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Abstract: Several variants of the classical theory of Gröbner bases can be found in the literature. They come, depending
on the structure they operate on, with their own specific peculiarity. Setting up an expedient reduction concept depends on the
arithmetic equipment that is provided by the structure in question. Often it is necessary to introduce a term order that can be used
for determining the orientation of the reduction, the choice of which might be a delicate task. But there are other situations where
a different type of structure might give the appropriate basis for formulating adequate rewrite rules. In this paper we have tried
to find a unified concept for dealing with such situations. We develop a global theory of Gröbner bases for modules over a large
class of rings. The method is axiomatic in that we demand properties that should be satisfied by a reduction process. Reduction
concepts obeying the principles formulated in the axioms are then guaranteed to terminate. The class of rings we consider is
large enough to subsume interesting candidates. Among others this class contains rings of differential operators, Ore-algebras
and rings of difference-differential operators. The theory is general enough to embrace the well-known classical Gröbner basis
concepts of commutative algebra as well as several modern approaches for modules over relevant noncommutative rings. We
start with introducing the appropriate axioms step by step, derive consequences from them and end up with the Buchberger
Algorithm, that makes it possible to compute a Gröbner basis. At the end of the paper we provide a few examples to illustrate
the abstract concepts in concrete situations.
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1. Introduction
The principal reason for studying Gröbner bases is their

utility when dealing with computational questions regarding
submodules and quotient modules. As a paradigma we may
consider the membership problem for submodules:

Given modules M, N with N ⊂ M . Decide
whether a given element of M belongs to N .

The solution strategy provided by Gröbner basis theory for
solving this problem is to set up a family of reduction steps
u −→ v. The decision process consists in repeatedly applying
these reduction steps to an element u ∈ M until an element v
is reached which does not allow further reduction. The nature
of this v gives the answer to the question.

In order to satisfy its demands the set ρ of all permitted
reduction steps has to obey certain regulations.

1. Being a member of ρ must be effectively decidable.
2. ρ should allow no infinite sequences of reduction steps

i.e., every such sequence has to have finite length.
3. The relation ρ has to be designed in such a way that

admitted reduction steps do not leave the congruence
classes mod N .

4. When m = u0 −→ u1 −→ · · · −→ ur = v is a
maximally exhausted sequence then its terminal node v
being irreducible (w.r.t. ρ) is called a normal form of
u. The demand is now that we must know all possible
normal forms contained within N .

These requirements are enough to solve the membership
problem for N : To decide whether a given element u is
a member of N , simply reduce u until an irreducible v is
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reached; if v ∈ N then u is in N , otherwise not.
It is common and useful to request additional properties for

ρ. The first is that normal forms be unique. This draft is then
described by the two conditions ‘Noetherian’ and ‘Church-
Rosser’. Details on confluence of reduction processes are
described in the fundamental paper [3]. The second property
we want is additivity of irreducibles, i.e., the set Iρ of normal
forms of all elements of M has to be an additive group.
Necessarily, this group has to have a decidable membership
problem.

The entire conception results in a direct sum decomposition
M = N ⊕ I - at least as abelian groups. Obviously then the
sequence 0 −→ N −→ M −→ M/N −→ 0 must split. This
splitting capability of the module pair N ⊂ M is the ultimate
limit beyond which the concept is meaningless. In addition to
the amenity of invertible coefficients, this is the reason why
we will focus on modules over rings R that contain a field K.
All R-modules are then K-vector spaces and the mentioned
limitation vanishes.

Starting in 1965 with his dissertation, Buchberger developed
the theory of Gröbner bases into an indispensible tool for
algorithmic algebra [5]. The scope of problems that can be
solved by means of this tool is vast. Among others, the
computation of Hilbert functions and their differential variants
(Dimension polynomials) has been a central point of interest.

Already in 1964 Kolchin formulated a fundamental theorem
on univariate differential dimension polynomials [20], and [21]
(Sect. II.12. Thm. 6).

Levin extended the originally univariate and bivariate
dimension polynomials to the multivariate case by using
serveral term orders [25-28].

In 2006, Winkler and Zhou introduced Gröbner bases in
difference-differential modules using a generalized term order
that uses a cover of the group Zn by finitely many copies of
Nn (orthant decomposition) [35].

In 2008, Winkler and Zhou extended their 2006-approach
to the notion of relative Gröbner bases and applied it to the
computation of difference-differential dimension polynomials
Splitting the set of derivations and the set of automorphisms,
they provided algorithms for the univariate and the bivariate
case [36, 37].

In his 2013 paper, C. Dönch pointed out that the algorithm
which generates a relative Gröbner basis out of a finite set of
generators might not terminate [12]. See also [11]. In the
meantime this has been fixed (cf. [18]).

Different viewpoints on the computation and applications
of dimension polynomials are presented in [24]. For results
on extending a presentation of a base algebra A to the free
differential algebra on A see [38].

At the ISSAC 2015 conference, the authors have introduced
the notion of Gröbner reduction, a general concept that
covers the reduction part of several Gröbner basis techniques
appearing in the literature. There, the principal intention has
been to provide a scheme that makes it possible to compare
such constructions. In particular, the Gröbner basis concepts
developed in the papers of Levin, Pauer, Winkler, Zhou for
rings of differential operators, Ore algebras etc. have been

shown to be subordinate to this scheme. It has then be proved
that reduction concepts which obey the axioms of Gröbner
reduction allow the derivation of the dimension polynomial
of finitely generated modules [15]. Later it has been shown
that concepts like reduction relative to several term orders
or relative reduction can be expressed in terms of Gröbner
reductions [16].

Since its starting point with Buchbergers dissertation the
theory has developed in several directions. Gröbner bases of
particular types of ideals are treated in [33]. The evolution
of the theory towards integro-differential algebras can be seen
in [17]. Gröbner bases for operads is developed in [13].
Performing adjoint functor constructions for operated algebras
is done in [39]. For Gröbner bases whose element have specific
properties see e.g. [4].

In this paper we leave the tight environment that was
dictated by the conception of [15]. The notion of reduction
relation in a module is analyzed with regard to maximizing the
scope of its models. This results in the formulation of four
properties that are central for all such relations.

It turns out that the reduction is steered by two parameters: a
binary predicate P , and a unary one, i.e., a setX . Accordingly,
we are concerned with three items that have to be varied: P ,
X and the ground ring R. It is not surprising that the nature of
R occupies central attentiveness.

Interestingly, the predicate P can be discussed in full
generality, ignoring the particular nature of R. This is owed
to the fact that the principal task of P is a restrictive one. The
reduction has to terminate, and it does so because the predicate
P forces this by importing some external structure to the ring.
As a consequence, the choice of P has impact on the method
of reduction rather than its actual power.

In contrast to the significance of the binary predicate, the
unary predicate X is subordinate to the nature of the ring, and
it is this nature that has greatest influence on the strength of
reduction.

We are interested in rings R that contain a field K as a
subring. R is then a free K-module and we assume a fixed K-
basis Λ ⊂ R that is considered as part of the structure – we call
this a ring with basis. There is then a plethora of concepts that
allow developing the facets of the theory, in particular when a
well-order on the basis Λ is imposed. The nature of R is then
discerned by the two basic structure formulae, answering the
following questions:

Given c ∈ K, λ, µ ∈ Λ, what is λ·c and λ·µ, both expressed
in terms of the basis Λ? If λ · c = cλ, then K is central and
consequently R is an algebra over K. If, in addition, 1 ∈ Λ
and λ · µ ∈ Λ, then R is the monoid ring K[Λ]. These cases
are discussed in the literature.

In this paper we develop the theory of reductions for
rings with basis without assuming such restrictions. As the
theory evolves, the unary predicate X , playing the active part
in determining the strength of the reduction, is subject to
increasing bondage. First, we assume that X is closed under
multiplication by scalars. Later we will consider elements
of X as being built from two components, one coming from
the ground ring, the other from the module. It is this second
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component which then is called a Gröbner basis, provided that
all conditions are satisfied. Under the validity of an appropriate
ascending chain condition, by stepwise enlarging X , it is
possible to increase the strength of the resulting reduction until
all axioms of a Gröbner reduction are satisfied.

The structure of the paper is the following: First we present
our four properties axiomatically and derive some elementary
consequences. Then we take care of construction principles
that eventually result in models of the axioms.

According to the logical conception of the paper, the setup
is organized in decreasing generality. We start with the
seemingly most comprehensive concepts, and subject them to
a process of increasing specialization.

In the last section we consider applications of the concepts
to particular rings. The first three examples discuss briefly
cases of finite dimension. As Gröbner bases in these can
be treated by linear methods, the concepts are of little
computational value. Nethertheless we include them here
because we feel that they reflect the ideas in a particularly
simple way.

Concerning performance, the concepts are suited to turn
into algorithmic procedures when specialized to particular
situations. For aspects of complexity and computation see
e.g. [32] or [23]. Further strengthening of computational
power by combining Gröbner bases with characteristic pairs
is performed in [31].

In any concrete instance the spezialized concepts will
incorporate the computational advantages that come from the
specific equipment.

2. Notation

A ring is always an associative ring with a unit element
1 which is preserved by ring homomorphisms. Modules are
assumed to be left and unitary. N, Z and Z+ denote the sets of
non-negative integers, integers and integers > 0. Most often
we consider the additive monoid Np equipped with the product
partial order ≤π given by

a ≤π b ⇐⇒ ∀1≤j≤p aj ≤ bj .

Throughout, R will be a ring, M an arbitrary module over
R andK a field. IfX is a subset ofM then ZX andRX stand
for the abelian group resp. the R-submodule of M generated
by X . If S ⊂ R is a set without additive structure then
SX = {sx | s ∈ S, x ∈ X}. This applies in particular to
the group of units K× of K in case that K ⊆ R.

If not locally introduced otherwise, F denotes a free module
over R. The letters X , Y and W are chosen to designate an
unspecified set, most often W will be equipped with some
kind of (partial) order. P(X) denotes the set of all subsets
of the set X and Pfin(X) is the subset of all finite subsets.
X + Y = X \ Y ∪ Y \ X denotes symmetric difference
of sets. A binary relation ρ ⊆ M × M is considered as a
reduction and we write f

ρ
// h to indicate that (f, h) ∈ ρ.

f
ρ

k // h stands for (f, h) ∈ ρk, f
ρ

? // h means that there

is a finite chain f = m0 ρ
// m1 ρ

// · · ·
ρ
// mr = h

(r ≥ 0) and f
ρ

+ // h claims that this chain has positive

length. Thus, ρ+ = •
ρ

+ // • is the transitive closure whereas

ρ? = •
ρ

? // • denotes the reflexive and transitive closure of

ρ. We write Iρ = {f ∈ M |6 ∃h such that f
ρ
// h } for the

set of ρ-irreducible elements and Zρ = (ρ?)−1(0) for the set of

elements f with the property f
ρ

? // 0 . Using these notions

we will omit reference to ρwhen the situation under discussion
is unambiguous.

