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Abstract: Moving boundary problems arise in many important applications to biology and chemistry. Comparing to the 

fixed boundary problem, moving boundary problem is more reasonable. To the best of our knowledge, there’s few results on 

the moving boundary for nonlinear first-order hyperbolic initial-boundary value problems. In the present paper, we mainly 

clarify the problem and show the existence and uniqueness of the solution for such kind of problems. We take a classical 

transform to straighten the moving boundary and develop a monotone approximation, based on upper and lower solutions 

technique, for solving a class of first-order hyperbolic initial-boundary value problems of moving boundary. Such an 

approximation results in the existence and uniqueness of the solution for the problem. The idea behind such a method is to 

replace the actual solution in all the nonlinear and nonlocal terms with some previous guess for the solution, then solve the 

resulting linear model to obtain a new guess for the solution. Iteration of such a procedure yields the solution of the original 

problem upon passage to the limit. A novelty of such a technique is that an explicit solution representation for each of these 

iterates is obtained, and hence an efficient numerical scheme can be developed. The key step is a comparison principle between 

consecutive guesses. 
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1. Introduction 

Moving boundary problems deal with solving partial 

differential equations (PDEs) in a domain, a part of whose 

boundary is unknown in advance; that portion of the 

boundary is called a moving boundary. In addition to the 

standard boundary conditions that are needed in order to 

solve the PDEs, an additional condition must be imposed at 

the moving boundary. One then seeks to determine both the 

moving boundary and the solution of the differential 

equations. Recent decades moving boundary problems occur 

in such varied subjects as hydrology, heat flow, metallurgy, 

molecular diffusion, flame propagation, steel and glass 

production, and oil drilling and mathematical finance [1-3]. 

Over the past several years, many authors have 

successfully applied the monotone method to nonlinear 

differential equations [4-6]. Based on the comparison 

principle, such a method involves the construction of 

monotone sequences of upper and lower solutions that 

converge uniformly to the solution of the problem being 

considered [7]. 

Our main objective here is to extend this method to the 

following first-order hyperbolic initial-boundary value 

problem of moving boundary 

��
�
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�� � �	�
���� 
 ��
, �, �, ����⋅, ����,  
 ∈ �0, �����, � ∈ �0, ��,
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 � �����

� �
���
, ���
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 ���
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 	������,  � ∈ �0, ��,

	                                                        (1) 
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where 	����⋅, �)) = � ��(�)� (", �)�"  and 	
 = ℎ(�)  is an 

unknown function which represents the free boundary. 

The fixed boundary problem is defined by 

#�� + (	(
)�)� = �(
, �, �, �(�(⋅, �))),  
 ∈ [0, $], � ∈ [0, �],	(0)�(0, �) = � �%� (
)�(
, �)�
,  � ∈ [0, �],�(
, 0) = ��(
),  
 ∈ [0, $],  (2) 

where �(�(⋅, �)) = � �%� (", �)�". 

The above problem arises in applied science. For example, 

in the case �(
, �, �, �(�(⋅, �))) = −'(
, �, �(�(⋅, �)))�, 
problem (2) describes the evolution of a size-structured 

population where individuals are competing for common 

resources (m represents the mortality rate which depends on 

the total population size P). For the size-structured 

population model, u is an unknown function which represents 

the density of individuals at times t, V and β denote the 

individuals’ growth and reproduction rates, respectively. In 

practice, it is expected that such competition between 

individuals takes effect if the population level reaches high 

density, i.e., '( = 0 if	� ≤ ��,	and	'( > 0	if	� > �� [8-10]. 

Comparing to the fixed boundary problem in [11], moving 

boundary problem is more reasonable. The range of x is 

occupied in a fixed domain in standard literatures. In other 

words, the biggest size of the individual is fixed. However, 

the real phenomenon does not obey the law. As time goes on, 

the biggest size of the individual maybe change due to the 

environment around them. For example, x represents the age 

of the individual. If the external environment is better, the 

maximum age is bigger. 

To the best of our knowledge, there’s few results on the 

moving boundary for nonlinear first-order hyperbolic initial-

boundary value problems. Our main goal in this paper is to 

clarify the problem and show the existence and uniqueness of 

the solution for such kind of problems by using monotone 

method. 

