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Abstract: An analysis is carried out to the unsteady free convection flow of a rotating, incompressible viscous fluid near an 

infinite vertical plate that applies a time-dependent shear stress f(t) to the fluid. General solutions of the dimensionless 

governing equations along with imposed initial and boundary conditions are determined using Laplace transform technique. At 

the final stage, the effects of pertinent parameters on the fluid motion are numerically and graphically illustrated. A comparison 

between the numerical values of the velocity components given by the analytical solution and, by the Stehfest's algorithm for 

the inverse Laplace transform is presented. 
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1. Introduction 

The study of free and forced convection flow past a 

vertical plate have drawn attention of many researchers 

considering different sets of thermal conditions at the 

boundary of the plate, due its industrial and technological 

applications. Gupta et al. [1] studied free convection flow 

past a linearly accelerated vertical plate in the presence of a 

viscous dissipative fluid, by using the perturbation method. 

Kafousias and Raptis [2] extended the previous problem to 

include the mass transfer effects and suction or injection. 

Chandran et al. [3] investigated the natural convection near 

the vertical plate with ramped wall temperature. Rotation and 

radiation effects on MHD flow past an impulsively started 

vertical plate with variable temperature were studied by 

Rajput and Kumar [4]. Using the Laplace transform 

technique, Soundalgekar [5] studied the effects of free-

convection currents on flow near a isothermal plate. The 

assumption of the vertical plate being surrounded by a 

stationary mass of fluid is rather a restricted one. Rotating 

flows are an important branch of fluid dynamics. In many 

practical applications, thermal rotating flows occur in a 

variety of rotating machinery. Also, some natural phenomena 

such as geophysical systems, tornadoes, hurricanes, ocean 

circulations imply rotating flows with heat and mass transfer. 

The flow and heat transfer due to moving surfaces have many 

practical applications, such as in polymer processing systems, 

production of paper, insulating material, etc. Some 

interesting problems regarding the rotating flows or, free or 

mixed convection were studied in the references Asghar et. al. 

[6], Abelman et al [7], Hayat et. al. [8], Hayat et al. [9], 

Kumari and Nath [10], Muthucumaraswamy et al. [11], M. A. 

Imran (2014)), [12]. However, it is worth pointing out that all 

these papers have a common specific feature. Namely, they 

solve problems in which the velocity is given on the 

boundary. Generally, there are three types of boundary value 

problems in fluid mechanics: i) velocity is given on the 

boundary; ii) shear stress is given on the boundary; iii) mixed 

boundary value problems. From theoretical and practical 

point of view, all three types of boundary conditions are 
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identically important; as in some problems what is specified 

is the force applied on the boundary. It is also important to 

bear in mind that the ‘no slip’ boundary condition may not be 

necessarily applicable to flows of polymeric fluids that can 

slip or slide on the boundary. Thus, the shear stress boundary 

condition is particularly meaningful. Waters and King [13], 

have solved problems in which the shear stress is given on 

the boundary of flow domain. In the last time many similar 

solutions have been established by different authors [14–18]. 

The aim of the present work is to provide exact solutions for 

the unsteady free convection flow of an incompressible 

viscous fluid over an infinite isothermal vertical plate that 

applies a time-dependent shear stress f (t) to the fluid in 

rotating medium. The solution corresponding to the general 

case f(t), can be easy customized to obtain solutions for many 

simpler problems. Also, if the angular velocity of the frame 

tends to zero, the solutions of some known problems are 

recovered. To illustrate the theoretical and practical 

importance of the studied problem, the effect of material 

parameters on the dimensionless velocity is numerically and 

graphically analyzed. The accuracy of the numerical 

calculations is verified using the Stehfest’s algorithm for 

calculating the inverse Laplace transforms and the analytical 

solutions obtained by classical method for the inverse the 

Laplace transforms. 