The relation ρ is Noetherian if it does not allow an infinite
sequence f1 −→ f2 −→ · · · . The equivalence relation
generated by ρ is written 〈ρ〉 or, on occasion, oo ?

ρ
// . A

subset Y ⊆ M is called stable w.r.t. ρ (or ρ-stable) iff
f −→ h ∧ f ∈ Y ⇒ h ∈ Y . A family (Vj) of subsets of
M is called ρ-stable iff each Vj is ρ-stable.

3. The General Theory

Let N ⊆ M be an additive subgroup and ρ ⊆ M ×M an
arbitrary relation. Consider the following requirements on ρ:
Axiom 1: ρ is Noetherian;
Axiom 2: ρ is congruence preserving, i.e.,

f −→ h⇒ f ≡ h mod N ;
Axiom 3: I is an additive group;
Axiom 4: I ∩N = 0

Definition 3.1.
1. ρ is a reduction for N iff it satisfies Axioms 1 and 2.
2. ρ is additive iff it satisfies Axiom 3.
3. ρ is a Gröbner reduction for N iff it satisfies Axioms

1,2,3,4.
The following example demonstrates that the system of

Axioms 1 to 4 is trivially consistent.
Example 3.1 (The irrelevant reduction). The empty relation
∅ ⊂ M ×M is an additive reduction for arbitrary subgroups
N ⊆ M . Plainly, I = M and ∅ is a Gröbner reduction for
N = 0.

Proposition 3.1. Let ρ ⊆M×M be a reduction forN ⊆M .
Then:
1. f

ρ
// h ⇒ ∃n∈N h = f − n;

2. M = I +N ;
3. I ∩N = 0 ⇐⇒ N = Z.

If, in addition, ρ is a Gröbner reduction for N then
4. M = I ⊕N ;
5. ρ is confluent;
6. the sequence 0 −→ N −→ M

π−→ M/N −→ 0 splits
over Z.

Proof. 1. is an equivalent form of Axiom 2. Take f ∈ M
and reduce it to an irreducible f

? // i . Then f ≡ i
mod N hence f ∈ I + N . Plainly Z ⊆ N . If I ∩ N = 0
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and n ∈ N then n
? // i with i ∈ I . Thus i ∈ I ∩N = 0

i.e., n ∈ Z. If, conversely, N = Z then an i ∈ I ∩ N must
eventually reduce to 0; as i is irreducible, this reduction is
improper, that is, i = 0. It remains to show that the RHS
implies irreducibility of 0. But if 0 would reduce to some h,
this h must be in N and, by assumption, h

? // 0 . This

would produce a chain of reductions 0 −→ h
? // 0 which

contradicts the Noetherian property. 4. is a consequence of
Proposition 3.1. Assume that h1 ←− f −→ h2. Reduce
both h1, h2 till irreducibles i1, i2 are reached. Then i1 ≡ i2
mod N and therefore i1 − i2 ∈ I ∩ N = 0 which proves 5.
Point 6. is obvious.

Thus, in case of a Gröbner reduction, given an additive
section s : M/N −→M to π, the endomorphism s◦π provides
the normal form NF(f) = (s ◦ π)(f) of elements f ∈ M .
Moreover im(s ◦ π) = I and each f ∈ M has a unique
representation f = fN + NF(f) with fN ∈ N .

Corollary 3.1. Let ρ be a Gröbner reduction for N ⊆ M .
Then 〈ρ〉 equals the congruence modulo N .

Proof. Plainly 〈ρ〉 ⊆≡N . Conversely, suppose that f ≡N
h. Then f − h = fN + NF(f) − hN − NF(h) ∈ N . It
follows that NF(f) − NF(h) ∈ N ∩ I = 0. Consequently

f
? // NF(f) = NF(h) h

?oo witnessing that (f, h) ∈
〈ρ〉.

Lemma 3.1. Let M ′ ⊆ M be modules, 0 −→ kerϕ −→
F

ϕ−→M −→ 0 a free presentation and ρ a Gröbner reduction
for N = ϕ−1(M ′). Let

ϕρ : = {(u, v) ∈M ×M | ∃f∈F (ϕ(f)

= u ∧ v = ϕ(NFρ(f)))}.

Then ϕρ \ 1M is a Gröbner reduction for M ′. In fact, ϕρ is
the projection M −→M onto a direct complement of M ′.

Proof. The splitting exact sequence induced by ρ extends to
a commutative diagram with exact rows

0 // N

��

// F

ϕ

��

π // F/N

ϕ̃

��

//

s

��
0

0 // M ′ // M
p // M/M ′ // 0

Evidently, ϕ̃ is an isomorphism. Let s′ = ϕsϕ̃−1. Then

ps′ϕ̃ = pϕsϕ̃−1ϕ̃ = pϕs = ϕ̃πs = ϕ̃.

Thus, ps′ = 1M/M ′ i.e., M = M ′ ⊕ im s′. If (u, v) ∈
ϕρ then u = ϕ(f) and v = ϕ(NFρ(f)) = ϕsπ(f) =
s′ϕ̃π(f) = s′pϕ(f) = s′p(u). Conversely, (u, s′p(u)) =
(ϕ(f), s′pϕ(f)) = (ϕ(f), ϕsπ(f)) = (ϕ(f), ϕ(NFρ(f)))
i.e., (u, s′p(u)) ∈ ϕρ.

In the next sections we shall focus on accomplishing the
environment for constructing relations that satisfy the Axioms
1 to 4.

4. Construction of Reduction Relations

Because the general complexion of a reduction ρ ⊂M×M
for a subgroupN ⊆M is determined by it, we start discussing
Axiom 2.

4.1. Axiom 2

Let d denote subtraction in the module M . That a relation
ρ ⊆ M × M satisfies Axiom 2 can be expressed by the
commutativity of the diagram

M ×M d // M

ρ

OO

d′ // N

OO

where d′ = d|ρ and the upwardly directed arrows denote
inclusion. If we let P denote the relation ρ written as a binary
predicate and set X = d(ρ) then we obtain

f
ρ
// h ⇐⇒ P (f, h) ∧ f − h ∈ X. (1)

If, conversely, X ⊆ N and P (f, h) is an arbitrary predicate
then (1) read as a definition for its LHS results in a relation
that satisfies Axiom 2. We will therefore constrain reduction
relations to this formula. So (1) is the primary scheme
subsuming all relations that will emerge in this paper. It is
then clear that Axiom 2 is always fulfilled. Moreover

f ∈ I ⇐⇒ ∀x∈X ¬P (f, f − x). (2)

As X and P are the involved parameters we will denote the
relation (1) by the symbol ρ(X,P ).

Proposition 4.1. Consider a subgroupN ⊆M , a setX ⊆ N
and a binary predicate P . If ρ(X,P ) is a Gröbner reduction for
N then N = ZX .

Proof. ZX ⊆ N and I + ZX ⊆ M . Take f ∈ M and
reduce it to an irreducible

f −→ h1 −→ · · · −→ hr = i ∈ I

Then there are xj ∈ X with i = f −
∑r
j=1 xj , hence

f = i +
∑r
j=1 xj ∈ I + ZX . Therefore I + ZX = M .

Moreover I ∩ ZX ⊆ I ∩N = 0. Altogether

ZX ⊆ N ∧ I + ZX = I +N ∧ I ∩ ZX = I ∩N

which proves that ZX = N .
Proposition 4.2. Let X,Y be sets and let P,Q denote

predicates. Assume that Y ⊆ X and Q ⊆ P . If ρ(X,P ) is
Noetherian then ρ(Y,Q) is a reduction for ZY .

4.2. Axiom 1

We will modulate the parameters present in Formula (1) in
order to come along with the remaining axioms. This depends
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on the situation, that is, on the equipment provided by the
actual candidates for R, M and N .

In order to warrant Axiom 1 we need to import a Noetherian
structure from some well-founded set.

Definition 4.1. Let (W,≤) be a partially ordered set,
v : M −→W and V : W −→ P(M) functions and X ⊆M a
set. We consider the following relations.

1) ρ(X,v) : f −→ h ⇐⇒ f − h ∈ X ∧ v(h) < v(f).

2) ρ(X,V ) : f −→ h ⇐⇒ f − h ∈ X
∧ ∀w∈W

(
f ∈ V (w)⇒ ∃z<w h ∈ V (z)

)
.

Evidently ρ(X,v) and ρ(X,V ) are of type (1) for the obvious
predicates P . We will refer to a function v : M −→ W as a
rank for M with values in W .

The function V : W −→ P(M) is called monotone and
exhaustive when

w1 ≤ w2 ⇒ V (w1) ⊆ V (w2) and
⋃
w∈W

V (w) = M.

Proposition 4.3. Let (W,≤) be well-founded, v : M −→W
a rank, and V : W −→ P(M) monotone and exhaustive. Then

1. ρ(X,v) is a reduction for ZX . If, moreover, (W,≤) is a
well-order then

I = {f | ∀x∈X v(f) ≤ v(f − x)}.

2. ρ(X,V ) is a reduction for ZX with irreducibles

I =
{
f | ∀x∈X ∃w∈W

(
f ∈ V (w)∧¬∃z<w f−x ∈ V (z)

)}
.

Moreover, V is stable w.r.t. ρ(X,V ).
Proof. Both relations are congruence preserving w.r.t. ZX .

Since W is well-founded ρ(X,v) satisfies Axiom 1. As to the
second relation, consider a sequence of ρ(X,V )-steps

f −→ f1 −→ f2 −→ · · · (3)

Choose w ∈ W with f ∈ V (w). Then there exists z1 < w
with f1 ∈ V (z1). To the same effect there is an z2 < z1 with
f2 ∈ V (z2). Iteration produces a sequence in W , descending
w.r.t. <. Since this sequence must terminate after finitely
many steps so does (3), thus ρ(X,V ) is Noetherian. From its
definition it is clear that the family (V (w))w∈W is ρ(X,V )-
stable.

4.3. Axiom 3

Fixing the predicate P , the only tool for influencing the
behavior of the irreducibles is scaling the generating set X .
This will be elaborated in the sequel by adjusting X due to the
configuration available in the type of ring under consideration.

4.4. Axiom 4

In general when constructing a reduction for N Axiom 4
will not hold. In this case we will try to achieve it by extending

the set X . This is what the classical Buchberger algorithm
does. Also here a general instruction is beyond our control.

Example 4.1. Consider M = R2 as a vector space over R,
N = 0 × R, X ⊆ N . Let the rank function rk : M −→ N,
be given as rk(f1, f2) = b|f2|c, and consider the reduction
ρ(X,rk). Because rk(f) = 0 ∀f ∈ R × (−1, 1) it follows that
R× (−1, 1) ⊆ I and therefore I ∩N ⊇ 0× (−1, 1) no matter
how X ⊆ N is chosen.