This paper is arranged as follows. In section 2, we present 

the vital conditions and the main result of the paper. In 

section 3.1, we take a classical transform to straighten the 

moving boundary. A comparison result is discussed for the 

problem. Using upper and lower solution method, we 

establish the existence of the solution for such kind of the 

problem. In addition, the uniqueness of the solution is 

discussed in the following section 3.2. 

2. Main Result 

In this section, we state our main result. To state our 

theorem, we first impose the following hypotheses on the 

parameters in problem (1). 

(C1) 	 ∈ +,([0, $]), 	 > 0	-.	[0, $),	 and 	(/
) > /	(
) 

for any	/ > 0. 

(C2) � ∈ +([0, $]) and � ≥ 0	in	[0, $]. 
(C3) lim�→45(	��)(
) = 0, and ��	satisfies the capability 

condition 	(0)��(
) = � �4� (
)��(
)�
. 

(C4) � ∈ +,([0, $] × [0, �] × 7 × 7) and �8 ≤ 0. 

Our main result is as follows. 

Theorem 2.1. Assume that (C1) - (C4) hold, If �� ∈ 9,((0, �)),, 
Where 0 < � < $ is a constant, then there exist a unique 

solution 	�(
, �)  and a unique curve 
 = ℎ(�) which satisfy 

(1). Moreover, 
 = ℎ(�)  is an increasing function and the 

solution is global in time. 

Remark 2.1. The monotone of the function 
 = ℎ(�)	 is 

obvious, so we only show the existence and uniqueness of 

the solution for the model (1). 

3. The Proof of the Main Theorem 

In this section, we show the existence and uniqueness of 

the solution for nonlinear first-order hyperbolic initial 

boundary value problems (1), i.e. Theorem 2.1. 

Before starting our main contents, we give simple 

description of the approaches. In order to achieve the goal, 

we shall processed as follows: 

a) First, we show the existence and uniqueness of the 

moving boundary by the standard ODE theory; 

b) Second, we straighten the free boundary and convert the 

problem to a fixed boundary problem. Then, we can 

show the existence of the solution �(
, �)  by 

comparison principle, monotone sequences and lower 

and upper solution methods; 

c) Finally, we obtain the solution is indeed unique. 

3.1. Existence of the Solution 

3.1.1. Existence and Uniqueness of the Moving Boundary 

Noticing ℎ′(�) = 	(ℎ(�))  and 	(
)  is continuously 

differentiable with respect to x and t, we get a unique 

continuous solution ℎ(�) by ODE standard theory [12]. 

3.1.2. Straighten the Moving Boundary 

For that	ℎ(�), we consider the problem 

���
���� + (	(
)�)� = �(
, �, �, �(�(⋅, �))),  
 ∈ [0, ℎ(�)], � ∈ [0, �],

	(0)�(0, �) = ; ��(�)
� (
)�(
, �)�
,  � ∈ [0, �],�(
, 0) = ��(
),  
 ∈ [0, �],  

Take the transform 

< = 
ℎ(�), 
and set �=(<, �) = �(ℎ(�)<, �) = �(
, �). 

A simple calculation shows �=� = �� + <ℎ?(�)��, �=@ = ℎ(�)��. 
Thus �=  satisfies the following equation 
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���
���=� + AB(�(�)@)C@�?(�)�(�) �=D@ = �(ℎ(�)<, �, �=, �E(�=(⋅, �))) − �?(�)�(�) �=,  < ∈ [0,1], � ∈ [0, �],

	(0)�=(0, �) = ℎ(�) � �,� (ℎ(�)<)�=(<, �)�<,  � ∈ [0, �],�=(<, 0) = ��(�<),  < ∈ [0,1].                     (3) 

Where �E(�=(⋅, �)) = ℎ(�) � �=,� (<, �)�<. To solve the problem, we follow the similar argument [13, 14]. 

3.1.3. Comparison Principle 

Let GH = (0, �) × (0,1), and we introduce the following definition of a pair of coupled upper and lower solutions of 

problem (3). 

