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Abstract: In this paper, we discussed and studied the solutions of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff 

(CBS) equation. The Calogero-Bogoyavlenskii-Schiff equation describes the propagation of Riemann waves along the y-axis, 

with long wave propagating along the x-axis. Lax pair and Bäcklund transformation of the Calogero-Bogoyavlenskii-Schiff 

equation are derived by using the singular manifold method (SMM). The optimal Lie infinitesimals of the Lax pair are obtained. 

The detected Lie infinitesimals contain eight unknown functions. These functions are optimized through the commutator table. 

The eight unknown functions are evaluated through the solution of a set of linear differential equations, in which solutions lead to 

optimal Lie vectors. The CBS Lax pair is reduced by using the optimal Lie vectors to a system of ordinary differential equations 

(ODEs). The solitary wave solutions of Calogero-Bogoyavlenskii-Schiff equation Lax pair’s show soliton and kink waves. The 

obtained similarity solutions are plotted for different arbitrary functions and compared with previous analytical solutions. The 

comparison shows that we derive new solutions of Calogero-Bogoyavlenskii-Schiff equation by using the combination of two 

methods, which is different from the previous findings. 

Keywords: Calogero-Bogoyavlenskii-Schiff Equation, Singular Manifold Method, Lax Pair, Lie Infinitesimals,  

Similarity Solutions 

 

1. Introduction 

Derivation of the Lax pairs of a nonlinear partial 

differential equation (NLPDE) needs first the study of its 

integrability, such as, the existence of a sufficiently large 

number of conservation laws or symmetries [1-4]. Many 

methods are used for studying the integrability of nonlinear 

partial differential equations. Among them the singular 

manifold method based on Painlevè analysis [5-7], 

homogeneous balance method [8-11], Weiss, Tabor and 

Carnevale (WTC) method [12], symbolic computation 

method [13] and Bäcklund transformation (BT) [14]. We here 

derive the Lax pair for Calogero-Bogoyavlenskii-Schiff 

(CBS) equation [15-19]; 

��� + ����� + �� ����� + �� ����� = 0        (1) 

This equation describes the (2+1) dimensional interaction 

of Riemann wave propagating along the y-axis with long wave 

propagating along the x-axis [15-19]. CBS equation was 

investigated from various perspectives, such as the classical 

and non-classical methods. Through several symmetry 

reductions, exact solutions of the CBS equation were derived 

[20], while a variety of exact solutions using the improved 

(G`/G)-expansion method were presented [21-23], the 

symbolic computation method [24, 25], the exponential 

expansion method [26], the improved tanh-coth method [27], 

the symmetry method [28], the Hirota’s bilinear method to 

derive its multiple front solutions [29]. Here the singular 

manifold method is used to deduce the CBS Lax pair. Then we 

proceed to a similarity reduction of this Lax pair to a system of 

ordinary differential equations obtain optimal similarity 

solutions and compare our results with previous work on CBS 

equation. The organization of this paper is as follows: In 

Section 2 the Lax pair is deduced for CBS equation. In Section 
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3 the similarity solutions for this Lax pair are deduced. Finally 

we present the conclusions in section 4. 

2. Singular Manifolds Method 

In this section, the Singular Manifold Method is applied to 

find the BT and Lax pair for the (2+1) dimensional CBS 

equation (1). Singular Manifold Method is an inverse solution 

[30-32] of nonlinear partial differential equations having a 

series form; 

�(�, �, �) = ∑ ��(�, �, �)�(�, �, �)�������        (2) 

Where �(�, �, �) is an Eigen function and α is a real 

number obtained from the dominant behavior analysis. 

