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Abstract: In response surface methodology, optimal designs are experimental designs generated based on a particular 

optimality criterion and are optimal only for a specific statistical model. Optimality criterion are single number criteria 

sometimes called alphabetical optimality criteria where each one intends to capture an aspect of the ‘goodness’ of a design. 

Most studies on optimization of process variables have concentrated on Central Composite Designs (CCD) yet second order 

rotatable deigns with any number of factors with reasonably small number of points constructed using properties of balanced 

incomplete block designs exist. A class of experimental designs that are optimal with respect to some statistical criterion are 

said to be Optimal designs. These designs allow parameter estimation with increased precision using fewer experimental runs, 

without bias and with minimum variance thus reducing time and costs of experimentation as opposed to non-optimal designs. 

A measure of relative efficiency of one design over another according to an optimality criterion aids in discriminating between 

the two designs for the “best” design. The D-, E-, A- and T-Optimal values of the general second order rotatable design in four 

dimensions constructed using balanced incomplete block designs when the number of replications (r) are less than three the 

number of times (λ) pairs of treatments occur together in the design were found which may be used to determine the relative 

efficiency of the general design to the D-, E-, A- and T-Optimal designs. 
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1. Introduction 

If the experimental region (R) is either spherical or cuboidal, a 
standard response surface design such as central composite 
design (CCD), Box-Behnken design or their variation such as 
face-centred cube are applied since they are quite general and 
flexible [1]. But occasionally during experimentation these 
designs are not the obvious choice and Optimal designs are the 
alternative when the experimental region is irregular due to 
factor levels constraints or when the experimenter has prior 
knowledge about the process being studied which may suggest a 
non-standard model where some higher order terms or some 
interaction terms between factors may not be included in the 
model and the interest is to obtain an efficient design for fitting a 
reduced quadratic or higher order model or even when the 

process factors are categorical and finally an unusual sample 
size may be of importance due to cost or time considerations and 
a design of fewer trials is carried out [2]. Development of 
optimal designs is an outgrowth of work in the theory of optimal 
designs [3] and [4]. The efficiency of an experiment is greatly 
influenced by the adoption of an appropriate experimental 
design capable of representing the response surface design. 
Selecting an appropriate experimental design, is based on 
finding the best optimality criterion in which larger efficiency 
values imply a better design [5]. An optimal design is “best” 
with respect to some criterion which are single number criteria 
sometimes called alphabetical optimality criteria where each one 
intends to capture an aspect of the ‘goodness’ of a design. 
Response surface methodology (RSM) based on D-optimal 
design of experiments was employed to study the significance 
and interactive effect of methanol-to-oil (M:O) molar ratio, 
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catalyst concentration, reaction time, and mixing rate on 
biodiesel yield [6]. Reference [7] found out that relationships 
between optimal design properties and changing sizes of designs 
by the addition of center points, between the Box-Benhken 
designs and the Box-Wilson designs was very strong. In this 

work we present the �−, �−, � − ���	
 −Optimal values of 
the general second order rotatable design in four dimensions 
constructed using balanced incomplete block designs when the 
number of replications (r) are less than three the number of times 

(�) pairs of treatments occur together in the design [8]. 

2. Rotatability 

A design is rotatable if the prediction variance of response is 

constant at all points that are equidistant from the design center, 

which, by a proper coding of the control variables, can be 

chosen to be the point at the origin of the k -dimensional 

co-ordinates system. Implying prediction variance is constant at 

all points that fall on the surface of a hypersphere centered at the 

origin i.e. if the design is rotatable, prediction variance remains 

unchanged under any rotation of the co-ordinate axes. If 

optimization of response is required on concentric hyperspheres, 

as is the case in ridge analysis, then it is important for the design 

to be rotatable [9].A class of three-level designs for estimating 

second-order response surfaces were proposed by [10]. Theses 

designs are rotatable or nearly so with a reduced number of 

experimental units by the 3
	 designs. They are formed by 

combining 2
 designs with incomplete block designs.  

2.1. Rotatable Designs 

Given � variates each at � levels, a design formed with � of the �� variates treatment combinations, can be written 

as � × �  matrix, which we call the design matrix and 

denote it with ��×� [9].  

��×� = 

���
�� ��� ��� ��� … ���	��� ��� ��� ⋯ ���⋯	 ⋯ 	⋯	 ⋯	 ⋯⋯ ⋯ 	⋯ 	⋯ 	⋯��� ��� ��� ⋯ ���!""