Definition 3.1. A pair of functions �=(<, �) and I=(<, �) are called an upper and a lower solution of (3) on GH , respectively, if 

all the following hold: 

1. �=, I= ∈ +(GH) ∩ $K(GH); 

2. �=(<, 0) ≥ ��(�<) ≥ I=(<, 0), in [0,1]; 
For every	� ∈ (0, �) and every nonnegative	L(<, �) ∈ +,(GH), we have 

; �=,
� (<, �)L(<, �)�< ≥ ; �=,

� (<, 0)L(<, 0)�<
  + ; L�

� (0, M) ; �,
� (ℎ(M)<)�=(<, M)�<�M

  + ; ; NLO(<, M) + 	(ℎ(M)<) − <ℎ′(M)ℎ(M) L@(<, M)P,
�

�
� �=(<, M)�<�M

  + ; ; N�(ℎ(M)<, M, �=(<, M), �E(I=(⋅, M))) − ℎ′(M)ℎ(M) �=(<, M)P,
�

�
� L(<, M)�<�M

 

and 

; I=,
� (<, �)L(<, �)�< ≤ ; I=,

� (<, 0)L(<, 0)�<
  + ; L�

� (0, M) ; �,
� (ℎ(M)<)I=(<, M)�<�M

  + ; ; NLO(<, M) + 	(ℎ(M)<) − <ℎ′(M)ℎ(M) L@(<, M)P,
�

�
� I=(<, M)�<�M

  + ; ; N�(ℎ(M)<, M, I=(<, M), �E(�=(⋅, M))) − ℎ′(M)ℎ(M) I=(<, M)P,
�

�
� L(<, M)�<�M.

 

Definition 3.2. A function �=(<, �) is called a weak solution of (3) on GH	if �=  is not only an upper solution but also a lower 

solution of (3) on DT. 

Theorem 3.1. Suppose that the assumptions in Theorem 2.1 hold. Let �=  and I=  be a nonnegative upper solution and a 

nonnegative lower solution of (3), respectively. Then �= ≥ I= in GH . 

Proof. Let R = I= − �=, then	R satisfies 

R(<, 0) = v=(<, 0) − �=(<, 0) ⩽ 0	U.	[0,1],	                                                                                   (4) 

and 

� R,� (<, �)L(<, �)�< ≤ � R,� (<, 0)L(<, 0)�<  + � L�� (0, M) � �,� (ℎ(M)<)R(<, M)�<�M  + � � ALO(<, M) + B(�(O)@)C@�?(O)�(O) L@(<, M)D,��� R(<, M)�<�M  + � � L,��� (<, M)V(<, M)R(<, M)�<�M + � � L,��� (<, M)W(<, M)�E(R(⋅, M))�<�M  − � � �?(O)�(O),��� R(<, M)L(<, M)�<�M,
                               (5) 
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by mean value theorem,  

where	V(<, �) = �XY(<, �, Z,(<, �), �E(�=(⋅, �))) with Z,  between I= and �= , and W(<, �) = −�(E(<, �, �=(<, �), Z[(�)) with Z[  between �E(I=(⋅, �)) and �E(�=(⋅, �)). 

Let L(<, �) = \]�^(<, �) where ^ ∈ +,(GH) and /(≥ 0) is chosen so that / + �XY − �?(�)�(�) ≥ 0, Then we find 

\]� � R,� (<, �)^(<, �)�< ≤ � R,� (<, 0)^(<, 0)�< + � \]O�� ^(0, M) � �,� (ℎ(M)<)R(<, M)�<�M + � � A^O(<, M) + B(�(O)@)C@�?(O)�(O) ^@(<, M)D,��� \]OR(<, M)�<�M + � � A/ + �XY(<, �, Z,(<, �), �E(�=(⋅, �))) − �?(O)�(O) D,��� R(<, M)\]O^(<, M)�<�M + � � \]O,��� ^(<, M)W(<, �)�E(R(⋅, M))�<�M.
                           (6) 

To simplify the above inequality, we now set up a backward problem as follows: 

_^O(<, M) + B(�(O)@)C@�?(O)�(O) ^@(<, M) = 0, 0 < M < �, 0 < < < 1,^(1, M) = 0, 0 < M < �,^(<, �) = `(<), 0 ≤ < ≤ 1.                                                    (7) 

Here	`(<) ∈ +�K(0,1),0 ≤ ` ≤ 1. The existence of ^ ∈ +,(GH) follows from the fact that by the variable change a = � − M, 

and let Ê(<, a) = ^(<, M). Then (7) can be written as 

_ Êb(<, a) − B(�(�Cb)@)c@�?(�Cb)�(�Cb) Ê@(<, a) = 0, 0 < a < �, 0 < < < 1,Ê(1, a) = 0, 0 < a < �,Ê(<, 0) = `(<), 0 ≤ < ≤ 1.                                      (8) 

And (8) can be solved by the characteristic method. Note 

that the initial and boundary values for ^ imply that 0 ≤ ^ ≤1 on GH . 

