(t),v'(t))<(M,M). The proof of the other
inequality is similar.

3. Example

Example 3.1: Consider the nonlinear coupled boundary
value system (BVS for short) with nonlinear CBCs

@@+

—u"(¢) =sin’ (/) —5@u'(t) +V'(¢)) —(u(x)+1)’
-(v(x)+1)?*, ¢0O[0,1],

—"(¢) = sin> (77) = 10(u'(£) + 2V'(¢)) — (u(x) + 2)*
—(v(x)+1)*, ¢0O[0,1],

3.1

((0)u'(0) = v(0)v'(0),u(0)u'(1) = v(0)v'(1)) = (0,0), (32)
((0)v(0) +u(0)v(1), u(Hv(0) +u(0)v(1))  =(0,0). '

Let a,(t) ==t —t,a,(t) =—t and B(t) =t> +1,B,(t) =t are
the coupled lower and upper solutions of the BVS (3.1)-(3.2).
Consequently
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—a/(t) < f(t,a,(1),a,@),a,(t),a,(t)), tO[0,1],

_az”(t) < g, a (0, a, (0, all(t)’ 0’2' (), t0[o,1],
and

L)z f(t,a,t),a,(t),a/(t),a,(1), t0O[0,1],

Bz g, [0),50), 5.5 ®), tO[0,1].

Furthermore the coupled lower and upper solutions
satisfies the system (2.1). And the functions

ft,x,y,z,w)=sin’(7m) = 5(z + w) — (x +1) = (y +1)
g(t,x,y,z,w) = sin’(7m) —10(z +2w) — (x +2)* = (y +1)*

(1.6)  with

and

satisfies the Nagumo condition
E(z+w)=-5(z+w)-1, z,wOR

&(z+w)=-10(z+w), z,wR  respectively. Hence by
Theorem (2.2), BVS (3.1)-(3.2) has at least one solution

(u,v)O[a,, B1x[a,. 5,1
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