"#
        (1) 

The treatment combinations are called points of the design 
and a design of the form described will be rotatable design of 

order � if a response polynomial surface 

$% = &' + ∑ &*�*% + ∑ &*+�*%�+% +∑ &*+��*%�+%��% +⋯*,+,�*,+*  (2) 

is obtained from the treatments, on the variables�* , - =1, 2, … , � and with some suitable origin and scale, can be 
fitted so that the variance of the estimated response /�01$23�45 = 6��7839894:��7  from any treatment is a 
function of the sum of squares of the levels of the factors in 
that treatment combination[11]. The variance of the estimate $%  is only a function of the distance ;� = ∑ �*%��*<�  of the 

points ��, ��, … , �� from the Centre of the design. Spherical 
variance of the estimation of the response surface is achieved 
if the design points satisfy the following conditions  ∑ �*% = 0�%<� , ∑ �*%�+% = 0,�%<� ∑ �*%� =�%<� ∑ �*%� �+%��%<� =

>?��@��@ and ∑ �*%A = 3∑ �*%� �+%	� ∀�%<��%<� - = C       (3) 

11] and [8]. 

2.2. Rotatable Design Using Balanced Incomplete Block 

Design (BIBD) with D < FG) 

Reference [8] gave a method using properties of balanced 

incomplete block designs of obtaining second order rotatable 

deigns with any number of factors. For a four factor design, 

with number of replications 0 of the BIBD being less than 

three the number of times (�) pairs of treatments occurred 

together in the design, the values for the coded levels of the 

design denoted by letters �  and H  were found to be ±1.137 and ±2.116 respectively as the coded levels of the 

factorial and the axial parts of the design. 

3. Parameter Estimation 

Given 

$ = M$�$�⋮$�O�×�, & = M
&�&�⋮â
O�×�, Q = M

R�R�⋮R
O�×�, 

9 = M 1 ��� ��� ⋯ ���1 ��� ��� ⋯ ���⋯	 ⋯ ⋯ ⋯ ⋯1 ��� ��� … ���O�×S        (4) 

Where $ is an 3� × 14 vector of observations at each run,& 

is a 3� × 14  vector of regression coefficients, Q  is an 3� × 14  vector of random errors and 9  is an 3� × T4 
matrix of levels of independent variables known as the model 

matrix with T = � + 1 $ = 9& + Q                  (5) 

We assume U is normally distributed with mean zero and 

Cov (Q) =6�V [1].The estimate of the parameters is given by &W = 39894:�98$                (6) 

With their variances being 

Var ( ) =6�39894:�             (7) 

$2% = �%&W                  (8) 

The estimate of the response at XYZ run is given as equation 
(8). Rotatability requires that the model have a reasonably 
consistent and stable variance throughout the region of interest 

R. The variance of the predicted response at some point � is [1$23�45 = 6��839894:��            (9) 

Reference [11] suggested that a second order response surface 

should be rotatable meaning that the [1$3�45 is the same at all 

points � that are the same distance from the design center i.e. the 
variance of predicted response is constant on spheres. Since the 

^

β



 American Journal of Applied Mathematics 2020; 8(3): 83-88 85 
 

aim of RSM is optimization and the location of the optimum 
point is unknown prior to running the experiment, it makes sense 
to use a design that provides equal precision of estimation in all 
the directions. The design problem therefore consists of selecting 

row vectors	9*×S, - = 1, 2, … , � from the design space 9 such 

that the design defined by these �	vectors is, in some sense, 
optimal. The moment matrix of the design is given as 

\ = ]^]� 	                  (10) 

We assume � is fixed. Solutions to this problem consists of 
developing some sensible criterion based on the above model 
and using it to obtain optimal designs [1]. 

4. Optimal Designs and Optimality Criteria 

Optimal designs are constructed on the basis of a certain 
optimality criterion that pertains to the ‘closeness’ of the 

predicted response	_̀3a4 to the mean response, b3a4 over a 
certain region of interest R [10]. Reference [4] developed 
useful computational procedures for finding optimal designs in 
regression problems of statistical inference. The approach is to 
specify the optimality criterion and then choose the design 
points from a grid of points spaced over the feasible design 
region [1]. An optimality criterion showed how good a design 
is. There are many optimality criteria, sometimes called 
alphabetical optimality criteria. These are single number 
criteria where each one intends to capture an aspect of the 
‘goodness’ of a design and can be classified into either 
information-based criteria, distance-based criteria, compound 
design criteria and other criteria. Information-based criteria are 