Substituting such a ^ in (6) yields 

; R,
� (<, �)`(<)�<

≤ ; R,
� (<, 0)c�<

+ +, ; ; R,
�

�
� (<, M)c�<�M, 

where	R(<, �)c = max{R(<, �),0} and 

+, = maxfg h�(ℎ(�)<) + N/ + �XY − ℎ′(�)ℎ(�)P + ℎ(�)W(<, �)i. 
From the condition on initial data in (4), we have 

; R,
� (<, �)`(<)�< ≤ +, ; ; R,

�
�

� (<, M)c�<�M. 
Since this inequality holds for every ` ∈ +�K(0,1)  with 0 ≤ ` ≤ 1 , we can choose a sequence {`j}jk,K  on (0,1) 

converging to 

l = m1, R(<, �) > 0,0, otherwise.  

Consequently, we find that 

; R,
� (<, �)c�< ≤ +, ; ; R,

�
�

� (<, M)c�<�M, 
which by Gronwall’s inequality leads to 

; R,
� (<, �)c�< = 0. 

Thus, the proof is completed. 

3.1.4. Monotone Sequences and Existence of Solutions 

Now, we assume that �(ℎ(�)<, �, �=, �E(I=(⋅, �))) =−'(ℎ(�)<, �, �E(I=(⋅, �)))�= , then we construct a pair of lower 

and upper solutions of (3). 

Let ��(<, �) = 0  and ��(<, �) = n\o�\Cp@ , where n, q, r 

are some determinate constants. Then it can be easily shown 

that ��  and ��
 are a pair of coupled lower and upper 

solutions of (3) on [0,1] × [0, �]. 
Actually, it is easily seen that �� is a lower solution of (3). 

The task is now to show that is ��	an upper solution of (3). 

1. �� ∈ +(GH) ∩ $K(GH) 

2. ��(�<) ≤ n\Cp ≤ ��(<, 0), according to the choice of 

the parameters n and r in the following. 

3. Notice 

���(<, �) = q��(<, �), �@�(<, �) = −r��(<, �). 
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We have 

; L�
� (0, M) ; �,

� (ℎ(M)<)��(<, M)�<�M
= ; ; �(ℎ(M)<)ℎ(M)	(0),

�
�

� \Cp@�< 	(0)ℎ(M) ��(0, M)L(0, M)�M. 
Choose a constant r > 0 large enough such that 

maxfg
�(ℎ(M)<)ℎ(M)	(0) ≤ r2, 

and then choose n > 0 large enough such that ∥ �� ∥%u≤ n\Cp . 
Hence, it holds that 

; L�
� (0, M) ; �,

� (ℎ(M)<)��(<, M)�<�M
≤ ; 	(0)ℎ(M)�

� ��(0, M)L(0, M)�M. 
We have 

; ; LO,
�

�
� (<, M)��(<, M)�<�M

= ; L,
� (<, �)��(<, �)�< − ; L,

� (<, 0)��(<, 0)�<
  −q ; ; L,

�
�

� (<, M)��(<, M)�<�M,
 

and 

; ; 	(ℎ(M)<) − <ℎ′(M)ℎ(M),
�

�
� L@(<, M)��(<, M)�<�M

= ; 	(ℎ(M)) − ℎ′(M)ℎ(M)�
� L(1, M)��(1, M)�M − ; 	(0)ℎ(M)�

� L(0, M)��(0, M)�M
  − ; ; 	�(ℎ(M)<)ℎ(M) − ℎ′(M)ℎ(M),

�
�

� L(<, M)��(<, M)�<�M
  +r ; ; 	(ℎ(M)<) − <ℎ′(M)ℎ(M),

�
�

� L(<, M)��(<, M)�<�M.
 