2. Formulation and Solution of the 

Problem 

Let us consider an infinite vertical plate surrounded by an 

infinite mass of incompressible viscous fluid as shown in the 

Fig.1. The x-axis of the coordinate system is taken along the 

plate and y-axis is normal to the x-axis. Initially, the plate 

and the fluid are at the same temperature T∞. After the time

0t += , the plate applies a time dependent shear stress f(t) to 

the fluid along the x-axis. The fluid, together the plate, starts 

to rotate about z-axis with a constant angular velocity  and 

the plate temperature is raised to T�. Also, since the plate is 

infinity in x and y directions all physical quantities depend on 

z and t only. Therefore, from the continuity equation and 

condition w (0, t) = 0 it results w=0 everywhere in the fluid. 

Under the usual Boussinesq’s approximation, the unsteady 

flow is governed by the following set of partial differential 

equations [5, 18, 19]. 
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Fig. 1. Geometry flow. 

where (u(z, t), v(z, t)) are the velocity components along 

the x-axis and y-axis respectively, g-the gravitational 

acceleration, β-the coefficient of volume expansion, ν-the 

kinematic viscosity, ρ-the constant density of the fluid, Cp-

the specific heat at constant pressure, k- the coefficient of 

thermal conductivity and T(z, t) is the temperature of the 

fluid. Generally, the energy equation contains terms 

corresponding to viscous dissipation. The fluid is assumed to 

be purely viscous and the thermal properties are assumed to 

be constant. For static fluid, dissipation and convective terms 

become negligible. So, in most situations, we can consider 

the viscous dissipation term to be zero, with negligible error. 

Some exceptions may occur when highly viscous fluids are 

subjected to large velocity gradients (for example, in the 

polymers processing, the viscous heating is important). The 

set of equations (1)-(3) is considered together the following 

initial and boundary conditions: 

u(z,0) 0, ( ,0) 0, ( ,0) T , 0,v z T z z∞= = = ≥           (4) 

0

( , ) ( )
, (0, t) 0, (0, t) T , 0,

w

z

u z t f t
v T t

z µ=

∂ = = = >
∂

       (5) 

u(z, t) 0, ( , t) 0, ( , t) T , as , t 0,v z T z z∞→ → → → ∞ ≥   (6) 

where µ ρν=  is the dynamic viscosity of the fluid and the 

function f(t) satisfies f(0)=0. 

In order to obtain the dimensionless governing equations, 

we introduce the dimensionless parameters: 
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where Pr is the Prandtl number, Gr is the Grashof number, 

Ek is the Ekman number and U0 > 0 is a characteristic 

velocity. Dropping star notations, we obtain the set of non-

dimensional partial differential equations 
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with the initial and boundary conditions 

u(z,0) 0, ( ,0) 0, ( ,0) 0, 0,v z T z z= = = ≥         (10) 

0

( , )
( ), (0, t) 0, (0, t) 1, 0,

z

u z t
f t v T t

z =

∂ = = = >
∂

      (11) 

u(z, t) 0, ( , t) 0, ( , t) 0, as , t 0.v z T z z→ → → → ∞ ≥    (12) 

The dimensionless temperature and the surface heat 

transfer rate respectively are given by [5], [17]. 

( )T(z, t) Erfc Pr , ,
2

z

t
η η= =                (13) 

0

( , ) Pr
,

z

T z t

z tπ=

∂ = −
∂

                        (14) 

where Erfc(.) is the complementary error function of Gauss. 

In order to obtain the velocity field, we use the complex 

velocity field q u iv= +  and the notation 2b iEk=  q(z,t) is 

the solution of the problem: 

2

2

( , ) q( , )
( , ) ( , ) ,

q z t z t
bq z t T z t

t z

∂ ∂+ = +
∂ ∂

            (15) 

0

( , )
( ,0) 0, ( ), q(z, t) 0 as z .

z

q z t
q z f t

z =

∂= = → → ∞
∂

  (16) 

Applying the Laplace transform to Eq. (15) [20-22] and 

bearing in the mind the corresponding initial conditions for q 

(z, t), we have 

2
Pr

2

q( , ) 1
( ) q( , ) ,z sz t
s b z t e

sz

−∂ − + = −
∂

           (17) 

where q
_

 (z, s) is the Laplace transform of the function q (z, 

t) . The corresponding boundary conditions (16)2,3 become 

0

( , )
( ), q(z,s) 0, as z ,

z

q z t
F s

z =

∂ = → → ∞
∂

       (18) 

( )F s  being the Laplace transform of the function f(t). The 

solution of equation (17) subject to the conditions (18) is 

given by, 

1 2 3
( , ) (z,s) q (z,s), q ( , ),q z s q z s= + +            (19) 

where 

Pr

1 2 3

Pr 1 1 1
q (z,s) F(s) , q ( , ) , ( , ) , , Pr 1.