related to the information matrix X′X  of the design. This 
matrix is important because it is proportional to the inverse of 
the variance-covariance matrix for the least-squares estimates 
of the linear parameters of the model. These criteria can be 
divided into two classes according to the number of parameters 
used; the first class uses all parameters of the model and the 
second uses a sub–system of the parameters. In the first class, 
possible criteria to consider are, D–, A– and E– optimality 
criteria. Statistical models with several parameters have their 
mean of the parameters estimator as a vector making the 
variance of the parameters estimate a matrix whose inverse is 
called the ‘’information matrix’’ The optimality properties of 
designs are determined by their moment matrices [12]. The 

class of eS −criteria, that is T-, D-, A- and E- corresponding to 

parameter values 1, 0, -1 and -∞ respectively are summarized in 
equation (11) as given in [12]. The amount of information 

inherent to Ck(M( )) is provided by eS-criteria with Ck(M( ))

 PD(m), defined by: eS3f4 = 1 

g �h*
3f4, -i	T = −∞det3f4�/7 , -i	T = 0o�7 @0�>p	fSqS , -i	T ≠ 0,±∞           (11) 

4.1. D-optimality 

For information-based criteria, the most prominent of such 

criteria is the D-optimality criterion that maximizes |9′9| which 
amounts to the minimization of the size of the confidence region 
on the vector β in the model [13].Reference [14] introduced 
Determinant criterion which emphasis on the quality of the 
parameter estimates. Later called, D–optimality by [4]. It’s the 
most well studied problem seen in the literature by [3] and 
[15].Reference [12] considered the construction of D–optimal 
designs in a variety of examples and its popularity is due its simple 
computation, and the many available algorithms. D-Optimality is a 
parameter estimation criterion which aims at seeking designs 
which maximize the determinant of the information matrix. Let C 
be a parameter subsystem information matrix of S dimension, then 
D-optimality is given by e'3f4 = 3det f4�/7            (12) 

Maximization of the determinant of the information 
matrices is the same as minimizing the determinant of the 

dispersion matrices that is 3det f4:� = det3f4:�.The focus 
of D-optimality is on estimation of model parameters through 
good attributes of the moment matrix, which is defined as 

equation (10) where 9′9 is the information matrix, and �, 
the total number of runs, which is used as a penalty for larger 
designs. D-optimality maximizes the determinant of the 

information matrix, i.e. Max |9′9|= Min |39894:�|. Under 

the standard normality assumptions, |9′9|  is inversely 
proportional to the square of the volume of the confidence 
region for the regression coefficients. Hence the larger the |9′9|  better the estimation of the model parameters. A 
measure of relative efficiency of one design over another 
according to D-criterion is given by  

�tuu = vwx]ŷ]yz{ywwx]|̂]|z{yw}
y~

 Where 9�  and 9�  are the matrices 

for the two designs and � is the number of model parameters. 

4.2. E-Optimality 

Reference [16] introduced E-Optimality criterion in their 
work on relationships among several optimality criteria [17]. 
Computations of E–optimal designs for the full mean 
parameter vector and for many subsets in univariate 
polynomial regression models were determined by [18]. A 
method for computing E–optimal designs for a broad class of 
two parameter models was presented by [19]. The evaluation 

of the smallest eigen value of the information matrix 989 of 
a design is the same as minimizing the largest eigen value of 

the dispersion matrix 39894:� [20]. The procedure builds on 
finding the design which maximizes the minimum eigen 

value of 989 or equivalently, minimize the maximum eigen 

value of 39894:� . E-optimality aims at minimizing the 
maximum variance of all possible normalized linear 
combinations of parameter estimates. 

Max �h*
39894 = Min �h��39894:�      (13) 

It is the minimization of the largest Eigen value of the 
dispersion matrix given by 

��{�3��3�44 = �h��3f�3�4:�           (14) 

η η
∈
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The Eigen value criterion e:� is one of the four particular 
members of the one dimensional family of matrix means eS3T = −∞4

 
that submits itself to the principles that a 

reasonable criteria must meet as presented in [12]. e:�3f4 = �h*
3f4          (15) 

4.3. A-Optimality 

Reference [21] introduced A-Optimality which involves 
the use of Fisher's information matrix as reported in [22]. It is 
an algebraic approach for constructing A–optimal design 
under generalized linear models as presented by [23]. This 
criteria aims at minimizing the sum of diagonal elements of 
the inverse of the moment matrix which is equivalent to 
minimizing the average variance of the parameter estimates 

given as Min @0�>p39894:� . If the coefficients matrix is 

partitioned into columns,� = 3f�, f�, … , f�4 then the inverse ��{y can be represented as 

��{y3��3�44 = �7 @0�>p	f�3�4:�          (16) 

This corresponds to the average of the standardized variances 
of the optimal estimates of the scalar parameter systems >�8�,… , >7′�  formed from the columns of matrix f  as put 
forward by [12]. Average variance criterion is 

e:�3f4 = o�� @0�>pf:�q:�           (17) 

4.4. T-Optimality 

T–optimal design is a plan where the optimality is 

obtained by discriminating between two or more models. 

