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Abstract: Recently, the establishment of a multi-structure control system has demonstrated vital significance in practice. Its 

stability analysis are mostly determined by Lyapunov matrix equation. Tridiagonal-arrow matrix (TA matrix for short) is a 

special matrix with hybrid structure. In this paper, the problem of TA constraint solution to continuous Lyapunov equation 

A
*
X+XA=C over quaternion field is discussed. By using the representation of vectors of a TA matrix and Kronecker product of 

matrices, a constrained problem will be transformed into an unconstrained equation. Then the necessary and sufficient conditions 

for the equation with TA and self-conjugate TA solutions as well as the expression of general solution are obtained. Meanwhile, 

when the solution set is nonempty, by using invariance of Frobenius norm of orthogonal matrix product, the optimal 

approximation solution with minimal Frobenius norm for a given TA matrix is derived. Finally, two numerical examples are 

provided to verify the algorithm.  
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1. Introduction 

The stability of many control systems in modern control 

theory is ultimately analyzed through the solution to Lyapunov 

matrix equation, thus enjoying an extensive application [1-3]. 

According to different problems in practice, Lyapunov equation 

can be classified into mixed, continuous and discrete equations, 

which have generated fruitful results in the complex field and 

quaternion field [4-9]. For example, by using the complex 

representation operator of the quaternion matrices, the 

sub-positive definite solutions and iterative algorithm with 

parameter of mixed quaternion Lyapunov equation were 

discussed [8]. The sufficient and necessary conditions of a 

circulant solution for the unified algebraic Lyapunov equation 

and its general solution expressions were given in [9]. However, 

research concerning multi-structure constrained solution of 

these matrix equations over quaternion field is scarce. 

As a special matrix, tridiagonal matrix is widely used in 

medicine, signal processing, engineering and other fields. Its 

important properties such as eigenvalue, eigenvector, inverse 

matrix, determinant, singular value decomposition and 

stability are hot topics, which mainly results from its 

important status in numerical calculation. For example, in 

eigenvalues calculate, a symmetric matrix can be transformed 

into a symmetrical tridiagonal matrix by Lanczos algorithm 

[10-11]. Tridiagonal matrix is also involved in building cubic 

spline interpolation function in ship mathematical lofting, and 

solving boundary value problems of differential equations 

[12-13]. 

Arrow matrix is also a special matrix of vital significance in 

control theory. For instance, in the non-linear regulating 

system, the parametric matrix of the governing equations is 

usually an arrow matrix. Recently, there are some related 

researches on the eigenvalues and constraint equations of 

arrow matrix. Ma and Huang proposed the method of 

constructing quaternion arrow matrix from two right 

eigenpairs [14]. Huang et al. [15] discussed the solutions of 

the quaternion Sylvester equation with arrow matrix 

constraints. The authors investigated the hybrid structure of 

tridiagonal matrix and arrow matrix in real field as well as its 

inverse eigenvalue problem [16].  

In this paper, we consider the quaternion continuous 
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Lyapunov equation  

,∗ + =A X XA C                  (1) 

where , Q ×∈ n nA C are given quaternion matrices, and 

Q ×∈ n nX is an unknown quaternion matrix.  

The purpose of this article is to discuss the tridiagonal- 

arrow matrix solution of equation (1) and its optimal 

approximation over quaternion field. 

For convenience, let R , C ,Q× × ×n n n n n n be the set of all 

n n×  real matrices, the set of all n n×  complex matrices, 

the set of all n n× quaternion matrices, respectively. For 
*, , ,TA A A A+ denote the transpose matrix, the conjugate 

matrix, the conjugate transpose matrix and the Moore-Penrose 

generalized inverse of a matrix A , respectively. vec(A) 

denotes that A straightens vectors in column order. A B⊗  

stands for the Kronecker product of A and B. *|| || tr( )A A A=  

stands for the Frobenius norm.  