2.1. Bäcklund Transformation of CBS Equation 

Replacing for (2) into (1), the dominant behavior analysis 

yields α=1, in this case the series expansion (2) reduces to: 

� = ��	��� + ��                   (3) 

This is the Bäcklund transformation of the 

Calogero-Bogoyavlenskii-Schiff equation. Substitute from (3) 

into (1), then equating the coefficients of the similar powers 

of	� to zero yields; 

Coefficient of ���; 

	�� = 2��                   (4) 

Replacing for u0 in (3) reduces it to; 

� = ���� + u� = 2( !�)� + ��          (5) 

2.2. Lax Pair of CBS Equation 

Equation (1) Lax pair’s is deduced by substituting (5) into 

(1) and equating the coefficients of the similar powers of	� to 

zero giving; 

Coefficient of ���=0; 

−4��$����� − 3�������� − 2�������� − 2������� − 4����� + ������� − 2������� − �������� − 2����� − �� ������� = 0    (6) 

Coefficient of ��&=0; 

4�������� + 2��&��� + 2������� + 4����� + 2�������� − 2�������� − ���� �� = 0          (7) 

Then defined new variables V, R and Z as follows; 

V = ���	�� , R = 	�)	�� 	and	Z = 	�.	��                                        (8) 

Substitute (8) into (6) and (7) leads to the two equations; 

−6���01 − 4��$0$ − 31��� − 2���� − ����0 − 2� 011� − 631 − 43� + 11� − 1�0� − &� 01& − 21�� − 411� − 20�1� − �� 01�� = 0    (9) 

−43 = 4���0 + 2��� + 21� + 21�0 + 1�0                                 (10) 

Equations (9) and (10) can be easily linearized by introducing a new function ψ defined as: 

	�� = ψ�                                                 (11) 

By substituting (11) into (8) yields; 

1 = 2 5�5                                                  (12) 

	0� + 01 = 2 5.5                                               (13) 

3� + 31 = 2 5)5                                               (14) 

Then, by substituting (12), (13) and (14) into (9) and (10) respectively, we get: 

6−4���7� − ���� 	7 − 7��� − 3 5�5��5 8 0 − 8���7� − 6���7� − 2����7 − 	437� − 	87� − 47��� − 4 5.5��5 + 47�7�� = 0   (15) 

−43 = 4���0 + 2��� + 4 5�.5 − 4 5�5.5: + 40 5��5                                 (16) 

By replacing for (16) into (15) provides us with two equations; 

−���� 	7 − 7��� + 5�5��5 = 0                                         (17) 

−8���7� − 4���7� − 2����7 − 	87� − 47��� − 4 5.5�.5 + �5.5��5 = 0                         (18) 
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Dividing (17) by 7 and integrating with respect to ‘x’ leads 

to the first Calogero-Bogoyavlenskii Lax pair 

	7�� + (��� − ;)7 = 0             (19) 

Where λ is a constant of integration. Then setting 7�=7� 

in (18) we obtain the second Lax pair 

47� + 4���7� + 2���7� + ����7 + 27��� = 0  (20) 

3. The Similarity Solutions of CBS Lax 

Pair 

3.1. Lie Infinitesimals of CBS Equation 

The Lie infinitesimals of the CBS Lax pair (19) and (20) 

have the form; 

1� = <�(�) ==� + ==� + >	2�	<��(�) + <�(�)? ==@      (21) 

1� = <&(�) ==� + ==� + >	2�	<&�(�) + <�(�)? ==@      (22) 

1& = <A(�) ==� + 7 ==5 + >	2�	<A�(�) + <B(�)? ==@     (23) 

1� = C<2(�) + �3D EE� + �3 EE� + � EE� 

+ C	2�	<2�(�) + F& (2� − 4�) − @& +<G(�)D ==@    (24) 

The arbitrary functions fi (t), i=1.8, are optimized through 

the commutative products listed in Table 1. This leads to a 

system of ordinary differential equations in the unknown 

functions fi (t) reported here; 

Table 1. Commutator table. 

 V1 V2 V3 V4 

V1 0 0 0 V1 

V2 0 0 0 
1�3  

V3 0 0 0 0 

V4 -V1 
−1�3  0 0 

HI
J
IK <2� = �& <� + �<��, <�� − 2<�� = 0

− �& <� − �<�� = �F& − 2<2� ,2�<2�� + <G� = 2�<���� + ��& <��� + �& <� + �<�� − �F& <�<&� = 0, <A� = 0, <B� = 0
  (25) 

Solving this system of ODE’s (25), leads to the values of 

functions fi (t), i=1…8, listed below; 