Pr 1 Pr 1 Pr 1( )

z s b z s b z se e e b
z s q z s a

s a ss b s s a s b

− + − + −

= − = = − = ≠
− − − −+ − +

      (20) 

Using the function 

2
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4
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with 

2 2

1 2

1 1
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4 4

z z
S z t S z t

t tt tπ π
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                                   (22) 

and applying the convolution theorem, we have the inverse Laplace transform for the first term of Eq. (20), namely, 

{ }1

1 1 1 2( , ) ( ) ( , ) ( , ) ( , ),L q z s f t b z t P z t iP z t− = − ∗ = +                                                         (23) 

Where 

2 2

4 4

1 2

0 0

( , ) ( ) cos(2 k )d , ( , ) ( ) sin(2 k )d .

z z
t t

e e
P z t f t E P z t f t E

τ τ
τ τ τ τ τ τ

πτ πτ

− −

= − − = −∫ ∫                              (24) 

For the second term from Eq. (20), we denote by
2

,
Pr 1

Ek
m a im= =

−
, and 2

1
( , )

( )
B z t

s s a
=

−
. 

The inverse Laplace transform of function B2 (z, s) is given by 
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2 1 2

1 1
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We get 
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with 
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The inverse Laplace of the third term, 3
( , )q z t is given by 

{ }1
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Pr 1 2

im z
L q z t e Erfc P z t iP z t

t

− −  = ∗ = + −  
                                                   (30) 

where 
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Now, we find the velocity components u(z,t) and v(z,t) as the real and imaginary parts of the complex velocity field, 

respectively: 

1 3 5
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2 4 6
v( , ) Im[ ( , )] ( , ) ( , ) ( , )z t q z t P z t P z t P z t= = + + =  

2 2

4 4

0 0 0 0

0

Pr sin[ ( )] cos[ ( )]
( ) sin(2 ) cos(2Ek ) sin(2Ek )

Pr 1

1
sin[ ( ) Pr .

Pr 1 2

z z
t t t t

t

e e m t x m t x
f t Ek d dx dx d

x x

z
m t Erfc d

τ ττ τ τ ττ τ τ τ τ τ
πτ πτ π π

τ τ
τ

− −
− − − − − − − + − −   

 − −  −  

∫ ∫ ∫ ∫

∫

 (33) 

2.1. Particular Cases Ω = 0 (Non-Rotating Frame) 

In this case the Ekman number becomes zero, therefore, a = b = m = 0 and 

P2=P4=P6=0,                                                                                        (34) 
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Finally, the velocity components are given by 

2 2 2

0

2 2

( ) Pr
u( , ) exp Erfc exp
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τ τ
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π
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    −  − + −     −       

=

∫

                           (36) 

2.2. f(t)=H(t) – the Heaviside Step Unit Function (Constant Shear Stress on the Plate) 

Making in Eq. (24) f(t) = 1, the functions P1(z,t) and P2(z,t) become 

2 2
2 2

1 22 2

0 0

2 2
( , ) exp cos(2Ekx )dx, ( , ) exp sin(2Ekx )dx.

4 4

t t
z z

P z t P z t
x xπ π

   − − −= =   
   

∫ ∫                                   (37) 

The velocity components u(z,t) and v(z,t) are given by Eqs. 

(32) and (33) in which the functions P1(z,t) and P2(z,t) are 

replaced by the expressions given in Eq. (37). 