Definition 1. Let 1 s n≤ < , the matrix given by  
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will be called a tridiagonal-arrow matrix (TA matrix for 

short). The set of all n n× quaternion TA matrices are 

represented by T (Q).n In this case, if , ,i i i ib c a a= =  

1, , 1,i n= −⋯ then T ( )n s is called a quaternion self-conjugate 

TA matrix. The set of all n n× quaternion self-conjugate TA 

matrices are represented by ST (Q).n Obviously, T (1)n is an 

arrow matrix. T ( 1)−n n  is a tridiagonal matrix, s is a controls 

parameter of T ( ).n s  

A TA matrix (2) is uniquely determined by 3n-2 tridiagonal- 

arrow elements. Denote 
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where ie
 

is the ith column of nI , and let  

2 (3 2)
1 2 3( , , ) R .× −= ∈ n nE E E E           (5) 

Obviously, E is column orthogonal, and it’s easy to verify 
*

3 2 .nE E I −=   

Lemma 1. Let ( ) Q
×

×= ∈ n n
ij n nT a , then 

T (Q) vec( ) ( ),∈ ⇔ = ⋅nT T E l T            (6) 

where ( ),l T E are represented as (3),(5).  

Lemma 2 ([15]). The quaternion matrix equation AX B=  

has a solution if and only if .AA B B+ = In this case, the 

general solution and the least square solution of equation can 

be expressed as ( ) ,X A B I A A Y+ += + − where Q ×∈ n nY is an 

arbitrary quaternion matrix, and have a unique minimal 

Frobenius norm least squares solution .X A B+=ɶ   

The problems are described in detail as follows.  

Problem 1. Given , Q ,×∈ n nA C find T ( )∈ nX Q (or ST ( )∈ nX Q ), 

such that *A X XA C+ = . 
Problem 2. Let solution set Ω ≠ ∅ of problem 1, given 

T ( )∈ nK Q , find X ∈ Ωɶ , such that min || || || || .
∈Ω

− = −ɶ
X

X K X K  

2. Solution of Problem 1 

First, we discuss the TA solution of equation (1). Let 

T (Q)∈
⌢

nX , X
⌢

can be uniquely expressed as  

0 1 2 3 ,= + + +
⌢
X X X i X j X k              (7) 

where R ( 0,1, 2,3)×∈ =n n
iX i are real TA matrices. , Q ×∈ n nA C  

can be uniquely expressed as 

0 1 2 3
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,

,
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where , R ( 0,1,2,3)
×∈ =n n

i iA C i , so the quaternion Lyapunov 

equation (1) is equivalent to  

*
0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3

( ) ( )

( )( )

.

+ + + + + +
+ + + + + + +
= + + +

A A i A j A k X X i X j X k

X X i X j X k A A i A j A k

C C i C j C k

     (9) 

By expanding the left side of the equation (9), and 

according to the uniqueness of the real decomposition of the 

quaternion matrix, we get  
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where R ×∈ n n
iX ( 0,1, 2,3i = ) are real TA matrices, thus by 
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lemma 1, we have 

vec( ) ( ) ( 0,1,2,3),= ⋅ =i iX E l X i            (11) 

where E is defined as (5). We write 

4

, 1
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where ( , 1, 2,3, 4)ijG i j = as follows  
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Since the equation (11) is equivalent to 
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then the equation (10) can be represented as 

,=ɶGv L                     (15) 

where (12 8) 1R − ×∈ nv . Thus, study on the TA matrix solution of 

problem 1, we have the following results.  

Theorem 1. Given , Qn nA C ×∈ , then the necessary and 

sufficient conditions for existence of a TA matrix solution of 

(1) is .ɶ ɶGG L L+ =  When such conditions is satisfied, the 

general TA matrix solution of (1) is 

0 1 2 3 ,X X X i X j X k= + + +               (16) 
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where
2 2

4 (12 8) 4 1R Rɶ n n nG L× − ×∈ ∈, are represented as (13), 

(1: 3 2)v n −
 
was regard as 3 2n − dimensional vector, 

1vec ( )− ∗  represents the inverse vec operation.  