by integrating by parts. Then, it holds that 

; ��,
� (<, 0)L(<, 0)�< + ; L�

� (0, M) ; �,
� (ℎ(M)<)��(<, M)�<�M

+ ; ; NLO(<, M) + 	(ℎ(M)<) − <ℎ′(M)ℎ(M) L@(<, M)P,
�

�
� ��(<, M)�<�M

− ; ; N'(ℎ(M)<, M, �E(��(⋅, M))) + ℎ′(M)ℎ(M)P,
�

�
� ��(<, M)L(<, M)�<�M

≤ ; ��,
� (<, �)L(<, �)�<

+ ; ; N−q − 	�(ℎ(M)<) + r 	(ℎ(M)<) − <ℎ′(M)ℎ(M) P,
�

�
� × L(<, M)��(<, M)�<�M,

 

by the fourth equation of (1). Choose q > 0 large enough such that 

q ≥ maxfg |	�(ℎ(M)<)| + rmaxfg
	(ℎ(M)<) − <ℎ′(M)ℎ(M) . 

Then ��
 is an upper solution of (3). 

Under hypothesis (C4), we can choose a positive constant M such that �XY(ℎ(�)<, �, �=, �E(I=(⋅, �))) + w ≥ 0 for (<, �) ∈ GH , 

we then define two sequences {�x}xk�K  and {�x}xk�K  as follows. 

For	y = 1,2, ⋯, 

���
����x + AB(�(�)@)C@�?(�)�(�) �xD@ = �(ℎ(�)<, �, �xC,, �E(�xC,(⋅, �))) − �?(�)�(�) �x − w(�x − �xC,),  < ∈ [0,1], � ∈ [0, �],

	(0)�x(0, �) = ℎ(�) � �,� (ℎ(�)<)�xC,(<, �)�<,  � ∈ [0, �],�x(<, 0) = ��(�<),  < ∈ [0,1], 	 (9) 
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and 

���
����x + AB(�(�)@)C@�?(�)�(�) �xD@ = �(ℎ(�)<, �, �xC,, �E(�xC,(⋅, �))) − �?(�)�(�) �x − w(�x − �xC,),  < ∈ [0,1], � ∈ [0, �],

	(0)�x(0, �) = ℎ(�) � �,� (ℎ(�)<)�xC,(<, �)�<,  � ∈ [0, �],�x(<, 0) = ��(�<),  < ∈ [0,1],
	 (10) 

Since ��(<, �) and ��(<, �) are continuously differentiable in t, the existence of the solutions for the problems (9) and (10) is 

guaranteed by theorem 1.11 in [15], In fact, these systems can be solved using the method of characteristics. Consider the 

equation for the characteristic curves given by 

��
� ��M �(M) = 1,��M <(M) = 	(ℎ(�(M))<(M)) − <(M)ℎ′(�(M))ℎ(�(M)) . 

The solution �x of (9) along the characteristic curve (<(M), �(M)) satisfies the following equation 

��M �x(M) = −	�(ℎ(�(M))<(M))�x(M) + �{ℎ(�(M))<(M), �(M), �xC,(M), �E(�xC,(⋅, �(M)))| − w(�x(M) − �xC,(M)). 
Parametrizing the characteristic curves with the variable t, 

then a characteristic curve passing through (<}, �̂) is given by (�, �(�; <}, �̂)) where � satisfies ��� �(�; <}, �̂) = 	(ℎ(�)�(�; <}, �̂)) − �(�; <}, �̂)ℎ′(�)ℎ(�)  

and �(�̂; <}, �̂) = <}. From (C1), it follows that the function � 

is strictly increasing. Hence, a unique inverse function a(<; �̂, <})  exists. Now we define �(<) = a(<; 0,0)  where (�(<), <) represents the characteristic curve passing through (0,0) which divides the (<, �)-plane into two parts. Then for 

any point (<, �)  with � ≤ �(<) , the solution �x(<, �)  is 

determined through the initial condition by 

�x(<, �) = ��(��(0; <, �))W(�; 0) + ; W�
� (�; M)

 × [�(ℎ(M)�(M; <, �), M, �xC,(�(M; <, �), M), �E(�xC,(⋅, M))) +w�xC,(�(M; <, �), M)]�M
 

and for any point (<, �)  with � > �(<)  the solution is 

determined via the boundary condition by 

�x(<, �) = 7xC,(a(0; <, �))W(�; a(0; <, �)) + ; W�
b(�;@,�) (�; M)

 × [�(ℎ(M)�(M; <, �), M, �xC,(�(M; <, �), M), �E(�xC,(⋅, M))) +w�xC,(�(M; <, �), M)]�M
 

where 

W(�; M) = \
�(−w(� − M) − ; 	��
O (ℎ(�)�(�; <, �))��) 

and 

7xC,(�) = ℎ(�)	(0) ; �,
� (ℎ(�)<)�xC,(<, �)�<. 