3. Numerical Results and Discussion 

In order to obtain some information regarding the fluid 

behavior, numerical calculations have been made. The graphs 

corresponding to the velocity components u(z,t) and v(z,t) 

were plotted in Figures 2 - 4 for f(t) = H(t) – the Heaviside 

step unit function, meaning for constant shear stress on the 

plate. To verify the accuracy of the numerical calculations, 

we used the expressions (32) and (33) of the velocity 

components and the Stehfest's numerical algorithm for 

calculating the inverse Laplace transform to retrieve the 

solution in the time domain [23]. The Stehfest’s algorithm is 

applied to the function given by Eqs. (19) and (20). We 

denoted by u(z,t) , v(z,t) the values of the velocity 

components given by Eqs. (32) and (33), respectively, by 

u1(z,t), v1(z,t) the values of the velocity components given by 

the Stehfest’s algorithm, namely 

1 1
( , ) Re( ( , )), ( , ) Im( ( , )),u z t Q z s v z s Q z s= =  (38) 

where 

2 min( , )

11

2

ln(2) ln(2) (2 )!
( , ) , , d ( 1) .

( )! !( 1)!9 )!(2 )!

pp j p
j p

j j

jj
k

k k
Q z s d q z j

t t p k k k j k k j

+

+=  = 
 

 = = −  − − − − 
∑ ∑                               (39) 

In the above relation, [r] denotes the integer part of the real 

number r. Table 1 contains the absolute errors 

1 1( , ) ( , ) , v( , ) ( , )u z t u z t z t v z t− − for p = 11, t = 2, Ek = 0.85 

and Pr = 15. From the Table 1, it results that the values 

obtained by both formulae are in a good agreement. 

To analyze the influence of the Ekman number on the fluid 

behavior, the Fig 2 was presented. This figure shows graphs 

of the velocity components u(z,t) and v(z,t), versus the spatial 

coordinate z, for t = 2, Pr = 15 and for three values of the 

Ekman number. From these graphs we see that, if the values 

of Ekman number increase, then the thickness of the velocity 

boundary layer decreases, therefore, if the angular velocity of 

the frame increases, the thickness of the velocity boundary 

layer is lower. The aim of the Fig.3 is to present the influence 

of the Prandtl number on the fluid velocity. It can see that the 

influence of the Prandtl number is similarly with the 

influence of Eckman number, meaning that the increasing of 

the values of Prandtl number leads to the decreasing of the 

thickness of the velocity boundary layer. 

However, in the studied cases, must to observe that the 

velocity components tend to zero faster for the variable 

Ekman number than for the variable Prandtl number. For 

example, u(z,t) becomes zero for z > 3.2 if Ekman number is 

variable, while u(z,t) becomes zero if z > 5 for variable 

Prandtl number. 
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In Fig. 4 are sketched graphs of the velocity components 

u(z,t) and v(z,t) for three different values of the time t. It is 

obvious that the fluid motion is stronger in the direction of 

the y-axis than in the direction of the x-axis, namely, the 

component u (z, t) becomes zero if z > 2.5 while the 

component v (z, t) becomes zero if z > 5. 

Table 1. Absolute errors of the velocity components. 

z |u(z,t)-u1(z,t)|| v(z,t)-v1(z,t)| 

0 1.63-10-4 1.976-10-4 

0.05 1.074-10-4 5.634-10-4 

0.1 1.1-10-4 7.673-10-4 

0.15 1.205-10-4 5.443-10-4 

0.2 1.753-10-4 5.09-10-4 

0.25 1.588-10-4 5.001-10-4 

0.3 2.031-10-4 5.262-10-4 

0.35 1.496-10-4 4.175-10-4 

0.4 1.362-10-4 3.455-10-4 

0.45 1.598-10-4 3.873-10-4 

0.5 1.277-10-4 4.946-10-4 

0.55 1.583-10-4 2.412-10-4 

0.6 1.415-10-4 3.568-10-4 

0.65 1.827-10-4 3.985-10-4 

0.7 2.211-10-4 2.992-10-4 

0.75 1.748-10-4 2.801-10-4 

0.8 2.048-10-4 3.331-10-4 

0.85 1.976-10-4 2.763-10-4 

0.9 1.798-10-4 3.314-10-4 

0.95 1.694-10-4 3.378-10-4 

1 1.874-10-4 3.274-10-4 

 

Fig. 2. Velocity components u(z,t) and v(z,t) for the variable Ekman number. 