Proof. From the equation (15) and lemma 2, and we get the 

necessary and sufficient conditions for existence of a TA 

matrix solution of (1) is (15) has solutions, which is equivalent 

to .GG L L+ =ɶ ɶ When such conditions is satisfied, the general 

matrix solution of (15) is 

(12 8) 1
( ) , R ,ɶ ɶ ɶ n

v G L I G G Y Y
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and vec( ) ( )( 0,1,2,3),= ⋅ =i iX E l X i where ( ),l E⋅ are represented 

as (3), (5). From inverse vec operation, we get iX =  

1vec ( ( ))( 0,1,2,3,)iE l X i− ⋅ = ，so the TA matrix solution of 

equation (1) can be given by formula (16). Proof is completed. 

Next, we discuss the self-conjugate TA matrix solution of 

equation (1). Firstly we give a new representation of real 

symmetric TA matrix and real anti-symmetric TA matrix.  

Let 
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(2 1) ( 1)
1 2R , R .× − × −∈ ∈n n n nF F It is to see that *

1 1F F =  

*
1 2 2 1diag( ,2 ), 2 .n n nI I F F I− −=   

Lemma 3. (I) Let STR ×∈ n nT is a real symmetric TA 

matrix of order n, i.e. ( 1, , 1)i ib c i n= = −⋯ , then 
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1 1STR vec( ) ( ),×∈ ⇔ = ⋅n nT T F l T          (22) 

where 1 1( ),l T F
 
be as in (20).  

(II) Let ATR
n n

T
×∈  is a real anti-symmetric TA matrix of 

order n, i.e. ( 1, , 1)i ib c i n= − = −⋯ and 0( 1, , ),ia i n= = ⋯ then 

2 2ATR vec( ) ( ),×∈ ⇔ = ⋅n nT T F l T         (23) 

where 2 2( ),l T F be as in (21).  

Let ST (Q)∈
⌣

nX (self-conjugate TA matrix), its real 

decomposition is  
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thus, the equation (10) can be represented as  

ˆ ˆˆ .G v L=                     (28) 

where 
2 24 (5 4) (5 4) 1 4 1ˆ ˆˆR R , Rn n n nG v L× − − × ×∈ ∈ ∈,

. Thus, for the 

self-conjugate TA matrix solution of problem 1, we have the 

following results.  

Theorem 2. Given , Q ×∈ n nA C , then the necessary and 

sufficient conditions for existence of a self-conjugate TA 

matrix solution of (1) is
*C C= and ˆ ˆ ˆ ˆ,GG L L+ = where ˆ ˆ,G L be 

as in (26). When such conditions satisfy, the general solution 

of (1) is  

0 1 2 3
ˆ ,= + + +X X X i X j X k              (29) 

where 

(5 4) 1

1 0

2 1

2 2

2 3

1
0 1 1 0

1
2 2

ˆ ˆ ˆˆˆ ( ) , R ,

ˆ( ) (1: 2 1),

ˆ( ) (2 : 3 2),

ˆ( ) (3 1: 4 3),

ˆ( ) (4 2 : 5 4),

vec ( ( )),

vec ( ( ))( 1, 2,3).

n

i i

v G L I G G Z Z

l X v n

l X v n n

l X v n n

l X v n n

X F l X

X F l X i

+ + − ×

−

−

 = + − ∈


= −
 = −
 = − −
 = − −

 = ⋅


= ⋅ =

     (30) 

Proof. From the conjugate structure of Lyapunov equation 

(1), equation (28) and lemma 3, we can get the necessary and 

sufficient conditions for existence of a self-conjugate TA 

matrix solution of (1) is (28) has a solution and * ,C C=
which is equivalent to ˆ ˆ ˆ ˆGG L L+ = and *C C= . When such 

conditions is satisfied, the general solution of the equation (28) 

is  
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by (25) and inverse vec operation, we get  
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so the self-conjugate TA matrix solution of equation (1) can be 

given by the equation (29). Proof is completed.  

3. Solution of Problem 2 

Suppose that the solution set of problem 1 is nonempty, i. e.

