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Abstract: In this work, we consider linear systems of algebraic equations. These systems are studied utilizing the theory of the 

Moore-Penrose generalized inverse or shortly (MPGI) of matrices. Some important algorithms and theorems for computation the 

MPGI of matrices are given. The singular value decomposition (SVD) of a matrix has a very important role in computation the 

MPGI, hence it is useful to study the solutions of over- and under-determined linear systems. We use the MPGI of matrices to 

solve linear systems of algebraic equations when the coefficients matrix is singular or rectangular. The relationship between the 

MPGI and the minimal least squares solutions to the linear system is expressed by theorem. The solution of the linear system 

using the MPGI is often an approximate unique solution, but for some cases we can get an exact unique solution. We treat the 

linear algebraic system as an algebraic equation with coefficients matrix A (square or rectangular) with complex entries. A closed 

form for solution of linear system of algebraic equations is given when the coefficients matrix is of full rank or is not of full rank, 

singular square matrix or non-square matrix. The results are taken from the works mentioned in the references. A few examples 

including linear systems with coefficients matrix of full rank and not of full rank are provided to show our studding. 
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1. Introduction 

The system of equations 

�	� = �; 	� ∈ ℂ	×�, � ∈ ℂ� , � ∈ ℂ	          (1) 

has been exploited in several contexts. It is consistent, i.e., has 

a solution for � if and only if � is in the range of �, if	� is 

not in the range of � then � − �	� is nonzero for all � ∈ ℂ�, 

so we will go to find an approximate solution of (1), i.e., we 

want to find a vector � making � − �	� closest to zero. If the 

coefficients matrix � is square, that means, the number of 

equations is equal to the number of unknowns, in this a case � 

either is of full rank or is not of full rank. If � is square and of 

full rank, that means, � is invertible, so there exists unique 

solution of the system �	� = �. If � is an arbitrary matrix in ℂ	×� , then �  is a vector with �  components and �  is a 

vector with �  components. If �  is greater than � , that 

means, there more equations than unknowns, in this a case (1) 

is called over-determined system and has no solution. 

Conversely, if � is greater than �, that means, there more 

unknowns than equations, in this a case (1) is called 

under-determined system and has infinite number of solution. 

Even though �	 > � or � > � the linear system (1) still has 

a natural unique solution, it`s called "least squares solution" 

[1-5]. The concept of the Moore-Penrose generalized inverse 

of matrices has been explained in many references [1, 6-12]. 

We will use the MPGI to solve the linear systems of algebraic 

equations �	� = � with coefficients matrix � [13-16]. 

A solution utilizing the MPGI is the minimal least squares 

solution. When � belongs to the range of � (� ∈ �(��� then 

the notions of solutions using the MPGI and least squares 

solution coincide. 

In this paper, �∗ is the transposed conjugate complex of �. 

If � is a real matrix then �∗ reduces to the transposed ��. 

The trace of �  is denoted by ��(�� , the zero matrix is 

denoted by �. I always denotes an identity matrix. 
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2. Significance of the Study 

The concept of the Moore-Penrose generalized inverse of 

matrix has been exploited recently in many contexts. It 

presents solutions for many singular problems in linear 

algebra, especially for linear singular algebraic systems. The 

contribution of this study is that: 

1) Explaning the relationship between the MPGI and the 

least squares solutions. 

2) Distinguish the importance of using the MPGI to solve 

the linear systems of an algebraic equations. 

3) It gives clue to depth study of the MPGI to get an exact 

solutions instead an approximate solutions. 

4) It invites other researchers interested to find other forms 

for the MPGI and using them to solve the linear algebraic 

systems, and hence getting unique exact solutions 

instead approximate solutions. 

3. The Moore-Penrose Generalized 

Inverse 

In this section, we introduction some of important 

definitions, algorithms, and theorems. 