This example shows that, in this generality, we cannot
expect to construct a Gröbner reduction by simply enlarging
X . The reason is, that the group N contains elements f 6= 0
of minimal rank. To achieve Axiom 4 this has to be prevented.

Proposition 4.4. Let N ⊆ M be a subgroup and assume
that the rank function rk : M −→ W satisfies rk(0) < rk(f)
∀f 6= 0. Then any X ⊆ N can be extended to a set Y ⊇ X
such that ρ(Y,rk) satisfies Axiom 4.

Proof. As a witness choose Y = N and take f ∈ N \ 0.
Then f − 0 ∈ Y and rk(0) < rk(f), that means, f −→ 0.
Consequently I ∩N = 0.

5. Well-founded Orders

Throughout this chapter we assumme that (W,≤) is a
well-founded partially ordered set. Regarding Axiom 1., the
importance of such a set is evident. Later we will consider the
case where (W,≤) is even a well-order.

Definition 5.1. Let V : W −→ PM be a mapping. The
difference function of V is the map V ′ : W −→ PM ,
V ′(x) = V (x) \

⋃
y<x V (y).

We consider the following requirements on the function V :
1. x < y ⇐⇒ V (x) ⊂ V (y);
2. V ′ provides a partition on M ;
Proposition 5.1. Let F(W,M) be the set of all mappings

W −→ P(M) that satisfy conditions 1. 2., and E(M,W ) the
set of surjections M −→W . We set

F (v) =
{(
x,
⋃
y≤x

v−1(y)
)
| x ∈W

}
and

E(V ) =
{

(m,x) | x ∈W ∧m ∈ V ′(x)
}
.

Then E(M,W )
F // F(W,M)
E
oo are bijections inverse to

each other.
Proof. m ∈ F (v)(x) ⇐⇒ v(m) ≤ x and F (v)′(x) =

v−1(x), hence {F (v)′(x) | x ∈ W} is a partition of M and
F (v)(x) =

⋃
y≤x F (v)′(y). Plainly

x < y ⇐⇒ F (v)(x) ⊂ F (v)(y).

Thus F takes values in F(W,M). Conversely, for each
V ∈ F(W,M), E(V ) : M −→W is surjective.

Let ω := E(V ). Plainly ω(m) = x ⇐⇒ m ∈ V ′(x),
therefore m ∈ V ′(ω(m)).

F (ω)(x) =
⋃
y≤x

ω−1(y),
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and
m ∈ F (ω)(x) ⇐⇒ ω(m) ≤ x.

Thus, when m ∈ F (ω)(x) then ω(m) ≤ x and so m ∈
V ′(ω(m)) ⊆ V (ω(m)) ⊆ V (x) by monotonicity of V . This
shows that F (ω)(x) ⊆ V (x). Conversely, assume that m ∈
V (x). Let y be a minimal member of {z ≤ x | m ∈ V (z)}.
Then y ≤ x and m ∈ V ′(y). Since also m ∈ V ′(ω(m)) it
follows that ω(m) ≤ x whence m ∈ F (ω)(x). Consequently
F ◦ E = id.

For the second equation take a surjection v : M −→ W .
The set of sets F (v)′(x) = v−1(x) is precisely the partition of
W where v is constant on each of its constituents. Comparison
with the definition of E ◦F (v) convinces us that also E ◦F =
id.

The proposition says that surjective rank-functions are one-
one associated with certain monotone exhaustive functions,
we call them the corresponding monotone exhaustive families.
The next proposition says that their associated reduction
relations coincide.

Corollary 5.1. Let rk : M −→ W be surjective and
V : M −→ PM the corresponding monotone exhaustive
family. Then, for arbitrary setX ⊆M , we have that ρ(X,rk) =
ρ(X,V ).

Proof. Take (f, h) ∈ ρ(X,rk) and f ∈ V (w). Then
rk(f) ≤ w, and so rk(h) < rk(f) ≤ w. Therefore ∃y < w
with h ∈ rk−1(y) ⊆ V (y). Consequently (f, h) ∈ ρ(X,V ).
Conversely, assume that (f, h) ∈ ρ(X,V ). Let w := rk(f).
Then f ∈ rk−1(w) ⊆ V (w). So there ∃y < w with
h ∈ V (y) =

⋃
z≤y rk−1(z). Thus, ∃z ≤ y s.t. h ∈ rk−1(z).

Therefore rk(h) = z ≤ y < w = rk(f). We conclude that
(f, h) ∈ ρ(X,rk).

Plainly we may always assume that a rank function is
surjective. By violating some of the properties 1. 2.,
Proposition 5.1 shows that the set of monotonous and
exhaustive functions W −→ M is richer than the set
E(M,W ).

A particularly important class of monotone and exhaustive
families of subsets of M is the class of Np-indexed filtrations.

Definition 5.2. By a p-fold filtration on R we mean a family
of additive subgroups Rk ⊆ R, indexed by k ∈ Np, such that

1. Rk ·Rl ⊆ Rk+l;
2. k ≤π l⇒ Rk ⊆ Rl;
3. R =

⋃
k∈Np Rk.

R together with such a filtration is called a (p-fold) filtered
ring.

Definition 5.3. Let R =
⋃
k∈Np Rk be a filtered ring and M

an R-module. A filtration of M w.r.t. the filtered ring R is a
family of additive subgroups Fk(M) ⊆ M (k ∈ Np) with the
properties

1. Rk · Fl(M) ⊆ Fk+l(M);
2. k ≤π l⇒ Fk(M) ⊆ Fl(M);
3. M =

⋃
k∈Np Fk(M).

M together with a filtration is called a filtered module over
the filtered ring R.

From its axioms a filtration is a monotone and exhaustive
function on the well-founded set (Np,≤π). Proposition 4.3

yields
Corollary 5.2. Let F be a filtration on M and X ⊆M . The

relation ρ(X,F) is a reduction for ZX and the filtration F is
stable w.r.t. ρ(X,F).

Proposition 5.2 (Properties of ρ(X,F)).
1. F0(M) ⊆ I ∧X \ F0(M) ⊆ Z;
2. f ∈ I ⇐⇒ ∀x∈X ∃k∈Np

(
f ∈ Fk(M)∧ 6 ∃l<πk f −

x ∈ Fl(M)
)
.

Proof. If f ∈ F0(M) were reducible there should be
an l ∈ Np being smaller than 0, which is impossible. Take
f ∈ X \ F0(M). Then f − 0 ∈ X and f ∈ Fk(M) implies
that k 6= 0. Therefore 0 <π k ∧ 0 ∈ F0(M) which shows that
f −→ 0. Consequently 0 ∈ Z. The characterization of the
irreducibles is obvious.

Plainly, well-ordered sets are optimal for the values of a rank
function. Often we will use them in an extended version.

Definition 5.4. Let W be a linearly ordered set. For A,B ∈
Pfin(W ) we set

A < B ⇐⇒ max(A+B) ∈ B. (4)

Proposition 5.3. Let W be linearly ordered, A,B ∈
Pfin(W ) and x, y ∈W .

1. (4) is a linear order on Pfin(W ).
2. A < B ⇐⇒ max(A+B) = max(B \A);
3. A ⊂ B ⇒ A < B;
4. {x} < {y} ⇐⇒ x < y.
5. If W is well-ordered then (4) is a well-order on
Pfin(W );

Thus, the well-order (4) extends both, inclusion and a given
well-order on W .

6. Rings and Modules with Basis

Assume that the field K is a subring of R. We fix a K-
basis Λ ⊂ R, so that R = K(Λ). Let F = R(E) be the free
R-module on the set E. Then F = K(ΛE) and each element
f ∈ F has a unique representation

f =
∑
t∈ΛE

ftt (ft ∈ K).

For f ∈ F its set of terms is T(f) = {t ∈ ΛE | ft 6= 0}. In
particular, for ring elements r ∈ R, T(r) = {λ ∈ Λ | rλ 6= 0}.

The K-bases Λ and ΛE will be considered as part of the
structure and R (F ) is called a ring (module) with K-basis.
We write πt(f) = ft for the projection function πt : F −→ K
(t ∈ ΛE). For a term s = λe ∈ ΛE (λ ∈ Λ, e ∈ E) we
set π1(s) = λ, π2(s) = e. This gives the projection functions
π1 : ΛE −→ Λ, π2 : ΛE −→ E. We say that the term s
involves the basis element e (cf. [14]). This notation will stay
in force for the remainder of the paper.

For the product of a, b ∈ R we obtain

a ·b =
∑
λ∈Λ

aλλ ·
∑
µ∈Λ

bµµ =
∑

λ,µ,ν,ξ∈Λ

aλ(λ ·bµ)ν(ν ·µ)ξξ (5)
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The two expressions λ · bu and ν · µ are responsible for
the behaviour of multiplication in R and scalar operation in
R-modules. When explicitly exposed these two expressions
provide the basic structure formulae of R.

In concrete instances the monomials λ ∈ R often carry
additional structure. The basic structure formulae simplify
then by expressing them in terms of the structural components
of the monomials.

We call a submodule V ⊆ F monomial when it is generated
as anR-module by a subset of ΛE. The submodule V is called
homogeneous when it is generated over K by such a subset.

Lemma 6.1. Let V ⊆ F be an R-submodule.
1. V is homogeneous ⇐⇒ ∀f∈V T(f) ⊆ V .
2. V homogeneous⇒ V monomial.
3. Let Λ · Λ ⊆ Λ. Then V is homogeneous iff it is

monomial.
Proof.
1. If V = KX with X ⊆ ΛE then ∀f∈V T(f) ⊆ X ⊆
V . Conversely, if T(f) ⊆ V ∀f ∈ V then X :=⋃
f∈V T(f) ⊆ V ∩ ΛE and KX = V .

2. if V = KX with X ⊆ ΛE then V = KX ⊆ RX ⊆ V .
3. Let Λ · Λ ⊆ Λ and V = RX with X ⊆ ΛE. Then
Y := ΛX ⊆ Λ ·ΛE ⊆ ΛE and KY ⊆ V . For arbitrary
f ∈ V we obtain

f =
∑
x∈X

rxx =
∑
x∈X

∑
λ∈Λ

rxλλx =
∑
y∈Y

∑
λx=y

rxλy ∈ KY.

6.1. Term Orders

Now assume that <⊂ ΛE × ΛE is a well-order on the
set ΛE. Each non-zero f ∈ F has then a leading term
LT(f) = max T(f). The leading coefficient of f is the
coefficient LC(f) = fLT(f) ∈ K. If X ⊆ F , we write
LT(X) and LC(X) for the sets {LT(x) | x ∈ X} and
{LC(x) | x ∈ X} respectively.

Let us agree that LT(0) = 0 and LC(0) = 1. We formally
enhance an element f ∈ F to a function f : ΛE ∪ {0} −→ K
by setting f0 = LC(f). Then for arbitrary f ∈ F we have
that f0 6= 0. In particular 00 = LC(0) = 1. We write
F0 = {f ∈ F | LC(f) = 1} for the set of monic elements of
F . Note that 0 ∈ F0.