Similarly, for any point (<, �) with � ≤ �(<), the solution �x(<, �) is determined through the initial condition by 

�x(<, �) = ��(��(0; <, �))W(�; 0) + ; W�
� (�; M)

 × [�(ℎ(M)�(M; <, �), M, �xC,(�(M; <, �), M), �E(�xC,(⋅, M))) +w�xC,(�(M; <, �), M)]�M
 

and for any point (<, �)  with � > �(<)  the solution is 

determined via the boundary condition by 

�x(<, �) = 7xC,(a(0; <, �))W(�; a(0; <, �)) + ; W�
b(�;@,�) (�; M)

 × [�(ℎ(M)�(M; <, �), M, �xC,(�(M; <, �), M), �E(�xC,(⋅, M))) +w�xC,(�(M; <, �), M)]�M
 

where 

W(�; M) = \
�(−w(� − M) − ; 	��
O (ℎ(�)�(�; <, �))��) 

and 

7xC,(�) = ℎ(�)	(0) ; �,
� (ℎ(�)<)�xC,(<, �)�<. 

Next we show that the sequences {�x}xk�K  and {�x}xk�K  are 

monotone by induction. The procedure of induction is as 

follows. 

Step 1: Initial hypothesis of the induction; 

We first let R = �� − �,. Then R satisfies 
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; R,
� (<, �)L(<, �)�< ≤ ; R,

� (<, 0)L(<, 0)�<
+ ; L�

� (0, M) ; �,
� (ℎ(M)<)R(<, M)�<�M

+ ; ; NLO(<, M) + 	(ℎ(M)<) − <ℎ′(M)ℎ(M) L@(<, M)P,
�

�
� R(<, M)�<�M

− ; ; w,
�

�
� R(<, M)L(<, M)�<�M − ; ; ℎ′(M)ℎ(M),

�
�

� R(<, M)L(<, M)�<�M.
 

Similar to the proof of Theorem 3.1, we can get R ≤ 0 which 

implies �� ≤ �,. Similarly, it can be seen that �� ≥ �,
. 

Second, we let R = �, − ��
, since �� ≤ �,,R satisfies the 

same inequality with the same V(<, �) = −w and W(<, �) = 0 

in (5). Thus, by the comparison principle, �, ≤ ��
. Similarly, 

it can be seen that �� ≤ �,
. We now claim that �, and �,

 are 

a lower and an upper solution of (3), respectively. On the one 

hand, by(C4) and �� ≤ �, ≤ ��
, the right-hand side of the 

equation in (9) satisfies 

�(ℎ(�)<, �, ��, �E(��(⋅, �))) − w(�, − ��)= −[�X(ℎ(�)<, �, Z�, �E(��(⋅, �))) + w](�, − ��) + �(ℎ(�)<, �, �,, �E(��(⋅, �)))≤ �(ℎ(�)<, �, �,, �E(�,(⋅, �)))  

with �� ≤ Z� ≤ ��
. 

On the other hand, by (C4) and �� ≥ �, ≥ ��
, the right-hand side of the equation in (10) satisfies 

�(ℎ(�)<, �, ��, �E(��(⋅, �))) − w(�, − ��)= [�X(ℎ(�)<, �, Z,, �E(��(⋅, �))) + w](�� − �,) + �(ℎ(�)<, �, �,, �E(��(⋅, �)))≥ �(ℎ(�)<, �, �,, �E(�,(⋅, �)))  

with �� ≤ Z, ≤ ��
. 

Step 2: Hypothesis and claim of the induction; 

We then assume that for some y > 1 , �x  and �x
 are a 

lower and an upper solution of (3), respectively. By similar 

reasoning, we can show that �x ≤ �xc, ≤ �xc, ≤ �x
 and 

that �xc, and �xc,
 are also a lower and an upper solution of 

(3), respectively. 

Thus, by induction, we obtain two monotone sequences 

that satisfy 

�� ⩽ �, ⩽ ⋯ ⩽ �x ⩽ �x ⩽ ⋯ �, ⩽ ��	in	GH . 
for each y = 0,1,2, ⋯ . Hence it follows from the 

monotonicity of the sequences {�x}xk�K  and {�x}xk�K , there 

exist functions �  and �  such that �x → u  and �x → � 

pointwise in GH . Clearly u ≤ � in GH . 