 

Fig. 3. Velocity components u(z,t) and v(z,t) for the variable Prandtl number. 
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Fig. 4. Velocity components u(z,t) and v(z,t) for the variable time t. 

 

4. Conclusions 

In this paper, the unsteady flow of an incompressible, 

homogeneous Newtonian fluid past an isothermal vertical 

plate in a rotating frame was studied. The governing 

equations of the flow, together with initial and boundary 

conditions were written in the non-dimensional form. By 

means of the Laplace transform method the closed forms of 

the velocity component in the x- direction u(z,t), respectively 

in the y-direction v(z,t) were determined. It should be noted 

that, sometimes, the obtaining of the inverse Laplace 

transforms by means of the complex analysis techniques can 

be a difficult process. In such cases the numerical algorithms 

for the determining of the inverse Laplace transforms are 

welcome. From this reasons, in this paper we used the 

Stefhest’s algorithm for the calculating of the inverse Laplace 

transforms. The analytical solutions and the numerical 

solution were compared and, the obtained results are in a 

good agreement. Based on the obtained solutions and using 

some graphical illustrations generated with the Mathcad 

software, the influences of Ekman number and Prandtl 

number on the velocity field were analyzed. It is obtained 

that, the faster frame rotations reduce the thickness of 

moving fluid layer. If the values of the Prandtl number 

increase then, the thickness of the velocity boundary layer 

decreases. It is important to point out that, in the studied 

cases, the fluid motion is stronger in the direction of the y-

axis than in the direction of the x-axis, namely, the 

component u (z, t) becomes zero faster than the component v 

(z, t). 

In the most studies of the flows in rotating frame, the 

boundary conditions refer to the velocity on the boundary or, 

to the velocity and his derivative in the case of the slip 

phenomena. In the present paper, is given the shear stress on 

the boundary. From this reasons, our solutions can be 

compared with other solutions from the literature by 

numerical calculations. So, some information about fluid 

behavior in various boundary conditions can be found. For 

example, comparing our solutions with solutions given in [18] 

with the velocity on the boundary and t > 1, we get that the 

boundary layer thickness is smaller if the shear stress is given 

on the boundary. 

Acknowledgements 

The authors are highly thankful and grateful to the 

Department of Mathematics, University of Management and 

Technology, Lahore, Pakistan for supporting and facilitating 

the Research work. 

 

References 

[1] A. S. Gupta, I. Pop, V. M. Sounalgekar , Free convection 
effects on the flow past an accelerated vertical plate in an 
incompressible dissipative fluid , Rev. Roum. Sci. Techn. Mec. 
Apl.24, (1979) 561-568. 

[2] N.G. Kafousias and A .A. Raptis, Mass transfer and free 
convection effects on the flow past an accelerated vertical 
infinite plate with variable suction or injection, Rev. Roum. 
Sci. Techn. Mec. Apl. 26, (1986)11-22. 

[3] P. Chandran, N. C. Sacheti, Ak. Singh, Natural convection 
near a vertical plate with ramped wall temperature, Heat Mass 
Trans.41, (2005) 459- 464. 

[4] U. S. Rajput, S. Kumar, Rotation and radiation effects on 
MHD flow past an impulsively started vertical plate with 
variable temperature, Int. Journal of Math. Analysis, 5(24), 
(2011) 1155 – 1163. 

[5] V.M. Soundalgekar, Free convection effects on the Stokes 
problem for an infinite vertical plate, J. Heat Trans , (Tr. 
ASME) , 99 , (1977) 499-501. 

[6] S. Asghar, Masood Khan, A. M. Siddiqui, T. Hayat, Exact 
solutions for magnetohydrodynamic flow in a rotating, Acta 
Mech. Sinica 18 (3), (2002), 244-251. 