We extend the well-order < on ΛE in several ways.
1. to ΛE ∪ {0} by stipulating 0 < t∀t ∈ ΛE;
2. to Pfin(ΛE) according to (4). This defines a well-order

on {T(f) | f ∈ F};
3. to the module F :

f ≺ g ⇐⇒ LT(f) < LT(g) and
f � g ⇐⇒ LT(f) ≤ LT(g). (6)

Then � is a well-founded quasi-order on F .
Proposition 6.1. Let f, g, h ∈ F .
1. T(f) + T(g) ⊆ T(f + g) ⊆ T(f) ∪ T(g);
2. T(f) < T(g) ⇐⇒ max(T(f)+T(g)) = max(T(g)\

T(f));
3. f ≺ g ⇒ T(f) < T(g) and T(f) < T(g)⇒ f � g;

4. f ≺ g ∨ g ≺ f ∨ LT(f) = LT(g).
Note that the relation ≺ is not the strict version of �.

6.2. Reduction in a Module with Basis

We proceed assuming presence of a well-order < on ΛE.
Let X ⊆ F . We consider three types of reduction relations

ρLT(X) : f
LT
// h ⇐⇒ f − h ∈ X ∧ h ≺ f ;

ρT(X) : f
T
// h ⇐⇒ f − h ∈ X ∧ T (h) < T (f);

ρCR(X) : f
CR
// h ⇐⇒ f − h ∈ X ∧ hLT(f−h) = 0.

(7)

We call ρLT(X) leading term reduction, ρT(X) T-reduction
and ρCR(X) classical reduction.
ρLT(X) uses the leading term LT: F −→ ΛE ∪ {0} as

a rank. The extended well-order on Pfin(ΛE) provides the
map T : F −→ Pfin(ΛE) as a rank function for ρT(X). So
these are relations of the type considered in Definition 4.1 and
therefore both are reductions for ZX . That also ρCR(X) is
a reduction for ZX is a consequence of the next proposition.
To reduce clumsy notation we shall on occasion suppress the
letter ρ writing CR(X) instead of ρCR(X). We even may omit
the ‘X’ when it is obvious from context. A similar convention
will be used for the other reduction relations. From (2) we
derive immediately

f ∈ ILT(X) ⇐⇒ ¬∃x∈X f − x ≺ f ;
f ∈ IT(X) ⇐⇒ ¬∃x∈X T(f − x) < T(f);
f ∈ ICR(X) ⇐⇒ ¬∃x∈X fLT(x) = LC(x).

Proposition 6.2. ρLT(X) ⊆ ρCR(X) ⊆ ρT(X).
Proof. Let f

LT
// h , that is, h = f −x∧LT(h) < LT(f).

Then f 6= 0 and 0 = hLT(f) = fLT(f) − xLT(f). Thus
xLT(f) = LC(f) 6= 0, hence LT(x) ≥ LT(f) > LT(h) and
so hLT(x) = 0. This means that f

CR
// h .

Now assume that f
CR
// h with h = f − x, hLT(x) = 0.

Then x 6= 0 since otherwise 0 = h0 6= 0. fLT(x) = xLT(x) =
LC(x) 6= 0 and LT(x) ∈ T(f) \ T(h). If fs = hs then
s 6∈ T(f) + T(h). In contraposition, when s ∈ T(f) + T(h)
then fs 6= hs, meaning that s ∈ T(x), hence s ≤ LT(x).
Therefore LT(x) = max(T(f) + T(h)) ∈ T(f) whence
T(h) < T(f).

It is plain that these inclusions may be strict.
Lemma 6.2. Let ρ be one of ρLT(X), ρT(X), ρCR(X).

Consider a chain of ρ-reductions f // f1
// · · · // fr .

Then ∃x1, . . . , xr ∈ X with

f =

r∑
k=1

xk + fr ∧ ∀1≤k≤r xk � f.

In particular, f
ρ

? // h ⇒ f ≡ h mod ZX .

Proof. For r = 1 we obtain that f1 = f − x1 ∧
T(f1) < T(f). Thus f1 � f and x1 = f − f1, LT(x1) ≤
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max {LT(f),LT(f1)} = LT(f). Therefore f = x1 + f1 ∧
x1 � f .

Assuming that the assertion holds for r ≥ 1, let
f

? // fr+1 be a reduction chain of length r + 1. Then

f =

r∑
k=1

xk + fr ∧ ∀1≤k≤r xk � f ∧ fr+1

= fr − xr+1 ∧ T(fr+1) < T(fr).

fr+1 � fr and LT(xr+1) ≤ max {LT(fr),LT(fr+1)} =

LT(fr) hence xr+1 � fr � f . Thus f =
∑r+1
k=1 xk + fr+1 ∧

∀1≤k≤r+1 xk � f .
Corollary 6.1. X ⊆ F . Then

X ⊆ ZLT(X) ⊆ ZCR(X) ⊆ ZT(X) ⊆ ZX.

Proof. Take f ∈ X . If f = 0 then f
? // 0 hence

f ∈ ZLT(X). Let f 6= 0. Then 0 = f − f ∧ LT(0) = 0 <

LT(f) which shows that f
LT
// 0 , again f ∈ ZLT(X). The

remaining inclusions are consequences of Proposition 6.2 and
Lemma 6.2.

In the sequel we need to impose conditions on the set
X ⊆ F . This is necessary in order to derive more specific
properties of the relation ρ(X,P ). A quite strong condition is to
request that X = N .

Corollary 6.2. Let N ⊆ F be an additive subgroup and ρ
one of ρLT(N), ρT(N), ρCR(N). Then Iρ ∩N = 0.

Proof. Specializing X = N in Corollary 6.1 yields N ⊆
Zρ ⊆ ZN = N . Proposition 3.1 gives the result.

Of course, the statement of this corollary is of little value.
More moderate is it to require that K×X = X , a condition
that we will meet on several occasions. Later we will presume
that X = AG for certain sets A ⊆ R and G ⊆ F . Note that
the condition K×X = X implies that ZX = KX; Axiom 2
is then talking about the congruence modulo a vector space.

Proposition 6.3. Let ρ be one of ρLT(X), ρCR(X), ρT(X)

where K×X = X . If f
ρ
// h then ∀c∈K× cf

ρ
// ch .

6.3. Leading Term Reduction

The function LT: F −→ ΛE ∪ {0} is a surjection. The
corresponding monotone exhaustive family is

Ft =
⋃
s≤t

LT−1(s) = {f ∈ F | LT(f) ≤ t} (t ∈ ΛE).

Corollary 5.1 provides that ρLT(X) = ρ(X,F) for arbitrary
X ⊆ F .

6.4. Classical Reduction

Lemma 6.3. Assume K×X = X . If u− v
CR
// h′ then

∃u′, v′ such that u
CR

? // u′ and v
CR

? // v′ and u′ − v′ = h′.

Proof. Let h = u − v, h′ = h − x with h′LT(x) = 0. Let

t = LT(x), thus ht = xt = LC(x). Set

u′ = u− ut
LC(x)

x v′ = v − vt
LC(x)

x

If ut = 0 then u
0 // u′ . So let ut 6= 0. Then

LT

(
ut

LC(x)
x

)
= LT(x) = t

and u′t = ut − ut
LC(x)xt = 0, this means, u // u′ . In any

case u
? // u′ . The same happens to v, i.e. v ? // v′ . Now

we get

u′ − v′ = u− ut
LC(x)

x− v +
vt

LC(x)
x = h+

vt − ut
LC(x)

x

= h− ut − vt
LC(x)

x = h− ht
LC(x)

x = h′

Proposition 6.4 (Transition). Let K×X = X . If u − v =

h
CR

? // h′ then ∃u′, v′ such that the below diagram can be

augmented by the dotted arrows.

u

CR ?

��

− v

CR ?

��

= h

CR ?

��
u′ − v′ = h′

Proof. Let A(k) be the formula

A(k) ⇐⇒

∀h′
(
h

CR

k // h′ ⇒ ∃u′,v′ u
CR

? // u′ ∧ v
CR

? // v′

∧ u′ − v′ = h′
)

If h
CR

0 // h′ then h′ = h, hence u
CR

? // u and v
CR

? // v

and u − v = h. Assume A(k) and let h
CR

k+1 // h′ . Then

h
CT

k // h1

CR
// h′ . By induction hypothesis

∃u1,v1
(
u

CR

? // u1 ∧ v
CR

? // v1 ∧ u1 − v1 = h1
)

Invoking Lemma 6.3 provides u′, v′ such that

u

CR ?

��

− v

CR ?

��

= h

CR k

��
u1

CR ?

��

− v1

CR ?

��

= h1

CR 1

��
u′ − v′ = h′

Generalizing over h1 yields A(k + 1). Consequently
∀k A(k).
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Corollary 6.3. Assume K×X = X and let u− v
CR

? // 0 .

Then u oo
CR

? // v

Proof. Proposition 6.4 yields that

∃u1,v1

(
u

CR

? // u1 ∧ v
CR

? // v1 ∧ u1 − v1 = 0

)
.

Corollary 6.4. Let K×X = X . Then
oo

CR

? // = oo
T

? // = ≡ZX .

Proof. From Proposition 6.2 and the fact that ρT(X) is

congruence preserving w.r.t. ZX it is clear that oo
CR

? // ⊆

oo
T

? // ⊆ ≡ZX . We show that ≡ZX⊆ oo
CR

? // by

induction on the predicate

A(k) ⇐⇒ ∀u,v

(
∃x∈X{1,...,k} u− v =

k∑
i=1

xi ⇒ u oo ?

CR
// v

)
.

A(0) is reflexivity of the equivalence relation. Let u − v =∑k+1
i=1 xi. Then u−(v+xk+1) =

∑k
i=1 xi and from induction

hypothesis we obtain u oo
CR

? // v + xk+1 . Set h := v+xk+1.

Then h − v = xk+1
CR

? // 0 . Proposition 6.4 provides h′, v′

such that

h

CR ?

��

− v

CR ?

��

= xk+1

CR ?

��
h′ − v′ = 0

which shows that v + xk+1 = h oo
?

CR
// v . Consequently

u oo
?

CR
// v .

6.5. T-Reduction

The rank-function T : F −→ Pfin(ΛE) is a surjection.
According to Corollary 5.1 we obtain ρT(X) = ρ(X,τ) (X ⊆
F arbitrary), where

τY =
⋃
Z≤Y

T−1(Z) = {f ∈ F | T(f) ≤ Y }

is the corresponding monotone exhaustive family.
Lemma 6.4. Let X ⊆ F be an arbitrary set, f ∈ F , x ∈ X .
1. f

T
// f − x ⇒ LT(x) ∈ T(f);

2. f
T
// h = f − x ⇒max

(
T(f)+T(h)

)
≤ LT(x) ≤

LT(f).
Proof.
1. Let f

T
// f − x = h , t = max(T(f) + T(h)) =

max(T(f) \ T(h)) and v = LT(x). If s > v then hs = fs
whence s 6∈ T(f)+T(h). This means ∀s (s ∈ T(f)+T(h)⇒
s ≤ v) In particular t ≤ v. Assume for contradiction that

v 6∈ T(f). Then hv = −xv 6= 0, that is, v ∈ T(h) \ T(f) ⊆
T(f) + T(h) and therefore v ≤ t. Thus t = v, a contradiction.