<�(t) = F& , <�(t) = 1, <&(t) = 0, <�(t) = ��	F& , <A(t) = 0, 

<B(t) = 0, <2(t) = �FN 	t	and	<G(t) = 6�& −	�F:
N 8 t    (26) 

According to these values the Lie vectors (21) to (24) is 

rewritten as: 

1� = F& ==� + ==� + ==@                (27) 

1� = ==� + C��	F& D ==@                (28) 

1& = 7 ==5                     (29) 

1� = O2;9 	t + �3Q EE� + �3 EE� + � EE� + 

C	�FN � + F& (2� − 4�) − @& + 6�& −	�F:
N 8 	t	D ==@   (30) 

Vectors V1 to V4 are used to reduce and solve the Lax 

system (19) and (20). 

Vector V1 is used to reduce the system of equations (19) and 

(20), then solve it giving the following two solutions; 

�� = R�(�) + � + ;� − �& ;��         (31) 

�� = &�ST:6�,UV�WX)X 8F
F               (32) 

Where F1 is an arbitrary function of y, F2 is an arbitrary 

function of (y, t) and ;	is a constant of integration. These 

solutions are plotted for=1, R� = YZ[�� , R� = \U.: ]^_(��&�)(��&�) , in 

(Figure 1(a, b)) for t=0.1 and in (Figure 2 (a, b)), for t=1. 

 

	(a)	��(�, �, �) = 3� + `��: sin(0.1 − 3�)(0.1 − 3�) 	 

 

(b)	��(�, �, �) = 2� + ef!�� + � + 115 

Figure 1. Solutions of CBS equation for vector V1 at time t=0.1 and t=1. 
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(h)	�&(�, �, �) = 3� + `��: sin(1 − 3�)(1 − 3�)  

 

(b)	��(�, �, �) = 2� + ef!�� + � + 23 

Figure 2. Solutions of CBS equation for vector V1 at time t=0.1 and t=1. 

The solution of the Lax system (19) - (20) by using the 

vector V2 are; 

�& = ��& ;� + R&(�, �)              (33) 

�� = R�(�) + �& (−4� + 3�);           (34) 

 

(h)�A(�, �, �) = − 43 � + `��:
0.1 	 

 

(i)	�B(�, �, �) = 2� + sin	(0.1)0.1 + 13 (−4� + 3�) 

Figure 3. Solutions of CBS equation for vector V2 for t=0.1 and t=1. 

Where F3 is an arbitrary function of (x, t) and F4 is an 

arbitrary function of (t). Choosing, R& = \U�:
� , R� = ]^_ �� , the 

solutions (33) and (34) are plotted for ; = 1 as depicted in 

(Figure 3(a, b)), for t=0.1 and in (Figure 4(a, b)), for t=1. 

 

(h)	�2(�, �, �) = − 43 � + `��:
1 	 

 

(b)	�G(�, �, �) = 2� + sin	(1)1 + 13 (−4� + 3�) 

Figure 4. Solutions of CBS equation for vector V2 for t=0.1 and t=1. 
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3.2. Comparison with Previous Works 

We do then compare results obtained using vectors V1 and 

V2, (31)-(34) with previous solutions of (2+1)-dimensional 

CBS equation as in the following. 

Bruzon and Gandarias [20] used the classical and 

non-classical symmetry methods to obtain symmetry 

reductions and exact solutions of the (2+1)-dimensional 

integrable Calogero–Bogoyavlenskii–Schiff equation. They 

obtained the solution of (2+1)-dimensional CBS equation; 

�(�, �, �) = 3je`kℎ� mn&o� p� + h(�, �)qr + j�      (35) 

Where h = h(�, �) , satisfies h� = ∅(h)ht  and j�  is an 

arbitrary constant. Here the similarity variable � + h(�, �) 

connects y to t, while in our results in (31) and (32), contains 

the d’Alembert form for x, t and arbitrary functions giving 

many soliton shapes. Variety of exact solutions [21-24] of 

Calogero–Bogoyavlenskii–Schiff equation are constructed by 

using the improved (G'/G) expansion method. Family of exact 

solutions of CBS equation are obtained. The exact solution 

take the solitary wave form [21], when u < 0 

u(ξ) = α� + 2√−A tanhp√−Aξq = 
α� + 2√−A coth(√−Aξ)                      (36) 