Upon establishing the monotonicity of the sequences, we 

now prove the sequences {�x}xk�K  and {�x}xk�K  converge 

uniformly along characteristic curves to a limit function �= . 

On the one hand, owing to �� ≤ �x ≤ ��
 and the 

monotonicity of the sequence {�x}, we obtain by arguing as 

in [5], along the characteristic curve passing through (<�, 0), 

the solution 

�x(�(�; <�, 0), �) = ��(�<�)W(�; 0) + ; W�
� (�; M)

 × [�(ℎ(M)�(M; <�, 0), M, �xC,(�(M; <�, 0), M), �E(�xC,(⋅, M))) +w�xC,(�(M; <�, 0), M)]�M
 

converges to 

u(�(�; <�, 0), �) = ��(�<�)W(�; 0) + ; W�
� (�; M) × [�(ℎ(M)�(M; <�, 0), M, u(�(M; <�, 0), M), �E(�(⋅, M))) +wu(�(M; <�, 0), M)]�M  

uniformly and monotonically for 0 ≤ � ≤ �, where 

W(�; M) = \
�(−w(� − M) − ; 	��
O (ℎ(�)�(�; <, �))��) 

On the other hand, along the characteristic curve passing 

through (0, ��), the solution 

�x(�(�; 0, ��), �) = 7xC,(��)W(�; ��) + ; W�
�� (�; M)

 × [�(ℎ(M)�(M; 0, ��), M, �xC,(�(M; 0, ��), M), �E(�xC,(⋅, M))) +w�xC,(�(M; 0, ��), M)]�M
 

converges to 
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 u(�(�; 0, ��, 0), �) = 7(��)W(�; ��) + ; W�
�� (�; M)

 × [�(ℎ(M)�(M; 0, ��), M, u(�(M; 0, ��), M), �E(�(⋅, M))) +wu(�(M; 0, ��), M)]�M
 

uniformly and monotonically for 0 ≤ � ≤ �, where 

7(�) = ℎ(�)	(0) ; �,
� (ℎ(�)<)u(<, �)�<. 

Thus, we have 

�(<, �) =

���
���
���
�� ��(��(0; <, �))W(�; 0) + ; W(�; M)�

�	× [�(ℎ(M)�(M; <, �), M, �(�(M; <, �), M), �~(�(⋅, M)))+w�(�(M; <, �), M)]�M, � ⩽ �(<);

7(a(0; <, �))W(�; a(0; <, �)) + ; W(�; M)�
b(�;@,�)× [�(ℎ(M)�(M; <, �), M, �(�(M; <, �), M), �~(�(⋅, M)))+w�(�(M; <, �), M)]�M, � > �(<).

 

Similarly, we have 

�(<, �) =

��
��
�
��
�� ��(��(0; <, �))W(�; 0) + ; W(�; M)�

�× [�(ℎ(M)�(M; <, �), M, �(�(M; <, �), M), �~(�(⋅, M)))+w�(�(M; <, �), M)]�M, � ⩽ �(<);7(a(0; <, �))W(�; a(0; <, �)) + ; W(�; M)�
b(�;@,�)× [�(ℎ(M)�(M; <, �), M, �(�(M; <, �), M), �~(�(⋅, M)))+w�(�(M; <, �), M)]�M, � > �(<).

 

where 

7(�) = ℎ(�)	(0) ; �,
� (ℎ(�)<)�(<, �)�<. 

We now show that u(<, �) = �(<, �) . Let R = �(<, �) −�(<, �) . Since �(<, �) ≥ u(<, �) , R(<, �) ≥ 0  and R(<, 0) =0. Hence R satisfies 