, T ( )nK QΩ ≠ ∅ ∈ , is a known TA matrix. The real 

decomposition of K is  

0 1 2 3 ,K K K i K j K k= + + +             (34) 

where R ( 0,1,2,3)
n n

iK i
×∈ =  are real TA matrices. Write  
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thus, on the solution of problem 2, we have the following 

results.  

Theorem 3. Let Ω ≠ ∅ , given T ( )nK Q∈ , then there exist 
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,X ∈ Ωɶ such that || || min,X M− = and it can be expressed as 

0 1 2 3 ,ɶX X X i X j X k= + + +                (36) 

where 

0

1

2

3

1

( )( ) ( ),

( ) (1: 3 2),

( ) (3 1: 6 4),

( ) (6 3 : 9 6),

( ) (9 5 :12 8),

vec ( ( )) 0,1,2,3,

ɶ ɶ ɶ ɶ ɶ ɶɶ

ɶ

ɶ

ɶ

ɶ

K

i i

v G L I G G I G G v G L

l X v n

l X v n n

l X v n n

l X v n n

X E l X i

+ + + + +

−

 = + − − −


= −
 = − −
 = − −
 = − −


= ⋅ = ,

     (37) 

the symbolic meaning here is the same as that shown in 

theorem 1.  

Proof. When X ∈Ω , based on theorem 1, we notice that the 

matrix E of (5) is column orthogonal and *
3 2nE E I −= , so we 

have  

2

2

3
2 2

0

3
2

0

3
2

0

3
2

0

|| ||

|| ( ) ||

|| || || ||

|| vec( ) vec( ) ||

|| ( ) ( ) ||

|| ( ) ( ) ||

,ɶ ɶ ɶ

K

K

i i

i

i i

i

i i

i

i i

i

v v

G L I G G Y v

X K X K

X K

E l X E l K

l X l K

+ +

=

=

=

=

−

+ − −

− = −

= −

= ⋅ − ⋅

= −

=

=

∑

∑

∑

∑

             (38) 

by (38), we get  

|| || min ||( ) ( )|| min,ɶ ɶ ɶ
KX K I G G Y v G L+ +− = ⇔ − − − =     (39) 

based on lemma 2, the least squares solution for Y at the right 

end of (39) is  

( ) ( ),ɶ ɶ ɶɶ
KY I G G v G L+ + += − −            (40) 

so 

( )

( )( ) ( ),K

v G L I G G Y

G L I G G I G G v G L

+ +

+ + + + +

= + −

= + − − −

ɶ ɶ ɶ ɶɶ

ɶ ɶ ɶ ɶ ɶ ɶ
     (41) 

for vɶ  in (41), write  

0

1

2

3

( ) (1 : 3 2),

( ) (3 1 : 6 4),

( ) (6 3 : 9 6),

( ) (9 5 :12 8),

ɶ

ɶ

ɶ

ɶ

l X v n

l X v n n

l X v n n

l X v n n

= −
 = − −
 = − −
 = − −

             (42) 

then we have 0 1 2 3 ,X X X i X j X k= + + +ɶ where iX =  

1vec ( ( ))iE l X− ⋅ , 0,1, 2,3,i = thus exist X ∈Ωɶ
 
such that 

|| || minX K− = and Xɶ  is given by (36). Proof is completed. 

From the results of theorem 1-3, we give the solution steps 

for problem 1-2.  

(1) Write the real decomposition of the quaternion matrix 

A, C as (8).  

(2) For the selected parameter s, a real matrix Gɶ  and a 

real vector L  are written according to the equation (13), (or 

a real matrix Ĝ  and a real vector L̂  are written according 

to the equation (26)).  

(3) Whether the conditions GG L L+ =ɶ ɶ
 or ˆ ˆ ˆ ˆGG L L+ = are met. 

i) If the condition is met, it shows that the problem 1 has a 

solutions. By formula (16), write the solution set Ω of TA 

matrix. (or by formula (29), write the solution set S of 

self-conjugate TA matrix).  

ii) If the condition is not met, it shows that the problem 1 

has no solution. 

