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Abstract: In this paper, the problem of setting traffic light cycles at crossroads and intersections is considered in order to 

reduce traffic congestion by minimizing total vehicle waiting time. A method to determine the family ℘ of all discrete cycle 

phasing systems with the minimum number of phases is presented. The aim is to detect the most appropriate phasing sequence 

for traffic control corresponding to a current traffic situation from among all the components of ℘. The method is applied at a 

complex multi-cross intersection. The problem, dealing with traffic movements and the conflicting relations that arise, is stated 

within the framework of graph theory. There are several methods for setting traffic signal cycles at traffic light intersections. In 

this paper and in the context of graph theory, we develop a method which aims to determine the  family of all discrete 

phases of phase systems with the smallest number of phases. The aim is to select from the elements of the the appropriate 

phase system that corresponds to the current traffic situation. 
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1. Introduction 

Generally, these cycles should consist of the smallest 

number of phases. In this paper, we present a method for 

determining the ℘  family of all discrete system phase 

cycles with the smallest number of phases. The aim is to 

locate ℘ among all cycles and to select the optimal phase 

system that corresponds to the current traffic situation 

taking into account the activation of pedestrian crossings. 

The method presented here is applied to a typical traffic 

junction as well as to an area consisting of several junctions 

that are directly connected to each other and is called a 

multi-junction. 

The above problem deals with the traffic movements and 

the incompatible relations among them and is treated in the 

context of graph theory [4-6]. 

The design of a circular phase system aims at defining a 

set of movements that can be active simultaneously (green 

indicator). Such a system is a phase. A period consists of 

phases that are activated sequentially and cyclically. 

When one phase is activated the movements of all other 

phases are waiting at the red indicator. Also, every 

movement must be included in at least one phase of the 

period. 

2. Preliminaries 

A distinct L-coloring of the G in Conflict graph 

corresponds to a specific component of the 

℘ � �C�, C�, … C	
 
family where each C� cycle contains L phases, i.e.  

C� � �φ
�, φ
�, …φ
��. 
The elements of each phase 

φ
� � �m
�
� , m
�

� , …m
�
� 
 

are paths that define a color class of G, thus φ
� ∩ φ
� � ∅ 

k, j � 1,2, … L, k � j 
and 

�φ
� � V
�

���
. 
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When the vehicles of the paths of one phase φ

�  of the 

cycle C�  then the active pedestrian crossings Pk expressed 

with the natural numbers k = 1, 2,…, np are the elements of 

the set [2, 3]  

W

� = �k,/, φ


� ∩ P� = ∅, k = 1,2, … , np�              (1) 

Because each pedestrian crossing must be active in at 

least one phase of a cycle, the following ratio must be 

satisfied. 

⋃ w

��

��� = ⋃ �i
�
���                             (2) 

The creation of light signaling phases that correspond to 

the x (G) coloring of the in Conflict graph conforms to the 

above instruction and positively affects the latter. 

The concept of multiple colors is related to the third 

directive. 

A cycle is feasible and ultimately acceptable if every 

pedestrian crossing is active in at least one of its phases, i.e. 

the relation (2) is valid. The above reasonings have been 

incorporated into an algorithm developed in the [1] work that 

creates the ℘  family resulting in the SLC (Signal Light 

Cycles) [1] process. Specifically, two additional routines are 

applied to each created coloring. 

3. Road Intersection Formulation 

3.1. Egnatia – Ethnikis Amynis Junction 

The methods and reasoning presented in the previous 

section were applied at the typical crossroads at the 

junction of Egnatia and Ethnikis Amynis streets with 11 

routes. 

Figure 1 shows the relevant intersection as it is today. 

Table 1 shows the incompatible routes of each route. The 

corresponding Conflict graph is given in Figure 2. 

 

Figure 1. The Egnatia – Ethinkis Amynis junction. 

 

Figure 2. Conflict graph of Figure 1. 

Table 1. List array showing vertices of conflict movements. 

Vertices Conflict movements Vertices 
Conflict 

movements 

BA: CA DA CA: BA BC BE DA DB 

BE: DE DA CA AE AC DC: AC BC 

BC: AC DC CA DB DB: CB CA AC BC 

AC: BC DC DA DB BE DA: CA AC BA BE 

AE: BE DE DE: BE AE 

CB: DB   

Applying the method developed earlier, 4 distinct periods 

with 3 phases were found. Let us It is recalled that each 

phase is a color class of the Conflict graph and in the present 

case its color number is 3. 