[7] S. Abelman, E. Momoniat, T. Hayat, Steady MHD flow of a 
third fluid in a rotating frame and porous space, Nonlinear 
Analysis: Real World Appl., 10 (2009), 3322-3328. 

[8] T. Hayat, Liaqat Ali Khan, R. Ellahi, S. Obaidat, Exact 
Solutions on MHD Flow Past an Accelerated Porous Plate in a 
Rotating Frame, Chinese Physics Letters, 28(5), 2011, 054701. 
doi:10.1088/0256-307X/28/5/054701. 



 American Journal of Applied Mathematics 2015; 3(3-1): 6-13  13 

 

[9] T. Hayat, S. Abelman, M. Hamese, Oscilatory Couette flow of 
rotating Sisko fluid, Appl. Math. Mech.-Engl. Ed. 35 (10) 
(2014), 1301-1310. 

[10] M. Kumari, G. Nath, Transient rotating flow over a moving 
surface with a magnetic field, Int. J. Heat Mass Transfer, 48, 
(2005) 2878 – 2885. 

[11] R. Muthucumaraswamy, N. Dhanasekar, G. E. Prasad, 
Rotation effects on unsteady flow past an accelerated 
isothermal vertical plate withvariable mass transfer in the 
presence of chemical reaction of first order, J. Appl. Fluid 
Mech., 6 (4), (2013) 485 – 490. 

[12] M.A. Imran, D. Vieru, I. Mirza, The influence of Ekman 
number on flows over an oscillating isothermal vertical plate 
in a rotating frame (JAFM in press (2014)). 

[13] N. D. Waters, M. J. King, Unsteady flow of an elastico-
viscous liquid , Rheol. Acta. 9(3), (1970) 345-355. 

[14] D. Vieru, C. Fetecau, A. Sohail, Flow due to a plate that 
applies an accelerated shear to a second grade fluid between 
two parallel walls perpendicular to the plate, Z. Angew. Math. 
Phys. 62, (2011) 161-172. 

[15] C. Fetecau, D. Vieru, C. Fetecau, Effect of side walls on the 
motion of a viscous fluid induced by an infinite plate that 
applies an oscillating shear stress to the fluid, Cent. Eur. J. 
Phys. 9, (2011) 816 - 824. 

[16] C. Fetecau, C. Fetecau, M. Rana, General solutions for the 
unsteady flow of second-grade fluids over an infinite plate that 

applies arbitrary shear to the fluid, Z. Naturforsch. 66a, (2011) 
753 - 759. 

[17] N. Ahmed, S. Talukdar, Transient magnetohydrodynamic 
(MHD) flow of a visco-elastic fluid past an infinite vertical 
porous plate embedded in a porous medium with Hall current 
and slip condition in a rotating system, Int. J. of Physical 
Sciences 7(45), (2012) 5942-5953. 

[18] A. Q. Mohamed, I. Khan, Z. Ismail, S. Shafie, The unsteady 
free convection flow of second grade fluid in rotating frame 
with ramped wall temperature, AIP Proceedings 1605, 398 
(2014), doi:10.1063/1.4887622. 

[19] C. Fetecau, . Vieru, Corina Fetecau, S. Akhtar, General 
solutions for magnetohydrodynamic natural convection flow 
with radiative heat transfer and slip condition over a moving 
plate, Zeitschrift Naturforshung A, 68a, (2013) 659 -667. 

[20] A. P. Prudnikov, Y. A. Brychkov, I. O. Marichev, Integrals and 
Series, vol. 4: Direct Laplace Transforms, Gordn and Brech, 
New York, (1992). 

[21] A. P. Prudnikov, Y. A. Brychkov, I. O. Marichev, Integrals and 
Series, vol. 5: Inverse Laplace Transforms, Gordn and Brech, 
New York, (1992). 

[22] R. B. Hetnarski, An algorithm for generating some inverse 
Laplace transform of exponential form, J. Appl. Math. Physics 
(ZAMP), 26, (1975) 249-253. 

[23] H. Stehfest, Algorithm 368: Numerical inversion of Laplace 
transforms, Communication of the ACM 13(1), (1970) 47-49. 

 