Definitions 3.1: 

If � ∈ ℂ	×�, then �� ∈ ℂ�×	 is unique, and it is called 

the Moore-Penrose generalized inverse of � if it satisfies the 

following condition: 

1) ���� = � 

2) ����� = �� 

3) (����∗ = ��� 

4) (����∗ = ���. 
The next theorem is useful to compute �� when � has a 

full rank factorization. 

Theorem 3.1: 

If � = ��  where � ∈ ℂ	×� , � ∈ ℂ	×� , � ∈ ℂ�×�,  and � = ����(�� = ����(�� = ����(��, then 

�� = �∗(��∗� !(�∗�� !�∗. 
Theorem 3.2: 

If � ∈ ℂ	×� and ����(�� = 1, then 

�� = 1# �∗ 
where 

# = ��(�∗�� = ∑ %�&'%(&,' . 

Definitions 3.2: 

A matrix ) ∈ ℂ	×� which has rank � is said to be in row 

echelon form if ) is of the form 

) = * ��×�…�(	 ��×�,, 
where the elements -&'  of �(= ��×�� satisfy the following 

conditions: 

1) -&' = 0 when / > 0. 
2) The first non-zero entry in each row of � is 1. 

3) If -&' = 1 is the first non-zero entry of the /th row then 

the 0th column of � is the unit vector 1&  whose only 

non-zero entry is in the /th position. 

Definitions 3.3: 

A matrix 2 ∈ ℂ�×� is said to be in hermite echelon form if 

it`s elements 3&' satisfies the following conditions: 

1) 2 is upper triangular (i.e., 3&' = 0 when	/ > 0). 
2) 3&& is either 0 or 1. 

3) If 3&& = 0 then 3&4 = 0 for every �, 1 ≤ � ≤ �. 

4) If 3&& = 1 then 34& = 0 for every � ≠ /. 
Note that, for � ∈ ℂ�×� can always be row reduced to a 

hermite form 27 by using elementary row operations on �. 

Algorithm 3.1: 

To obtain the MPGI of a square matrix: 

1) Row reduce �∗ to its hermite form 27∗ (or its hermite 

echelon form 27∗). 
2) Select the distinguished columns of �∗ (they are the 

columns which correspond the columns 1!, 1(, …, and 1�  in 27∗  which are the unit vectors, where � =����(�∗�). Label these columns 8!, 8(, … , 8�  and place 

them as columns in a matrix L. 

3) Form the matrix �9. 

4) Form : − 27∗ and select the non-zero columns from this 

matrix. Label these columns ;!, ;(, … , ;� �. 
5) Place the columns of �9 and the ;&  as columns in a 

matrix < = [�9 ⋮ ;! ⋮ 	;( ⋮ ⋯ ⋮ 	;� �]  and comput < !. 

6) Place the first � rows of < ! (in the same order as they 

in < !) in a matrix called �. 

7) Compute �� as �� = 9�. 

Note that, it is easy to use this algorithm for non-square 

matrices. That is by adding zero rows or zero columns to 

construct a square matrix, after that find MPGI for the result 

matrix [� ⋮ �], where 

[� ⋮ �]� = *��…A∗ , , *
�…A,

� =	 [�� ⋮ A∗]. 
Algorithm 3.2: 

To obtain the full rank factorization and the MPGI for � ∈ ℂ	×�: 

1) Reduce � to row echelon form )7. 

2) Select the distinguished columns of �  (they are the 

columns which correspond the columns 1!, 1(, … , 1� in )7) and place them as the columns in a matrix � in the 

same order as they appear in �. 

3) Select the non-zero rows form )7  and place them as 

rows in a matrix � in the same order as they appear in )7. 

4) Compute (��∗� ! and (�∗�� !. 