Table 2 gives the results for the 4 periods. The subject of 

the first column is the numbering of the 4 different periods 

found. The second column contains the main part of the 

phases of the period. The third column shows the secondary 

part of the phase.  

Table 2. Results of the current state of the junction at Egnatias – Ethnikis 

Amynis. 

Periods Main part Secondary part 

1 

1. ΒΑ ΒΕ ΒCCB * 

2. AC AE CA CB 

3. DC DB DA DE * 

2 

1. BA BE BC CB * 

2. AC CA DE CB 

3. AE DC DB DA * 

3 

1. BA BE BC CB 

2. AC AE CB CA * 

3. DC DB DA DE * 

4 

1. BA BE BC CB 

2. AC CB CA DE * 

3. AE DC DB DA * 

The <<*>> symbol in the secondary part of a phase means that the 

components of the particular phase constitute a major independent set of the 

Conflict graph. 
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3.2. The Junction at Egnatias – Ethnikis Amynis with the 

Aaddition of the AB Route 

In the following section, we present the results of the 

junction at Egnatias- Ethnikis Amynis with the addition of 

the AB route which does not exist until today, thus we have 

12 routes in total. 

 

Figure 3. The Egnatia – Ethnikis Amynis junction with the addition of the 

AB route. 

In Figure 3, we see a depiction of the relevant junction to 

which AB route was added in red. 

In Table 3, we see the incompatible routes of each route. 

We see the new AB route in bold. The corresponding Conflict 

graph is given in Figure 4 where we see the new route in red. 

 

Figure 4. Conflict graph of Figure 3. 

Table 3. List array showing vertices of conflict movements. 

Vertices Conflict movements Vertices Conflict movements 

BA: CA DA CA: BA BC BE DA ΑB 

BE: DE DA CA AE AC DC: AC BC 

BC: AC DC CA DB ΑΒ DB: CB CA AC BC 

AC: BC DC DA DB BE DA: CA AC BA BE 

AE: BE DE DE: BE AE 

CB: DB ΑΒ AB: CB CA BC BE DB DA 

 

Applying the method that was developed earlier and after 

adding the AB route, 90 distinct periods were found along 

with 4 phases. Let’s recall that each phase is a color class of 

the Conflict graph and in this case its color number is 4. 

In Table 4, we see the results for the first phase and the last 

period respectively. The interpretation for the routes is the 

same as for the Tables of the previous phases. 

Table 4. Results of the Egnatia – Ethnikis Amynis junction with the addition 

of the AB route. 

Periods Main part Secondary part 

1 

1. ΒΑ ΒΕ ΒCCB * 

2. AC AE CA CB 

3. DC DB DA DE * 

4. AB BA AC AE DC DE 

90 

1. BA BE DB DC 

2. BC DA DE CB 

3. AC AE AB BA 

4. CB CA DC AE DE 

3.3. Egnatia – Ethnikis Amynis Junction with the Addition 

of CE Route 

In this section, we see the results of the Egnatia- Ethnikis 

Amynis junction with the addition of another route, the CE 

route, which does not currently exist and so we have 12 

routes in total yet again. 

In Figure 5, we see depicted the relevant junction to which 

CE route has been added (in red). 

 

Figure 5. Egnatias – Ethnikis Amynis junction with the addition of CE route. 

At Τable 5, we see the incompatible routes of each route. 

The new CE route is depicted in bold. The corresponding 

Conflict graph given in Figure 6 where our new route is 

shown in red. 
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Table 5. List array showing vertices of conflict movements. 

Vertices Conflict movements Vertices Conflict movements 

BA: CA DA CA: BA BC BE DA DB ΑB 

BE: DE DA CA AE AC DC: AC BC 

BC: AC DC CA DB CE DB: CB CA AC BC CE 

AC: BC DC CA DB CE DA: CA AC BA BE CE 

AE: BE DE CE DE: BE AE CE 

CB: DB ΑΒ CE: DE DB DA BC BE AC AE 

 

 

Figure 6. Conflict graph of Figure 5. 