Where } = � + ~ + 4u�, α� and A are arbitrary constants 

The exact solution is for ∆�= �F:����  [22]; 

�� = − p−4j���� + j���;� + ��q�4�� + 2j(− ;2 + 
∆� ��� ��]�p∆�(o�S�S�)qS�:YZ[�p∆�(o�S�S�)q��YZ[�p∆�(o�S�S�)qS�: ��]�p∆�(o�S�S�)q�         (37) 

The (G'/G) expansion method was used for ;� − 4� > [23] 

yields; 

�(})  = ± �F:����  ��� ]^_�6�:�F:���8�S�:��Y�6�:�F:���8�����Y�6�:�F:���8�S�: ]^_�6�:�F:���8��   (38) 

�(}) = F:���G  ��� ]^_�6�:�F:���8�S�:��Y�6�:�F:���8�����Y�6�:�F:���8�S�: ]^_�6�:�F:���8���
    (39) 

The solution takes the form when ;� − 4� > 0 [24] 

�� = − &� <��(�) ��� ]^_�6�:�F:���8�S�:��Y�6�:�F:���8�����Y�6�:�F:���8�S�: ]^_�6�:�F:���8��� + &� (<��(�) − <��(�);) ��� ]^_�6�:�F:���8�S�:��Y�6�:�F:���8�����Y�6�:�F:���8�S�: ]^_�6�:�F:���8�� +
�� (−2�<��(�) − ;�<��(�) + 3;<��(�) − <���(�) <�(�)⁄                            (40) 

�� = − 32 j<�(�) ��� sinh 612 �;� − 4�8 } + ��k�eℎ 612 �;� − 4�8 }
��k�eℎ 612 �;� − 4�8 } + �� sinh 612 �;� − 4�8 }�

�
− 

&� j;<�(�) ��� ]^_�6�:�F:���8�S�:��Y�6�:�F:���8�����Y�6�:�F:���8�S�: ]^_�6�:�F:���8�� − �� p6�j<�(�) + ��(�)q                           (41) 

where } = j(�) + <(�) + �(�) , ��  and ��  are arbitrary 

constants. Biao and Yong [25] obtained some exact analytical 

solutions, which contain soliton and periodic solutions to the 

generalized Calogero–Bogoyavlenskii–Schiff (GCBS) 

equation by using generalized Riccati equation expansion 

method and symbolic computations. They get the exact 

analytical solution of the GCBS equation; 

�(�, �, �) = 2�−�3� 3 + R�(�) ∓ n�� tanh {√−3 ±  
On− �� ) � −  ! ���n�� + ��� − (1 + ¡)  !(�) + ¡  !(�)Q (42) 

Alam and Tunc [26] applied the exponential function 

expansion method to construct exact solutions of the nonlinear 

Bogoyavlenskii equation. The solution was found when μ ≠ 0,  λ� − 4μ > 0 is 

u(x, y, t) = �� λ −
§
¨̈̈
© �ª

�«:��ª ¬­_�
§
©̈n®:U¯°: (±S²)

³
µ́S«³

´́́
µ

   (43) 

Where ξ = x − 6− �G λ� + �� μ8 t  and E is an arbitrary 

constant. Cesar and Gomez [27] used an improved tanh-coth 

method to obtain exact solutions of the Bogoyavlenskii 

equation. The exact solutions of the Bogoyavlenskii equation 

are 

u(x, y, t) = �¶S·S �V:(�G­�­:�&�¸�)¬S¹º + ­�­:(¶S·S �V:(�G­�­:�&�¸�)¬S¹º)��√­�­:(¶S·S �V:(�G­�­:�&�¸�)¬S¹º)  (44) 

v(x, y, t) = ¼:(¶,·,¬)� − k�           (45) 
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with a� , a� , 	k� and ε�  arbitrary constants. The symmetry 

method has been carried over [28] to the Calogero 

Bogoyavlenskii Schiff equation to find exact solutions of this 

equation. The exact solution appears as the following 

���, �, �� 	 �
� �<��� � u� � �

��¿À���Á�S�         (46) 