Reference [24] introduced T-optimality design criterion in the 

context of optimal design theory. The T-criterion is given by 

e�3f4 = �� @0�>pf                (18) 

5. Results 

Table 1. Full second order design matrix X. 

X0 X1 X2 X3 X4 X1 X2 X1 X3 X1 X4 X2 X3 X2 X4 X3 X4 X1
2 X2

2 X3
2 X4

2 

1 -1.137 0 -1.137 -1.137 0 1.2928 1.2928 0 0 1.2928 1.2928 0 1.2928 1.2928 

1 1.137 0 -1.137 -1.137 0 -1.2928 -1.2928 0 0 1.2928 1.2928 0 1.2928 1.2928 

1 -1.137 0 1.137 -1.137 0 -1.2928 1.2928 0 0 -1.2928 1.2928 0 1.2928 1.2928 

1 1.137 0 1.137 -1.137 0 1.2928 -1.2928 0 0 -1.2928 1.2928 0 1.2928 1.2928 

1 -1.137 0 -1.137 1.137 0 1.2928 -1.2928 0 0 -1.2928 1.2928 0 1.2928 1.2928 

1 1.137 0 -1.137 1.137 0 -1.2928 1.2928 0 0 -1.2928 1.2928 0 1.2928 1.2928 

1 -1.137 0 1.137 1.137 0 -1.2928 -1.2928 0 0 1.2928 1.2928 0 1.2928 1.2928 

1 1.137 0 1.137 1.137 0 1.2928 1.2928 0 0 1.2928 1.2928 0 1.2928 1.2928 

1 -1.137 -1.137 0 -1.137 1.2928 0 1.2928 0 1.2928 0 1.2928 1.2928 0 1.2928 

1 1.137 -1.137 0 -1.137 -1.2928 0 -1.2928 0 1.2928 0 1.2928 1.2928 0 1.2928 

1 -1.137 1.137 0 -1.137 -1.2928 0 1.2928 0 -1.2928 0 1.2928 1.2928 0 1.2928 

1 1.137 1.137 0 -1.137 1.2928 0 -1.2928 0 -1.2928 0 1.2928 1.2928 0 1.2928 

1 -1.137 -1.137 0 1.137 1.2928 0 -1.2928 0 -1.2928 0 1.2928 1.2928 0 1.2928 

1 1.137 -1.137 0 1.137 -1.2928 0 1.2928 0 -1.2928 0 1.2928 1.2928 0 1.2928 

1 -1.137 1.137 0 1.137 -1.2928 0 -1.2928 0 1.2928 0 1.2928 1.2928 0 1.2928 

1 1.137 1.137 0 1.137 1.2928 0 1.2928 0 1.2928 0 1.2928 1.2928 0 1.2928 

1 -1.137 -1.137 -1.137 0 1.2928 1.2928 0 1.2928 0 0 1.2928 1.2928 1.2928 0 

1 1.137 -1.137 -1.137 0 -1.2928 -1.2928 0 1.2928 0 0 1.2928 1.2928 1.2928 0 

1 -1.137 1.137 -1.137 0 -1.2928 1.2928 0 -1.2928 0 0 1.2928 1.2928 1.2928 0 

1 1.137 1.137 -1.137 0 1.2928 -1.2928 0 -1.2928 0 0 1.2928 1.2928 1.2928 0 

1 -1.137 -1.137 1.137 0 1.2928 -1.2928 0 -1.2928 0 0 1.2928 1.2928 1.2928 0 

1 1.137 -1.137 1.137 0 -1.2928 1.2928 0 -1.2928 0 0 1.2928 1.2928 1.2928 0 

1 -1.137 1.137 1.137 0 -1.2928 -1.2928 0 1.2928 0 0 1.2928 1.2928 1.2928 0 

1 1.137 1.137 1.137 0 1.2928 1.2928 0 1.2928 0 0 1.2928 1.2928 1.2928 0 

1 0 -1.137 -1.137 -1.137 0 0 0 1.2928 1.2928 1.2928 0 1.2928 1.2928 1.2928 

1 0 1.137 -1.137 -1.137 0 0 0 -1.2928 -1.2928 1.2928 0 1.2928 1.2928 1.2928 

1 0 -1.137 1.137 -1.137 0 0 0 -1.2928 1.2928 -1.2928 0 1.2928 1.2928 1.2928 

1 0 1.137 1.137 -1.137 0 0 0 1.2928 -1.2928 -1.2928 0 1.2928 1.2928 1.2928 

1 0 -1.137 -1.137 1.137 0 0 0 1.2928 -1.2928 -1.2928 0 1.2928 1.2928 1.2928 

1 0 1.137 -1.137 1.137 0 0 0 -1.2928 1.2928 -1.2928 0 1.2928 1.2928 1.2928 

1 0 -1.137 1.137 1.137 0 0 0 -1.2928 -1.2928 1.2928 0 1.2928 1.2928 1.2928 

1 0 1.137 1.137 1.137 0 0 0 1.2928 1.2928 1.2928 0 1.2928 1.2928 1.2928 

1 2.116 0 0 0 0 0 0 0 0 0 4.4775 0 0 0 

1 -2.116 0 0 0 0 0 0 0 0 0 4.4775 0 0 0 

1 0 2.116 0 0 0 0 0 0 0 0 0 4.4775 0 0 

1 0 -2.116 0 0 0 0 0 0 0 0 0 4.4775 0 0 

1 0 0 2.116 0 0 0 0 0 0 0 0 0 4.4775 0 

1 0 0 -2.116 0 0 0 0 0 0 0 0 0 4.4775 0 

1 0 0 0 2.116 0 0 0 0 0 0 0 0 0 4.4775 

1 0 0 0 -2.116 0 0 0 0 0 0 0 0 0 4.4775 