Applying the method developed earlier, with the addition 

of the CE route, 96 distinct periods with 4 phases were 

found. It is reminded that each phase is a color class of the 

Conflict graph and in the present case its color number is 4. 

Table 6 gives some indicative results out of the 96 phases 

found in total. The interpretation of the routes is the same as 

for the Tables of the previous sections. 

Table 6. Results of the Egnatia – Ethnikis Amynis junction with the addition 
of the CE route. 

Periods Main part Secondary part 

1 

1. ΒΑ ΒΕ ΒCCB * 

2. AC AE CA CB 

3. DC DB DA DE * 

4. CE BA CB CA DC 

24 

1. BA BE BC CB 

2. AC DE BA CB CA 

3. AE DB DA DC 

4. CB CA DC CE * 

3.4. Egnatia – Ethnikis Amynis Junction with the Addition 

of Both AB & CE Routes 

The following section presents the results of the Egnatia – 

Ethnikis Amynis junction with the addition of both AB and 

CE routes that do not exist until today and so we have 13 

routes in total again. 

Figure 7 depicts the relevant crossroads to which the 2 

routes AB, CE (in red) have been added. 

 

Figure 7. Egnatia – Ethnikis Amynis junction with the addition of both ΑΒ & 

CE routes. 

Table 7 shows the incompatible routes of each route. The 

new AB and CE routes are displayed in bold. The 

corresponding Conflict graph is given in Figure 8 where our 

routes are shown in red. 

 

Figure 8. Compatibility graph of Figure 7. 

Table 7. List array showing vertices of conflict movements. 

Vertices Conflict movements Vertices Conflict movements 

BA: CA DA CA: BA BC BE DA DB ΑB 

BE: DE DA CA AE AC DC: AC BC 

BC: AC DC CA DB CE DB: CB CA AC BC CE 

AC: BC DC DA DB CE DA: CA AC BA BE CE 

AE: BE DE CE DE: BE AE CE 

CB: DB ΑΒ 
AB: CB CA BC BE DB DA 

CE: DE DB DA BC BE AC AE 
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Applying the method developed in the previous sections, 

with the addition of the AB and CE routes, 64 distinct periods 

with 4 phases were found. Please be reminded that each 

phase is a color class of the Conflict graph [7, 8] and in this 

case its color number is 4. 

Table 8 gives some indicative results out of the 64 phases 

found in total. The interpretation of the routes is the same as 

for the Tables of the previous sections. 

Table 8. Results Table of the Egnatia – Ethnikis Amynis junction with the 

addition of the AB & CE routes. 

Periods Main part Secondary part 

1 

1. ΒΑ ΒΕ ΒCCB * 

2. AC AE CA CB 

3. DC DB DA DE * 

4. AB CE BA DC 

45 

1. BA AC DE AB * 

2. BE DC DB BA 

3. BC AE CB DA * 

4. CA CE CB DC 

64 

1. BA ΑΒ CE DC 

2. BE DC DB BA 

3. BC DA DE CB 

4. AC AE CB CA * 

4. Conclusions 

In an urban network and depending on the desired result, 

the weights assigned to its data refer to cost, time, population 

size, distances, degree of pollution, landscape coherence, etc. 

Graph and network theory are directly related to the 

management and study of problems related to applications in 

urban networks: 

1. Route & Coherence problems 

2. City spatial problems 

Traffic signal design is a complex optimization problem 

that belongs to the category of NP-Hard problems [9-11]. 

However, the size of the incompatibility graphs 

corresponding to road junctions can be solved in acceptable 

computational time. 

The SLC process was applied to a Pavillon 97 Intel (R) 

notebook, 2.40 Ghz and the corresponding software program 

needed a small fraction of a sec for the standard Egnatia 

intersection and less than 40 sec for the multi-way junction 

presented in the previous sections. 

In real life problems the results reported in the set of 

discrete circles along with the corresponding sub-section and 

active pedestrian crossings can be stored in electronic files 

and retrieved every time the route data is changed, so that the 

duration of the green indicator of each phase is set in real 

time 

Traffic signaling is a dynamic system, so information 

similar to that mentioned above where all phase cycles are 

investigated is useful in the process of selecting the most 

appropriate cycle for the current traffic situation. 
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