Wazwaz [29] employed the Hirota's bilinear method to 

derive multiple-front solutions for the Calogero–

Bogoyavlenskii–Schiff equation. He obtained the solution of 

the CBS equation as following: 

���, �, �� 	 �o�\Â��WÃ�.UÂ�:Ã�)
�S\Â��WÃ�.UÂ�:Ã�)            (47) 

Saleh et al. [33] obtained exact solutions of Calgero–

Bogoyavlenskii– Schiff equation by using the singular 

manifold method after Lie reductions. They obtained the exact 

solutions of Calgero–Bogoyavlenskii– Schiff equation as: 

u�x, y, t� 	 ��V�]Ä��Å�: p¶���·��√¬S�:q�:
:ÅV�Å� ¬­_m�

Å�: p¶���·��√¬S�:qrS�¯
"	√c�tan √��� px "

2�y " 2√t � c�q � ��B px " 2�y " 2√tq � ���:B � ��·���
√¬  (48) 

where, c� 	 4 , c& 	 1  and c� 	 c� 	 cA 	 0 . Kumar [34] 

used the similarity transformations method via Lie-group 

theory to derive exact solutions of (2+1)-dimensional 

Calogero-Bogoyavlenskii-Schiff (CBS) equation. The result 

obtained shows a linear of x, y terms weighted by t
ε
, where 

ε=1-a, a-1 or t-1. The solution of CBS equation is 

u�x, y, t� 	 t�¬��� �ÆC� � C
t���­� �Æ � B�1 " a�t��S­� �Æ y 

����É��� �Æ " 2u ��ÊU�� :Æ
�:�É���" 4Ë � Ë�� � �

�� � ¿ T:���
��ÊW�� :Æ Ì� (49) 

Gandarias and Bruzon [35] obtained the solution of the 

(2+1)-dimensional integrable CBS equation by using classical 

Lie symmetries and travelling-wave reductions with variable 

velocity depending on the form of an arbitrary function. The 

solution of (CBS) equation 

u�x, y, t� 	 √2 tanh 6¶�Í�·�«¬�√� 8              (50) 

where ; 	 �
�, <�� " ;�� 	 � " �

�, t=0.1. 

Some of the previous obtained results are hereafter plotted. 

 

�h�	� 	 6e`kl� 6√3�� � � " ��8 

 

�b�� 	 1� � � � � � � � � � �1 " �� � � � �� 
Figure 5. The soliton solution of Bruzon and Gandarias [20] and periodic 

solution of Cesar and Gomez [27]. 

 

�h�	� 	 �2 � 2� � � " � 

 

�i�	� 	 2�e`kp� " 2�� " 2√�q��
tan6p� " 2�� " 2√�q8 " 2�h!p� " 2�� " 2√�q

�	46 p� " 2�� " 2√�q � 2�� " 1�√�  

Figure 6. CBS solutions of Moatimid et al. [28] and Saleh et al. [33] 

respectively. 
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� 	 √2 tanh�� � � " �√2 � 

Figure 7. Solution of Gandarias and Bruzon [35]. 

It's clear from this comparison that we derive a new solution 

of Calogero–Bogoyavlenskii-Schiff equation by using a new 

method different from the previous findings. 

4. Conclusion 

Lax pair of (2+1) Calogero-Bogoyavlenskii-Schiff equation 

is obtained by using the singular manifold method. The 

detected Lie infinitesimals for the CBS Lax pair’s contains 

eight unknown functions that are specialized by the aide of the 

commutator table. These functions are evaluated through the 

solution of a set of linear differential equations. Their 

solutions lead to optimal Lie vectors. The CBS Lax pair is 

reduced by using the optimal Lie vectors to a system of ODEs. 

New solutions for CBS equation are obtained and plotted for 

different arbitrary functions, reveal some solitary waves in the 

form of soliton and kink waves. The obtained solutions are 

compared with previous works. The comparison reveals that, 

the derived solutions are new and the detection of the Lax pair 

solution’s is effective in exposure traveling wave solutions of 

nonlinear evolution equations. 
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