2. m := max
(
T(f) + T(h)

)
∈ T(f) and LT(x) ∈ T(f)

hence LT(x) ≤ LT(f). m ∈ T(f) \ T(h), 0 = hm =
fm − xm, xm = fm 6= 0, m ∈ T(x), m ≤ LT(x).

Corollary 6.5. Assume that K×X = X .
1. LT(x) ∈ T(f)⇒ ∃c∈K× f

CR
// f − cx ;

2. ICR(X) = IT(X) = {f ∈ F | T(f) ∩ LT(X) = ∅}.
Proof.
1. s := LT(x) ∈ T(f). Since s ∈ T(f) it is clear that

x 6= 0. Set c = fs
LC(x) , y = cx and h = f − y. Then y ∈ X ,

LT(y) = s and hs = fs − cxs = 0, this means, f
CR
// h .

2. If f is T(X)-reducible then ∃x∈X s.t. f
T
// f − x .

Lemma 6.4 guarantees then that LT(x) ∈ T(f). Therefore

{f ∈ F | ¬∃x∈X LT(x) ∈ T(f)} ⊆ IT(X) ⊆ ICR(X).

The second point of the same Lemma yields that

ICR(X) ⊆ {f ∈ F | ¬∃x∈X LT(x) ∈ T(f)}.

Corollary 6.6. Let X ⊆ F \ {0}. Then

1) f is LT(X)-reducible iff
∃x∈X

(
LT(x) = LT(f) ∧ LC(x) = LC(f)

)
;

2) f is CR(X)-reducible iff ∃x∈X fLT(x) = LC(x).

If K×X = X \ {0} then

3) f is LT(X)-reducible iff LT(f) ∈ LT(X);

4) f is CR(X)-reducible iff T(f) ∩ LT(X) 6= ∅.

Corollary 6.7. Assume that K×X = X and let ρ be one
of ρCR(X), ρT(X). Then Iρ is an additive homogeneous
subgroup of F .

Proof. This follows immediately from Corollary 6.5.
Note that Corollary 6.7 does not hold for leading-term

reduction; that is, in general the irreducibles of ρLT(X) neither
form a group nor is a term of an irreducible element necessarily
irreducible.

We realize that under the assumtions of Corollary 6.7, which
is a requirement on the setX , relations ρCR(X) and ρT(X) both
are models of Axioms 1,2,3. Then Corollary 6.2 claims that at
least for the case X = N , where N is a submodule of F , they
provide Gröbner reductions.

These are of course not very useful. We need to specify a
set X which is recursively accessible.

Proposition 6.5. Consider two sets X,Y ⊆ N ⊆ F with
property K×X = X , K×Y = Y . Let ρX stand for one of
ρCR(X), ρT(X), and similar for ρY . Assume that ρX and ρY
are both Gröbner reductions for N . If X ⊆ Y then IX = IY .

Proof. From X ⊆ Y we obtain IY ⊆ IX and Corollary 6.7
yields that IX and IY are both groups. Moreover

IX +N = IY +N = M ∧ IX ∩N = IY ∩N = 0.

Consequently IX = IY .
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6.6. Reduction for Finitely Generated Submodules

Assume that N ⊆ F is generated by a finite set G =
{g1, . . . , gq} ⊂ N . Let X ⊆ F with K×X = X and ρ one of
CR(X), T(X). The kernel of the corresponding presentation
Φ: Rq −→ N is ker(Φ) =

⋂
t∈ΛE ker(πt ◦ Φ) and we obtain

that
Φ−1(I ∩N) =

⋂
s∈LT(X)

ker(πs ◦ Φ).

Corollary 6.8. Let G = {g1, . . . , gq} ⊆ N , Φ: Rq −→ N ,
X = K×X ⊆ N = RG and ρ one of CR(X), T(X). Then

ρ is a Gröbner reduction for N ⇐⇒
ker(Φ) =

⋂
s∈LT(X)

ker(πs ◦ Φ). (8)

Proof. ρ is a Gröbner reduction for N iff I ∩N = 0. This
is equivalent to Φ−1(I ∩N) = ker(Φ).

Definition 6.1. Consider an R-submodule N ⊆ F . Let
A ⊆ R and G = {g1, . . . , gq} ⊆ F be sets, X = AG and ρ
one of ρLT(X), ρCR(X), ρT(X). Then (A,G) is a ρ-Gröbner
basis for N iff ρ is a Gröbner reduction for N .

Under ideal conditions statement (8) can be used to compute
a Gröbner basis:

Consider r = (r1, . . . , rq) ∈ Rq and write

rj =
∑
λ∈Λ

rjλλ and gj =
∑
t∈ΛE

gjt t (1 ≤ j ≤ q). (9)

Assume we can solve the system of equations

q∑
j=1

∑
λ∈Λ

∑
ξ∈Λ

∑
t∈ΛE

rjλ(λ ·gjt )ξ(ξ · t)s = 0 (s ∈ LT(X)) (10)

for the indeterminants rjλ and select a solution r with Φ(r) 6=
0. Then we may use Φ(r) to enlarge the set X , e.g., by setting
G′ = G ∪ {Φ(r)} and defining X ′ accordingly (such that
K×X ′ = X ′, ρ′ is defined by X ′ and LT(X ′) ⊃ LT(X)). If
iterated replication of this process terminates, it will eventually
result in a Gröbner reduction for N . Simple examples will
follow in Section 7.

In general the system (10) will not be satisfactorily
accessible. Then we need more sophisticated concepts which
will defined next.

6.7. S-polynomials

To construct Gröbner bases in a finitary way we need an
appropriate concept describing S-polynomials.

Definition 6.2. A quotient function for F is a map

q : (ΛE ∪ 0)× (ΛE ∪ 0) −→ R×R

such that for arbitrary λ, µ ∈ Λ, s, t ∈ ΛE

1) q(s, s) = (1, 1);

2) λs = µt⇒ ∃ω∈Λ ω · q(s, t) = (λ, µ).

We will address the function q in terms of its components,
i.e., q = (q1, q2).

Example 6.1. Consider R = K[x1, . . . , xn], F = R(E).
The least common multiple in Λ extends to ΛE via

LCM(αe, βe′) =

{
LCM(α, β)e . . . e = e′

0 . . . else
(11)

(α, β ∈ Λ, e, e′ ∈ E). Then

q(s, t) =

(
LCM(s, t)

s
,

LCM(s, t)

t

)
is a quotient function.

This example generalizes to situations where Λ ⊂ R admits
a least common (left) multiple. Precisely, assume that Λ is
a multiplicative monoid which satisfies the cancellation rule
λν = µν ⇒ λ = µ. Assume further that any two elements of
Λ have a least common left multiple. Let LCM be a function
Λ × Λ −→ Λ which picks a least common left multiple for
all pairs (λ, µ) and such that LCM(λ, λ) = λ. As in (11) this
function extends to LCM: ΛE × ΛE −→ R×R

LCM(s, t) =

{
LCM(π1(s), π1(t)) · π2(s) π2(s) = π2(t)

0 else.
(12)

Then there are functions q1, q2 defined implicitly by means of
the equations

q1(s, t) · s = LCM(s, t) = q2(s, t) · t (s, t ∈ ΛE). (13)

We may set q1(s, t) = q2(s, t) = 0 in case that π2(s) 6= π2(t).
When at least one argument is 0, the values of q1 and q2 are
irrelevant.

Proposition 6.6. q = (q1, q2) is a quotient function for F .
Proof. Let s = αe, t = βe′. Because LCM(s, s) =

LCM(α, α)e = αe = s, we obtain from (13) that q1(s, s) ·s =
s = q2(s, s) · s. The cancellation rule provides that q1(s, s) =
1 = q2(s, s).

Suppose that λs = µt. This means λαe = µβe′. Since
0 6∈ Λ (Λ is a K-basis of R), we derive that e = e′ and
λα = µβ. In particular π2(s) = π2(t) hence LCM(s, t) =
LCM(α, β)e. Since λα is a left multiple of both α and β,
there exists a unique ω ∈ Λ s.t. ω · LCM(α, β) = λα. From
(13) we obtain that

ω · q1(s, t) · s = ω · LCM(s, t) = ω · LCM(α, β)e
= λαe = λs

ω · q2(s, t) · t = ω · LCM(s, t) = ω · LCM(α, β)e
= µβe′ = µt.

Consequently ω · q1(s, t) = λ ∧ ω · q2(s, t) = µ, shortly
ω · q(s, t) = (λ, µ).

In particular there is a quotient function for F when Λ ·Λ ⊆
Λ ∼= Nn.

Definition 6.3. An S-polynomial is a function

S ∈
∏

(f,g)∈F×F

R · {f, g}
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subject to the following properties.
1. ∀f,g∈F0

(
LT(f) = LT(g)⇒ S(f, g) = f − g

)
;

2. ∀f,g∈F0 ∀λ,µ∈Λ

(
LT(λf) = LT(µg)

⇒ ∃ω∈Λ S(λf, µg) = ω · S(f, g)
)
.

Taking into account condition 1. of this definition one
is tempted to write λf − µg for S(λf, µg) in the second
condition. But we have to be careful, since the first condition
is required only for f, g ∈ F0 and it is not guaranteed that
λf ∈ F0 even when f ∈ F0.

Proposition 6.7. Suppose that Λ ·Λ ⊆ R \ 0 and LT(λf) =
λLT(f) ∀λ∈Λ ∀f∈F0

. If q is a quotient function for F then

S(f, g) = q1(LT(f),LT(g))f − q2(LT(f),LT(g))g (14)

is an S-polyomial in F .
Proof. Take f, g ∈ F0. If LT(f) = LT(g) = 0 then

f = g = 0. S(f, g) = q1(0, 0)0 − q2(0, 0)0 = 0 = f − g. If
LT(f) = LT(g) 6= 0 then S(f, g) = 1 · f − 1 · g.

Assume that LT(λf) = LT(µg) = 0. Then λ · LT(f) =
µ · LT(g) = 0. If LT(f) were different from 0, then
∃α∈Λ ∃e∈E LT(f) = αe, whence λαe = 0. But then λα = 0
contradicting that 0 6∈ ΛΛ. Therefore LT(f) = 0 and thus
f = 0. Similarly g = 0. Therefore S(f, g) = q1(0, 0) · 0 −
q2(0, 0) · 0 = 0 and S(λf, µg) = S(0, 0) = 0. Trivially than
∃ω∈Λ S(λf, µg) = ωS(f, g).