5) Compute �� as 	�� = �∗(��∗� !	(�∗�� !�∗. 
4. Least Squares Solutions 

The name "least squares" comes from the definition of the 
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Euclidean norm [1] which is the square root of a sum of 

squares. That is, the Euclidean norm of B = [B!, … , BC]∗ ∈ℂC is denoted by ‖B‖, where 

‖B‖ = E∑ |B&|(C&G! HIJ =	 (B∗B�IJ. 
We consider the problem of finding solution ; to (1). If (1) 

is inconsistent, we have to finding ; that makes �; − � as 

small as possible. 

Definitions 4.1: 

Suppose that � ∈ ℂ	×�  and � ∈ ℂ	 . Then a vector ; ∈ ℂ�  is called least squares solution to (1), if ‖�; −�‖ ≤ ‖�8 − �‖  for all 8 ∈ ℂ� . A vector ;  is called 

minimal least squares solution to (1) if ; is least squares 

solution to (1) and ‖;‖ < ‖B‖ for all other least squares 

solutions B. 

Next, we have an important theorem. It relates minimal 

least squares solutions of (1) and the MPGI of � , it also 

answers our question: what kind of answer is ���? 

Theorem 4.1: 

Suppose that � ∈ ℂ	×�  and � ∈ ℂ	 . Then ���  is the 

minimal least squares solution to �� = �. 

Note that, the minimal least squares solutions ���	is called 

the approximate solution to (1) [3]. If L ∈ ℂ�×	, �� = � has 

a solution � = L� is the minimal least squares solution then L = ��. 

5. Solutions of Linear Algebraic System 

This section deals with the linear algebraic systems and 

their solution techniques. The solution of these systems is the 

unknown vector � ∈ ℂ� which satisfies those systems, but in 

some cases, we can not find such �, so we search for the ; ∈ ℂ� that makes �; is closest to �. In other words, we 

search for the ; ∈ ℂ�  that makes ‖� − �;‖  as small as 

possible [2]. 

5.1. Linear Systems with Coefficients Matrix Is of Full Rank 

In this kind of linear systems, we study three cases: 

1) � ∈ ℂ�×�  is square matrix of full rank [17], that is ����(�� = � = �. In this a case, the unique solution of �� = � is 

� = ���, �� = � !              (2) 

2) � ∈ ℂ	×�  is non-square (rectangular) matrix, ����(�� = � < �, this means, � is of full column 

rank, so it has left inverse ��  satisfies ��� ≃I, A	�� ≠ :. In this a case there is unique solution to 

(1), it is the least squares solution which is on the 

form: 

� = ���, �� 	= (�∗�� !	�∗          (3) 

3) � ∈ ℂ	×�  is also non- square matrix but ����(�� =� < �, this means, � is of full row rank and has right 

inverse satisfies ��� ≃ I, ��� ≠ :. In this a case there is 

unique solution to (1) is the least squares solution, it is: 

� = ���, �� = �∗(��∗� !           (4) 

5.2. Linear Systems with Coefficients Matrix Is Not of Full 

Rank 

When the coefficients matrix � is not of full rank (square 

or non-square), we can not use the last forms (in subsection 

5.1) of ��. There are other forms for �� but the solution still � = ���. These forms are: 

A. The first form: 

�� = P	Σ�	R∗ 
We use this form when �  has a singular value 

decomposition [5, 20], that is � = R	S	P∗, where R ∈ ℂ	×	 

and P ∈ ℂ�×�  are unitary matrices [18], Σ ∈ ℂ	×�  is a 

diagonal matrix. Note that, this method is slow. 

B. The second form: 

�� = 1# A∗, # = ��(A∗�� 
This form uses when ����(�� = 1, � ∈ ℂ	×�. 

C. The third form: 

�� = �∗(��∗� !	(�∗�� !�∗ 
There are some conditions to use this form, they are: 

1) � = ��, where � ∈ ℂ	×� and � ∈ ℂ�×�. 