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Table 2. Moment Matrix of the General Second Order Design. 























































=

005.2000.0669.0000.0000.0669.0000.0000.0000.0669.0000.0000.0000.0000.0999.0

000.0669.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0

669.0000.0005.2000.0000.0669.0000.0000.0000.0669.0000.0000.0000.0000.0999.0

000.0000.0000.0669.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0

000.0000.0000.0000.0669.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0

669.0000.0669.0000.0000.0005.2000.0000.0000.0669.0000.0000.0000.0000.0999.0

000.0000.0000.0000.0000.0000.0669.0000.0000.0000.0000.0000.0000.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0669.0000.0000.0000.0000.0000.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0000.0669.0000.0000.0000.0000.0000.0000.0

669.0000.0669.0000.0000.0669.0000.0000.0000.0005.2000.0000.000.0000.0999.0

000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0999.0000.000.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0999.0000.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0999.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0999.0000.0

999.0000.0999.0000.0000.0999.0000.0000.0000.0999.0000.0000.0000.0000.0000.1

GM

 

5.1. � −Optimal Value 

Equation (12) with f = \�  and � = 15	 (number of 
parameters in the model) was used. 

e'3\�4 = 3det 	\�4 yy� = 0.6796529    (19) 

5.2. � −Optimal 

Equation (15) with	f = \� therefore the �-Optimal value  �h*
3\�4 = 0.002856958      (20) 

5.3. A-Optimal Value 

Equation (17) with f = \� and � = 15 gave 

∅:�3f4 = � ��� @0�>p	\�:��:� = 0.04104631   (21) 

5.4. � −Optimal Value 

The trace criterion is useless if the regression vectors � ∈ � 

have a constant squared length � say, then the moment matrix \3�4 of any design � ∈ Ξ satisfies 

Trace \3�4 = @0�>p ∫���8�� = @0�>p∫��8�	�� = > 
whence e�is a constant providing no distinction whatsoever 
[25] .For this design, the sum of the squares of the regression 

vectors � ∈ � have different values as follows ∑�'� = ∑��� = ∑��� = ∑��� = ∑�A� = 40, ∑3�*�4� = 	80.28822	for - = 1, 2, 3, &4  

while ∑3�*�+4� = 26.76274	           (22) 

Hence the trace will be of significance as optimality criteria. 

Equation (18) was applied 

��� @0�>p	3\�4 = 1.135448    (23) 

6. Conclusion �−, �−, � − ���	
 −Optimal values of the general design 

were obtained as 0.6796529, 0.04104631, 0.002856958,	 
and 1.135448  respectively which may be used to 
determine the relative efficiency of the general 

design to the D−, E−, A − and	T −Optimal designs. For 
example, D-optimal designs maximize the D-efficiency, 
which is a volume criterion on the generalized variance of the 
parameter estimates. The D-efficiency values are a function of 
the number of points in the design, the number of independent 
variables in the model and the maximum standard error for the 
prediction over the design points. The best design is the one 
with the highest D-efficiency which is also the case with the 
other optimality criterions in terms of their efficiencies. 
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