Now assume that LT(λf) = LT(µg) 6= 0. Then λ ·
LT(f) = µ · LT(g) 6= 0, i.e., LT(f),LT(g) ∈ ΛE. Therefore
∃ω∈Λ ω · q(LT(f),LT(g)) = (λ, µ). Consequently

ω S(f, g) = ω q1(LT(f),LT(g))f − ω q2(LT(f),LT(g))g
= λf − µg

= q1(LT(λf),LT(µg))λf − q2(LT(λf),LT(µg))µg
= S(λf, µg).

Lemma 6.5. Let S : F × F −→ F be an S-polynomial and
f1, . . . , fq ∈ F0 with LT(fj) = t ∀j = 1, . . . , q. Then

K ·{S(fi, fq) | 1 ≤ i < q} = {h ∈ K ·{f1, . . . , fq} | h ≺ t}.

Proof. S(fi, fq)t = (fi)t − (fq)t = 1 − 1 = 0 hence
LHS ⊆ RHS. Let h ∈ RHS, h =

∑q
j=1 cjfj . Then

0 = ht =
∑q
j=1 cj(fj)t =

∑q
j=1 cj . Therefore

q−1∑
i=1

ci · S(fi, fq) =

q−1∑
i=1

ci(fi − fq) =

q−1∑
i=1

cifi + cqfq = h.

6.8. TO-pairs and Syzygies

In most sitations the well-order on ΛE is accompanied by a
well-order on Λ.

Definition 6.4. Let <R be a well-order on Λ and <F one
on ΛE. Extend both according to (6). Then (<R, <F ) is a
TO-pair (a pair of term orders) provided that

1. λ <R µ⇒ λf ≺F µf (λ, µ ∈ Λ, f ∈ F0);
2. LT(r)f �F rf (r ∈ R, f ∈ F0);
3. f �F g ⇒ λf �F λg (λ ∈ Λ, f, g ∈ F ).

We will omit subscripts in these relations writing them both
as ≺ resp. �.

Proposition 6.8. Assume ΛΛ ⊆ Λ and a TO-pair with
additional properties

1) ∀λ∈Λ ∀c∈K λ · c � λ;

2) ∀λ∈Λ ∀s,t∈ΛE (s < t⇒ λs < λt).

Let Λ ⊆ A ⊆ R, G ⊆ F0, X = AG, ρ = ρT(X). Then
I ∩ ΛE ∩R · LT(G) = ∅.

Proof. Suppose for contradiction that t ∈ I ∩ ΛE ∩ R ·
{LT(g) | g ∈ G}. Then there are finite subsets {g1, . . . , gq} ⊆
G and {r1, . . . , rq} ⊆ R s.t.

t =

q∑
j=1

rj · LT(gj) =

q∑
j=1

∑
λ∈Λ

rjλλ · LT(gj).

Since ΛΛ ⊆ Λ, this sum must collapse: ∃j ∃λ t = λ ·
LT(gj). Consider h := t− λgj .

h = t− λ
(

LT(gj) +
∑
s≺gj

gjss
)

= t− λ · LT(gj)−
∑
s≺gj

λgjss

= −
∑
s≺gj

∑
µ≤λ

cµµs

where we express λgjs as the sum
∑
µ≤λ cµµ justified by the

additional property. Each summand is smaller than t, because
s ≺ gj and µ ≤ λ has as a consequence that

µs < µ · LT(gj) ≤ λ · LT(gj) = t.

Therefore T(h) < t, and this means that t // h which is
impossible.

In order to use reduction relations for performing
computations we have to impose finiteness conditions.

Let N ⊆ F be finitely generated by the set G =
{g1, . . . , gq}. We consider the associated representation
Φ: Rq −→ N , φ(r) =

∑q
j=1 rjgj together with the map

δ : Rq −→ ΛE, δ(r) =
q

max
j=1

LT(rjgj).

For t ∈ ΛE we set R<t = δ−1[0, t), i.e., R<t = {r ∈ Rq |
δ(r) < t}.

Then φ(r) � δ(r) ∀r ∈ Rq and R<t is a module over the
ring Kq i.e.,

r, s ∈ R<t∧c ∈ Kq ⇒ r+s ∈ R<t∧(c1r1, . . . , cqrq) ∈ R<t.

Moreover we have that

r ∈ R<t ⇒ φ(r) ≺ t. (15)

We proceed assuming available a TO-pair.
Theorem 6.1. Assume that ∀λ∈Λ ∀f∈F0

λf ∈ F0 and that F
admits an S-polynomial S : F × F −→ F . Let A ⊆ R be
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such that Λ ⊆ A = K×A, G = {g1, . . . , gq} ⊆ F0, X = AG
and ρ one of ρCR(X), ρT(X). If for all 1 ≤ i 6= j ≤ q:

S(gi, gj)
?

ρ
// 0 then (A,G) is a ρ-Gröbner basis for RG.

Proof. Because ZX ⊆ RG, ρ is a reduction for RG. Since
K×X = K×AG = AG = X we obtain from Corollary
6.7 that ρ satisfies also Axiom 3. It remains to show that
RG ∩ Iρ = 0.

Assume this is false. Then ∃f ∈ RG ∩ I \ 0. Take
r ∈ φ−1(f). We show that ∃s∈φ−1(f) δ(s) < δ(r). This
produces an infinite descending chain in ΛE contradicting the
Noetherian property.

Obviously δ(r) > 0. For arbitrary 1 ≤ j ≤ q we write

rj = cjλj +
∑
ν<λj

rjνν, gj = tj +
∑
s<tj

gjss

with cj , rjν , g
j
s ∈ K, λj = LT(rj) ∈ Λ ∪ {0}, cj = LC(rj),

tj = LT(gj). Then

f = φ(r) � δ(r) and rjgj = cjλjgj +
∑
ν<λj

rjννgj

Definition 6.4 yields λjgj = LT(rj)gj � rjgj � δ(r) (1 ≤
j ≤ q). Let

J = {i ∈ {1, . . . , q} | LT(λigi) = δ(r)}.

WLOG J = {1, . . . , k} ⊆ {1, . . . , k, k + 1, . . . , q} with
0 ≤ k ≤ q.

f =

q∑
j=1

cjλjgj +

q∑
j=1

∑
ν<λj

rjννgj

=
∑
i∈J

ciλigi︸ ︷︷ ︸
f0

+
∑
i 6∈J

ciλigi︸ ︷︷ ︸
f1

+

q∑
j=1

∑
ν<λj

rjννgj︸ ︷︷ ︸
f2

For i 6∈ J we obtain λigi ≺ δ(r). Thus
(0, . . . , 0, λk+1, . . . , λq) ∈ R<δ(r), hence
(0, . . . , 0, ck+1λk+1, . . . , cqλq) ∈ R<δ(r). Consequently

f1 = φ(0, . . . , 0, ck+1λk+1, . . . , cqλq) ∈ φ
(
R<δ(r)

)
and

f1 ≺ δ(r).

For 1 ≤ j ≤ q and ν < λj we get from Definition 6.4 that

νgj ≺ λjgj = LT(rj)gj � rjgj � δ(r).

Therefore∑
ν<λj

rjννgj � max
ν<λj

LT(νgj) ≺ δ(r) (j = 1, . . . , q).

Thus ( ∑
ν<λ1

r1
νν, . . . ,

∑
ν<λq

rqνν
)
∈ R<δ(r)

and so

f2 = φ
( ∑
ν<λ1

r1
νν, . . . ,

∑
ν<λq

rqνν
)
∈ φ(R<δ(r))

and
f2 ≺ δ(r).

It follows that f1 +f2 ∈ φ(R<δ(r)). We will show that also
f0 ∈ φ(R<δ(r)).

If J = ∅ (i.e. k = 0) then f0 = 0 whence f0 ∈
φ(R<δ(r)). So assume that J 6= ∅. From Corollary 6.5,
δ(r) = LT(λ1g1) 6∈ T(f). Thus

0 = fδ(r) = f0
δ(r) + f1

δ(r) + f2
δ(r) = f0

δ(r) + 0 + 0.

Therefore

f0 =
∑
i∈J

ciλigi ∧ ∀i∈J LT(λigi) = δ(r) ∧ f0 ≺ δ(r).

If J = {1} (k = 1) then f0 = c1λ1g1 ∧ LT(λ1g1) =
δ(r) ∧ f0 ≺ δ(r). Since K is a field, this cannot be.

Therefore k ≥ 2. Because λigi ∈ F0 (1 ≤ i ≤ k), we
derive from Lemma 6.5 that

∃e∈Kk−1 f0 =

k−1∑
i=1

eiS(λigi, λkgk).

From the axioms on S-polynomials we obtain

∀i=1,...,k−1 ∃ηi∈Λ S(λigi, λkgk) = ηiS(gi, gk)

thus f0 =
∑k−1
i=1 eiηiS(gi, gk). Since S(gi, gk)

? // 0 we
obtain from Lemma 6.2 that

∃m∈N ∃ai•∈A{1,...,m} ∃g•∈G{1,...,m} ∀l

ailgl � S(gi, gk) =

m∑
l=1

ailgl (1 ≤ i ≤ k − 1).

Collecting like terms gives

∃ai•∈(ZA){1,...,q} ∀j a
i
jgj � S(gi, gk) =

q∑
j=1

aijgj (1 ≤ i ≤ k − 1).

f0 =

k−1∑
i=1

eiηiS(gi, gk) =

q∑
j=1

k−1∑
i=1

eiηia
i
jgj

Because aijgj � S(gi, gk) =
∑q
j=1 a

i
jgj ∀i ∀j using

Definition 6.4 we get

ηia
i
jgj � ηiS(gi, gk) = S(λigi, λkgk).

Because λigi and λkgk are in F0 and LT(λigi) =
LT(λkgk) = δ(r) we obtain that S(λigi, λkgk) = λigi −
λkgk ≺ δ(r) ∀i=1,...,k−1. Thus

ηia
i
jgj � S(λigi, λkgk) ≺ δ(r) ∀i=1,...,k−1, ∀j=1,...,q
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LT
( k−1∑
i=1

eiηia
i
jgj

)
≤ k−1

max
i=1

LT(ηia
i
jgj) < δ(r) ∀j=1,...,q

⇒ δ
( k−1∑
i=1

eiηi · ai1, . . . ,
k−1∑
i=1

eiηi · aiq
)
< δ(r). This means

( k−1∑
i=1

eiηi · ai1, . . . ,
k−1∑
i=1

eiηi · aiq
)
∈ R<δ(r) and thus

f0 = φ
( k−1∑
i=1

eiηi · ai1, . . . ,
k−1∑
i=1

eiηi · aiq
)
∈ φ(R<δ(r)).

Consequently

f = f0 + f1 + f2 ∈ φ(R<δ(r)).

It follows that ∃s ∈ R<δ(r) with φ(s) = f and therefore

s ∈ φ−1(f) ∧ δ(s) < δ(r).