; R,
� (<, �)�< = ; ; �,

�
�

� (ℎ(M)<)R(<, M)�<�M
+ ; ; V,

�
�

� (<, M)R(<, M)�<�M
+ ; ; W,

�
�

� (<, M)�E(R(⋅, M))�<�M
− ; ; ℎ′(M)ℎ(M),

�
�

� R(<, M)�<�M,
≤ +� ; ; R,

�
�

� (<, M)�<�M

 

by choosing L(<, �) = 1 of (5), where +� = maxfg [�(ℎ(�)<) + V(<, �) + ℎ(�)W(<, �)]. 
Owing to Gronwall’s inequality, we conclude R(<, �) = 0 

in GH , i.e. � = u. Defining this common limit by u, we find 

that u satisfies the following. For any point (<, �)  with � ≤ �(<), 

�(<, �) = ��(��(0; <, �))W(�; 0) + ; W�
� (�; M) × [�(ℎ(M)�(M; <, �), M, �(�(M; <, �), M), �E(�(⋅, M))) +w�(�(M; <, �), M)]�M  

and for any point (<, �) with � > �(<), 

�(<, �) = 7(a(0; <, �))W(�; a(0; <, �)) + ; W�
b(�;@,�) (�; M)

 × [�(ℎ(M)�(M; <, �), M, �(�(M; <, �), M), �E(�(⋅, M))) +w�(�(M; <, �), M)]�M
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Remark 3.1. We can also obtain that, along the characteristic 

curve passing through (<�, 0) , the solution �x(�(�; <�, 0), �)	converges to �(�(�; <�, 0), �) uniformly and 

monotonically for 0 ≤ � ≤ �, by using the Cauchy criterion of 

uniformly convergent of functions. Actually, we have 

�xc,(�(�; <�, 0), �) − �x(�(�; <�, 0), �)
= ; W�

� (�; M) × [�x(M) + w�x(�(M; <�, 0), M)]�M − ; W�
� (�; M) × [�xC,(M) + w�xC,(�(M; <�, 0)), M)]�M

= ; W�
� (�; M) × [�x(M) − {�xC,(M) − w(�x(�(M; <�, 0), M) − �xC,(�(M; <�, 0), M))|]�M

= ; W�
� (�; M) × [�x(M) − (��x + N	(ℎ(�)<) − <ℎ′(�)ℎ(�) �xP@ + ℎ′(�)ℎ(�) �x)]�M ≥ 0.

 

by comparison principle. From the monotonicity of the sequences {�x}xk�K  and {�x}xk�K , we get �x ≥ �x in GH , and hence �E(�x(⋅, �)) ≥ �E(�x(⋅, �)) for 0 ≤ � ≤ �, in view of the hypotheses (C4), we have �x(M) ≤ �x(M), where 

�xC,(�) = �(ℎ(�)�(�; <�, 0), �, �xC,(�(�; <�, 0), �), �E(�xC,(⋅, �))), �xC,(�) = �(ℎ(�)�(�; <�, 0), �, �xC,(�(�; <�, 0), �), �E(�xC,(⋅, �))), 
Then, we find that 

|�xc,����; <�, 0), �) − �x(�(�; <�, 0), �)| → 0,   �M y → ∞. 
Proceeding in a similar manner, the uniform convergence 

can also be obtained analogously along the characteristic 

curve passing through (0, ��). 
3.2. Uniqueness of the Solution 

Using arguments in [16], we can establish �{�=(⋅, �)|	 is 

continuous. Hence, we claim �=  is unique. 

Actually, we suppose �=,(<, �) and �=[(<, �)  are two 

nonnegative solution of (3). If	�(�=,(⋅, �)) = �(�=[(⋅, �)) for 0 < � < � , then �=,(<, �) = �=[(<, �) . Without loss of 

generality, we assume that 

h�(�~,(⋅, �)) = �(�~[(⋅, �)), for	0 ⩽ � ⩽ ��,�(�~,(⋅, �)) > �(�~[(⋅, �)), for	�� < � ⩽ �,,
 

where 0 ≤ �� < �, ≤ �. We have �(ℎ(�)<, �, �,�, �(�,�(⋅, �))) ≤ �(ℎ(�)<, �, �,�, �(�[�(⋅, �))) 

and �(ℎ(�)<, �, �[�, �(�[�(⋅, �))) ≥ �(ℎ(�)<, �, �[�, �(�,�(⋅, �))) 

by (C4). Then �=,(<, �)  and �=[(<, �)  are a lower and an 

upper solution of (3) on G��, respectively. By comparison 

principle, we get �=,(<, �) < �=[(<, �)	a.e. in G��  and hence �(�=,(⋅, �)) ≤ �(�=[(⋅, �))  for 0 ≤ � ≤ �, , which is a 

contradiction. 
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