2) ����(�� = ����(�� = ����(��. 
Since, we have the equation 

�� = � 

multiply by ��: 
���� = ��� 

from the last equation, we get a new linear equation 

�U� = �U 
when we solve this equation we will get multiple solutions 

using arbitrary parameter (parameters), if we choose that 

parameter to equal zero, then we will get an exact solution. In 

other words, �  satisfies ‖�� − �‖ = 0  or �� = �  [13]. 

Note that, the solution we get using the third form is an exact 

solution. 

6. Numerical Examples 

In this section, we give some examples to show our work. 

Example 6.1 consider the system 

�! + 3�( = 17 

5�! + 7�( = 19 

11�! + 13�( = 23 

We can write this system as in (1), where 
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� = \ 1511
3713] ∈ ℂ^×(, � = _

�!�(` , � = \171923]. 

Since ����(�� = 2 = �, then � is of full column rank, in 

this case � has a left inverse is 

	�� = (�∗�� !�∗ 
= _−0.5197 −0.2169 0.23730.4277 0.2041 −0.1313`. 

We know that the solution for this a case is on the form 

� = ��� 

that is 

� ≃ _−7.58.13`. 
Note that, such solution is an approximate solution, it is the 

least squares solution. 

Example 6.2 Let us consider the system 

�! − 2�( = 5 

−3�! + 6�( = −15 

Using matrix-vector notation, this system is written � = ��, where 

� = _ 1−3 −26 ` ∈ ℂ(×(, � = _�!�(` , � = _ 5−15` 
Note that, ����(�� = 1, � is not of full rank, so we can 

use one of forms of ��  explained in subsection 5. 2, the 

solution will be the same for any form. Let us use the first 

form 

�� = P	Σ�	R∗ 
The eigenvalues of matrix A�	�  [18] are d! = 50  and d( = 0. The singular values of matrix � are e! = 5√2 and e( = 0, hence 

Σ = g5√20 00h , P	 = i
 !√j(√j

(√j!√j
k ,R = i  !√!l^√!l

00k. 

Note that � = RΣ	P∗, hence �� = P	Σ�	R∗. That is 

�� = !jl _ 1−2 −36 `. 
The solution to the given system is 

� = i !jl (jl
 ^jlmjl
k_ 5−15` = _ 1−2`. 

Note that, the solution using the SVD is an exact solution. 

Example 6.3 In this example we will show how to find the 

solution of algebraic system using the third form and get exact 

solution. Let us consider the following system: 

2�! + 2�( = 2 

�! + �( = 1 

3�! + 3�( = 3 

As before you can note that 

� = \213
213] ∈ ℂ^×(, � = _

�!�(` , � = \213]. 
Since ����(�� = 1, then � is not of full rank, we use 

�� = �∗(��∗� !	(�∗�� !�∗, � = �� 

and use algorithm 3.2 to obtain: 

� = \213] , � = (1 1� 
So 

�� = !(n _2 1 32 1 3`. 
We have the system 

\213
213] _

�!�(` 	= \213], 

Multiplying the last system on the left by �� gives, the 

corresponding system ���� = ���, which reduces to 

i!o(n!o(n
!o(n!o(n
k_�!�(` 	= i

!o(n!o(n
k, 

this is a new system is denoted by �U� = �U, the solution to 

such system is 

_�!�(` 	= _1 − pp ` = _10` + p _−11 `, 
where p  is an arbitrary parameter. The solution � =(�! �(��  for which ��  is equal to �  is by taking the 

parameter p = 0, i.e., 

_�!�(` 	= _10`, 
Note that, the way we used in this example gives an exact 

solution. 

7. Conclusion 

Our study shows the importance of using the MPGI of the 

matrices for solving the linear system of algebraic equations �� = � . The relationship between the MPGI and the least 

squares solutions was given. Our study also explaines how to 

solve the linear algebraic system using the MPGI, in other 

words, which the form of the MPGI we can choose, where we 

proposed of the some forms for the MPGI of a matrix � when 
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� is of full rank and is not of full rank. We explained how to 

use the third form to obtain an exact solution. An approximate 

solution was often used. 
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