This proof when spezializing the Ring R to K[x1, . . . , xn]
corresponds to the one found in [1]. For other proofs of the
polynomial case see [2], [7], [34] and the literature listed in
[8].

6.9. The Buchberger Algorithm

As in the classical theory Theorem 6.1 allows the
construction of Gröbner bases provided that the groundring R
has a Noetherian structure.

Thus, supposing that an S-polynomial S : F × F −→ F is
available, we fix a set A ⊆ R such that Λ ⊆ A = K×A.

Buchberger Algorithm
In: G = {g1, . . . , gq} ⊆ F0;
G := G;
Pick γ ∈ G ;
while ∃g∈G \{γ} with ¬ S(g, γ)

ρT(AG )

? // 0 do

Choose such a g;
G := G ∪ { NF(S(g,γ))

LC(NF(S(g,γ)))};
endwhile;
RETURN G ;

Theorem 6.2. Suppose that R = K(Λ) is left Noetherian
ring, F = R(E) with a finite set E. Moreover assume that

1. ΛΛ ⊆ Λ,
2. (<R, <F ) a TO-pair;
3. ∀λ∈Λ ∀c∈K λc � λ;
4. ∀λ∈Λ ∀s,t∈ΛE (s < t⇒ λs < λt);
5. ∀λ∈Λ ∀f∈F0

λf ∈ F0;
6. S : F × F −→ F is an S-polynomial;
7. A ⊆ R s.t. Λ ⊆ A = K×A;
8. G = {g1, . . . , gq} ⊆ F0;
9. X = AG;
10. ρ = ρCR(X) ∨ ρ = ρT(X);

Then the Buchberger algorithm terminates on input G.
Proof. In the while-loop consider the setG = {g1, . . . , gp}

and assume that gj ∈ G \ {γ} is a chosen element. Denote

the updated set G with G1. Thus G1 is the old set G
augmented with h :=

NF(S(gj ,γ))
LC(NF(S(gj ,γ)))}. Then h 6= 0 and h

is irreducible (w.r.t the old G ). From Corollary 6.7 we obtain
that T(h) ⊆ I . Let t := LT(h). Then t ∈ I ∩ΛE. Proposition
6.8 guarantees that t 6∈ R · LT(G ). Because t ∈ LT(G1)
we conclude that R · LT(G ) ⊂ R · LT(G1). Because F is a
Noetherian R-module the chain of these submodules is finite.
Consequently the process must stop.

7. Specialization to Particular Rings

As mentioned in Section 6.6, when dimK R as well as
rankF are both finite, it may happen that a Gröbner basis for
N ⊆ F can be computed without invoking the machinery of
S-polynomials.

Consider R = K(Λ), F = R(E) = K(ΛE) where Λ and
E are both finite sets. Moreover let G = {g1, . . . , gq} ⊂ F ,
N = RG, X = K×ΛG. By linearly ordering the set ΛE
arbitrarily we may apply classical reduction w.r.t. X

ρ : f // h ⇐⇒ f − h ∈ X ∧ hLT(f−h) = 0.

If ρ is not a Gröbner reduction for N there must be an
irreducible n ∈ N \ 0. Therefore, the linear system

πs

( q∑
l=1

∑
λ∈Λ

rlλλgl

)
= 0 (s ∈ LT(X)) (16)

must have a non-zero solution (rlλ) ∈ K{1,...,q}×Λ which is so
that

∃t ∈ ΛE \ LT(X)

with

πt

( q∑
l=1

∑
λ∈Λ

rlλλgl

)
6= 0.

Consequently

n =

q∑
l=1

∑
λ∈Λ

rlλλgl 6= 0.

Assume we can compute such a solution (rlλ), set G′ =
G ∪ {n} and X ′ = K×ΛG′. If then LT(X ′) is strictly
containing LT(X), iteration of this procedure must terminate
due to the finiteness of ΛE.

7.1. Vector Spaces

The most simple situation occurs when K = R. Then Λ =
{1}, and if E = {e1, . . . , en}, the module F = R(E) is just a
finite dimensional vector space over the field K. ΛE = E and
the structure formulae are 1 · c = c (c ∈ K) and 1 · 1 = 1.

We put E in order e1 < · · · < en. Given a subspace
N = RG ⊆ F with G = {g1, . . . , gq}, the system of
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equations (10) collapses to

q∑
j=1

rjg
j
e = 0 (e ∈ LT(X)).

Of course this is solvable, and we can produce a Gröbner
reduction as described in Section 6.6.

In particular we obtain a Gröbner basis when X is defined
as X = K×G and we proceed by extending it to X ′ =
K×(G ∪ {Φ(r)}) with a solution r 6∈ ker(Φ).

Alternatively, we may take S(f, g) = f − g as an S-
polynomial and compute a Gröbner basis using the Buchberger
algorithm.

7.2. Monoid Rings

Assume that Λ is a finite monoid, R = K[Λ] the associated
monoid ring, and F = RE with finite set E. We order
ΛE arbitrarily. The linear system (16) associated to G =
{g1, . . . , gq} ⊆ F amounts to

q∑
l=1

∑
λs=t

glsr
l
λ = 0 (t ∈ LT(X)).

Having determined a solution matrix (rlλ) ∈ Kq×Λ such
that the corresponding element

n =
∑
t∈ΛE

∑
λs=t

q∑
l=1

rlλg
l
st 6= 0

we can setG′ = G∪{n},X ′ = K×ΛG. Since 1 ∈ Λ it is clear
that n ∈ X ′ and LT(n) ∈ T(n) ⊆ ΛE\LT(X). Therefore the
set X ′ properly contains X , and since ΛE is finite, iteration of
this process must terminate and yields a Gröbner basis forRG.

7.3. Matrixrings

Let R = Kn×n be the ring of square n × n-matrices over
K. This ring has a naturalK-basis Λ consisting of all matrices
λji (1 ≤ i, j ≤ n) where λji is the matrix with 1 in position
(j, i) and 0 else. Thus

(λji )
k
l =

{
1 . . . k = j ∧ l = i

0 . . . else.

The basic structure formulae in this setting are then

λji · c = cλji and λji · λ
l
k =

{
λjk . . . i = l

0 . . . else

and so, for a ∈ R and arbitrary indices i, j, k, l

(λjia)lk =

n∑
r=1

(λji )
l
ra
r
k =

{
aik . . . j = l

0 . . . j 6= l.

Let F = RE with finite set E be a free module and order

ΛE arbitrarily. Consider a submodule N ⊆ F . Since R is
simple Artinian, it is clear that F is Noetherian and therefore
N is generated by a finite set G = {g1, . . . , gq} ⊆ F . Set
X = K×ΛG. With notation as before we get

Φ(r) =
∑
e∈E

n∑
u=1

n∑
j=1

q∑
l=1

n∑
i=1

(rl)
j
i (g

e
l )
i
uλ

j
ue

So we have to compute the general solution of the system

q∑
l=1

n∑
i=1

(gel )
i
u(rl)

j
i = 0 (λjue ∈ LT(X))

and check if it is possible to single out a particular instance
such that the corresponding element n is not zero. If this is the
case we can proceed in the usual way: set X ′ = K×Λ · (G ∪
{n}). Although n 6∈ X ′ it is obvious that LT(X ′) ⊃ LT(X)
whence the process terminates.

7.4. The Ring of Ore Polynomials

Given an endomorphism σ : K −→ K, a σ-skew derivation
is an additive map δ : K −→ K satisfying

δ(ab) = σ(a)δ(b) + δ(a)b, (a, b ∈ K).

An Ore-variable over K is a pair ∂ = (σ, δ) where σ is an
endomorphism and δ is a σ-skew derivation.

Let ∂i = (σi, δi) be Ore-variables (1 ≤ i ≤ n) such that
all mappings σi, δj commute with each other. Then the Ore
algebraO defined by X = (∂1, . . . , ∂n) is the free K-module
on the set of formal expressions ∂k = ∂k11 · · · ∂knn (k ∈ Nn)
with multiplication determined by the rules

∂i ·∂j = ∂j ·∂i and ∂i ·x = σi(x)∂i+δi(x) (x ∈ K). (17)

For the set of monomials we use Λ = {∂k : k ∈ Nn}. With
the notation

xlk = (δl ◦ σk)(x) (k, l ∈ Nn, x ∈ K) (18)

and the binomial coefficient(
l

v

)
=

(
l1
v1

)
· · ·
(
ln
vn

)
(l, v ∈ Nn)

the product inO may be written explicitly

x∂k · y∂l =
∑
v∈Nn

(
k

v

)
xyk−vv ∂ l+v

=
∑
v≤πk

(
k

v

)
xyvk−v∂

k+l−v
(19)

where x, y ∈ K and k, l ∈ Nn. Inparticular the two basic
structure formulae are

∂k · y =
∑
v≤πk

(
k

v

)
yvk−v∂

k−v and ∂k · ∂l = ∂k+l.
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It is customary to denote O by the symbol K{∂1, . . . , ∂n}.
The particular instance x∂0 ·y∂0 = xy∂0 demonstrates thatK
is naturally a subring of O whilst substituting unit vectors for
l and q reveals the formal expression ∂k as a concrete product
∂k11 · · · ∂knn . Consequently we have that Λ ∼= Nn.

As before we consider the freeO-module F = O(E).
Definition 7.1. Let <⊂ Λ× Λ be a classical term-order and

let the K-basis E be linearly ordered (cf. [2]). Then we define
the order <F on ΛE lexicographically

λe <F µe
′ ⇐⇒ λ < µ ∨ (λ = µ ∧ e < e′).

Proposition 7.1. Let λ, µ ∈ λ, e ∈ E, s, t ∈ ΛE, x, y ∈
K×, r ∈ R, f, g ∈ F ;

1. LT(x∂k · y∂le) = ∂k+le ∧ LC(x∂k · y∂le) = xyk;
2. LT(rf) = LT(r)LT(f);
3. LT(λf) = λLT(f);
4. λ < µ⇒ λs < µs;
5. s < t⇒ λs < λt;
6. λ < µ⇒ λf ≺ µf ;
7. LT(r)f � rf ;
8. f � g ⇒ λf � λg;
9. (<,<F ) is a TO-pair.

Proof. Let

λ = ∂k, µ = ∂l, s = ∂ue, t = ∂ve′,

r = r0∂
m0 +

∑
∂m<∂m0

rm∂
m,

f = f0∂
n0e0 +

∑
∂ne<∂n0e0

fn,e∂
ne.

1. From v = k in the first formula of (19) we obtain the
summand xy0

k∂
k+le which is diffenet from 0 whence

∂k+le ∈ T(x∂k · y∂le). If t ∈ T(x∂k · y∂le) \ {∂k+le}
then ∃v<πk t = ∂l+ve. Thus ∂l+v < ∂k+l hence
t = ∂l+ve < ∂k+le. One more inspection of formula
(19) provides that LC(x∂k · y∂le) = xyk.

2. LT(rf) ≤ max{LT(r0∂
m0 · f0∂n0e0)} ∪ {LT(r0∂

m0 · fn,e∂ne) |

∂ne < ∂n0e0}∪{LT(rm∂
m·f0∂n0e0) | ∂m < ∂m0}∪{LT(rm∂

m·

fn,e∂
ne) | ∂m < ∂m0 ∧ ∂ne < ∂n0e0} = max{∂m0+n0e0} ∪

{∂m0+ne | ∂ne < ∂n0e0}∪{∂m+n0e0 | ∂m < ∂m0}∪{∂m+ne |

∂m < ∂m0 ∧ ∂ne < ∂n0e0} = ∂m0+n0e0

Since all emerging elements different from ∂m0+n0e0

are strictly smaller than ∂m0+n0e0, the assertion
follows.

3. This is a specialization of the previous item.
4. If λ < µ then k < l and so k + u < l + u i.e.,
∂k+u < ∂l+u. Therefore λs = ∂k∂ue = ∂k+ue <
∂l+ue = ∂l∂ue = µs.

5. Let s < t. If u < v then k + u < k + v, ∂k+u <
∂k+v . Therefore λs = ∂k∂ue = ∂k+ue < ∂k+ve′ =
∂k∂ve′ = λt. If u = v then e < e′ and again λs < λt.

6. Let λ < µ. Points 3. and 4. gives LT(λf) = λLT(f) <
µLT(f) = LT(µf).

7. Using point 2. twice provides LT(LT(r)f) =
LT(r)LT(f) = LT(rf). This yield the statement.

8. f � g implies LT(f) ≤ LT(g), λLT(f) ≤ λLT(g)

(by 5.), LT(λf) ≤ LT(λg) (by 3.), λf � λg (definition
of �).

9. This is the conjunction of points 6. 7. and 8.
Since Λ ∼= Nn the ring O admits a quotient q : ΛE ×

ΛE −→ O×O. From this, together with Proposition 7.1 we
derive the existence of an S-polynomial S : F × F −→ F .
Therefore, the parameters as required in Theorem 6.1, this
theorem provides the existence of Gröbner bases in F . We
will now demonstrate that they can be computed.

Consider a ringA, σ1, σ2 ∈ Aut(A) and let δ1, δ2 be σ1, σ2-
skew derivations respectively. Suppose that all these maps
commute with each another and set ∂1 = (σ1, δ1). Then we
can build the Ore-algebra A1 := A{∂1} as discussed at the
beginning of the section (the difference being that A need not
be a field). The ring A1 being an extension of A allows to
componentwise extend the maps σ2, δ2 to A1

σ̃2

(∑
k

ak∂
k
1

)
=
∑
k

σ2(ak)∂k1

δ̃2
(∑

k

ak∂
k
1

)
=
∑
k

δ2(ak)∂k1 .

We will omit the tilde, writing these maps σ2, δ2 again. With
this notation we obtain

Proposition 7.2. ∂2 := (σ2, δ2) is an Ore-variable over A1.

Proof. It is clear that the maps A1

σ2 //
δ2

// A1 are additive.

We have to show that σ2 ∈ Aut(A1) and that δ2 is a σ2-skew
derivation. These results in tedious but easy calculations.

Given Ore-variables ∂1, . . . , ∂n over the ring A (all maps
pairwise commuting), we may iterate the adjunction described
above arriving at the ring A{∂1}{∂2} · · · {∂n}.

Proposition 7.3. Let ∂1, . . . , ∂n be Ore-variables over K,
where ∂i = (σi, δi) with σi ∈ Aut(K) (1 ≤ i ≤ n), all
maps pairwise commuting. Then the Ore algebra O defined
by ∂1, . . . , ∂n is isomorphic as a ring to K{∂1} · · · {∂n}.

So, under the above hypotheses, the two rings
K{∂1, · · · , ∂n} and K{∂1} · · · {∂n} coincide.

Corollary 7.1. Let the Ore-ring O be defined by the Ore-
variables ∂i = (σi, δi) (1 ≤ i ≤ n) where all σi are
automorphisms. Then O is Noetherian. Consequently each
finitely generated module over O is Noetherian. In particular,
if E is a finite set and F = O(E), then, starting from an
arbitrary set X ⊆ F , the Buchberger algorithm terminates.

Proof. Because all σi are automorphisms and K is
Noetherian, so is O = K{∂1} · · · {∂n} (cf. [29] page 17).
Theorem 6.2 yields the result.

7.5. The Ring of Difference-Differential Operators

Let δ = (δ1, . . . , δm) be a tuple of ordinary derivations and
σ = (σ1, . . . , σn) a tuple of automorphisms of K. All these
maps are assumed to commute with each other. The ring D
is then constructed as the free K-module on the set of formal
expressions

δkσl = δk11 · · · δkmm σl11 · · ·σlnn , (ki ∈ N, lj ∈ Z)
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and a product that reflects the properties of derivations and
automorphisms. We consider the elements of the set Λ =
{δkσl | (k, l) ∈ Nm × Zn} as the distinguished monomials.
Consequently elements of D are finite K-linear combinations∑

(k,l)∈Nm×Zn
ak,lδ

kσl, (ak,l ∈ K)

and the product is driven by the rules

δi · c = c δi + δi(c) σj · c = σj(c)σj , (c ∈ K).

We call D a ∆Σ-ring over K.
A left module over D is also called a difference-differential

module, or ∆Σ-module over K. In the literature the tuples δ
and σ are denoted informally as the sets ∆ and Σ, whence the
name. Note though, that the mappings δi need not be distinct.
The same is the case with the σj .

The concept covers difference modules (∆ = ∅) as well as
differential modules (Σ = ∅) as special instances.

Proposition 7.4. Consider a field k with char(k) = 0. Let
K = k[x1, . . . , xm], ∆ = { d

dx1
, . . . , d

dxm
} and Σ = ∅. Then

the resulting ∆Σ-ring is the Weyl-algebra Am(k) (cf. [6]).
Proof. This is due to the fact that partial derivatives have no

relations among each other. Precisely: Let ∆? be the monoid
generated (in Endk(K)) by ∆. Then ∆? ∼= Nm and Am(k) is
a free K-module with basis ∆?.

For computing the Hilbert function of a finitely gnerated
difference-differential module, Winkler and Zhou introduced
the concept of relative Gröbner bases (w.r.t. generalized term
orders on Nm × Zn) [37]. Our approach is to present a
difference-differential ring as a quotient of another ring that
allows computing a Gröbner basis.

We use the notation

yks = (δk ◦ σs)(y) (k ∈ Nm, s ∈ Zn).

For the freeD-moduleF = D(E), the productD×F −→ F
can then be written explicitly

δkσl · yδrσse =
∑
u≤πk

(
k

u

)
yk−ul δu+rσl+se

(k, r ∈ Nm; l, s ∈ Zn; y ∈ K; e ∈ E).

(20)

This formula specializes to the basic structure formulae

δkσl · y =
∑
u≤πk

(
k

u

)
yk−ul δuσl

and
δkσl · δrσs = δk+rσl+s.

For λ = δkσl ∈ Λ we set

ν1(λ) = |k|, ν2(λ) = |l|, ν0 = ν1 + ν2. (21)

We may realize ∆Σ-rings as quotients of Ore-algebras.
Starting from ∆ = {δ1, . . . , δm} and Σ = {σ1, . . . , σn} we

define Ore-variables

∂i = (δi, id) (1 ≤ i ≤ m)
ηj = (0, σj) (1 ≤ j ≤ n)
φj = (0, σ−1

j ) (1 ≤ i ≤ n)

and let O be the Ore-algebra defined by them. Let I be the
2-sided ideal generated by the set {ηj · φj − 1 | 1 ≤ j ≤ n}.
ThenO/I ∼= D.

This representaion allows the construction of Gröbner bases
for submodules of finitely generated free modules over D out
of Gröbner bases for the corresponding modules over O. Cf.
also Lemma 3.1 and [15].

Consider the epimorphism π : O −→ D. We can write
down generically an inverse image u ∈ O for arbitrary a ∈ D:

If a =
∑

(k,l)∈Nm×Zn ak,lδ
kσl then set

u = a =
∑

(k,l)∈Nm×Zn
ak,l∂

k1
1 · · · ∂kmm ζ

|l1|
1 · · · ζ |ln|n

where ζj = ηj if lj ≥ 0, and ζj = φj for l < 0.
Let be given a left ideal N = D · {g1, . . . , gq} ⊆ D.

Chosen inverse images h1, . . . , hq for g1, . . . , gq , the left ideal
π−1(N) ⊆ O is generated by the set

H = {h1, . . . , hq} ∪ {ηj · φj − 1 | 1 ≤ j ≤ n}.

Let ρ be a Gröbner reduction for π−1(N), computed by
stepwise extending H , and a ∈ D. Choose an inverse image u
of a. Then a ∈ N iff u

ρ

? // 0 .

8. Conclusion

Given a module M and a submodule N ⊂ M , the goal
of reduction is to compute a set of normal forms that allow
to decide the membership problem for N . This is what
the classical Gröbner basis computation provides for ideals
in a polynomial ring over a field, and what similar adapted
concepts yield for certain submodules over particular rings.
Usually the process of computing such a basis is by iteration
of a reduction step that produces a new element g out of an
element f given as an input. In order to make sense, such a
reduction has to obey certain properties. Clearly its iteration
has to stop after finitely many steps and it should output a
unique normal form as its result.

We have formulated these requirements in a list of four
axioms that are appropriate for describing reduction relations
for modules over a ring with basis.

The axioms are carefully dicussed and examples are
provided for illustration. Depending on the ring there are
several concepts that can be used to define a reduction. Among
them we discuss possible term orders, filtrations and rank
functions.

In the presence of a term order we consider three types of
reductions: leading term reduction, T-reduction and classical
reduction. Each of them is dicussed in detail and their
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interrelations are discribed. Then we discuss the case when
the submoduleN is finitely generated, describe the appropriate
concept of an S-polynomial and demonstrate the equivalence
of the full reduction concept with Gröbner bases.

The last part of the paper is devoted to examples that
examine the introduced concepts.
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Journal Algebra, 442: 354–396.

[18] Huang, G. and Zhou, M. (2015). Termination of
algorithm for computing relative Gröbner bases and
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difference-differential modules. In Proceedings of the
2006 international symposium on Symbolic and algebraic
computation, ISSAC ’06: 353–360, New York, ACM.

[36] Zhou, M. and Winkler, F. (2007). Computing difference-
differential Groebner Bases and difference-differential
dimension polynomials. RISC Report Series 07–01,
Research Institute for Symbolic Computation (RISC),
Johannes Kepler University Linz, Schloss Hagenberg,
4232 Hagenberg, Austria.

[37] Zhou, M. and Winkler, F. (2008). Computing difference-
differential dimension polynomials by relative Gröbner
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