(4) When problem 1 has a solution, for given TA matrix K , 

write the corresponding real vector Kv by (35).  

(5) By (36), write optimal approximation solutions of 

problem 2. From vec( ) ( ) 0,1, 2,3,i iX T l X i= ⋅ =,  
we get four TA 

real matrices , 0,1,2,3iX i = , thus 
0 1 2 3 .X X X i X j X k= + + +ɶ  

4. Numerical Examples 

Example 1. Given quaternion matrices ,A C as follows:  

0 1

0 1

0 1
,

0 1

0 1

0

j

i

i
A

i

i

k i

 
 
 
 

=  
 
 
 
  

 

1 2 1 0 0 1

0 1 2 2 0 1 1

2 2 2 1 1
,

0 1 1 1 0

0 0 1

1 1 0

i k i j

i j j i

j i j k i k k
C

k j k i k i j

j i k i j k j

j j k j j

− + − + + 
 + + + − − 
 + + + −

=  − + + − + − + 
 − + + +
 

− − − +  

 

We discuss the TA matrix solution of quaternion Lyapunov 

equation (1) (here select parameters 3s = ).  

The real decompositions of quaternion matrices A and C as 

follows: 

0 1

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0
, ,

0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

A A

   
   
   
   

= =   
   
   
   
      
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2 3

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
, ,

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

A A

   
   
   
   

= =   
   
   
   
      

 

 
0 1

1 2 1 0 0 1 1 0 1 0 0 0

0 1 0 1 0 1 0 2 0 0 1 0

0 0 2 1 0 1 0 2 0 1 0 0
, ,

0 1 1 0 1 0 0 0 0 1 1 0

0 0 0 0 0 1 0 0 1 1 0 0

1 0 0 0 1 0 0 0 0 0 0 0

C C

−   
   − −   
   

= =   − −   
   
   
−      

 

 
2 3

0 0 0 0 0 1 1 0 0 0 0 0

0 2 0 1 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 1 1 1 0
, .

0 0 1 0 1 0 0 1 1 1 0 0

0 1 0 1 0 1 0 0 1 1 0 0

1 1 0 1 1 0 0 0 1 0 0 0

C C

−   
   
   
   −

= =   −   
   −
   
− −      

 

From the equation (15), we write the real matrix Gɶ  and 

the real vector L . By calculation, we get GG L L+ =ɶ ɶ . Thus, 

by theorem 1, the Lyapunov equation (1) have an unique TA 

matrix solution ,X and by formula (16), we obtain  

1 1 0 0 0 0

1 0 0 0

0 1 1 0
.

0 0 0 0

0 0 0 1 0

0 0 0 0

i

j i

k k
X

i j

k

j k

+ 
 
 
 

=  
 
 
 
  

 

Example 2. Given quaternion matrices ,A C as follows: 

1 0 0 0

0 1 0 0 0

0 1 0 0
,

0 0 1 0

0 0 0 1 0

0 0 0 1

i k

i

j i
A

j i

j

k j

 
 
 
 

=  
 
 
 
  

  

2 1 2 2 1 1

1 2 2 1 2

2 1 2 2 1 3
.

1 1 2

3 4

1 2

i i j i k

i i j i j k j

i j i j k i j j
C

i i j k j i j

k k i j j k

j j i j k

+ − − − − 
 − + − − 
 − + − + + − −

=  − + − + − − − 
 − − − +
 

− − − + −  

 

We discuss the self-conjugate TA matrix solution of 

quaternion Lyapunov equation (1) (here select parameters 

3s = ).  

The real decomposition of quaternion matrices A and C as 

follows: 

0 1

1 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 1 0
, ,

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

A A

   
   
   
   

= =   
   
   
   
      

 

2 3

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0
, ,

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0

A A

   
   
   
   

= =   
   
   
   
      

 

0 1

2 1 0 1 0 1 0 2 2 1 0 0

1 2 1 0 0 0 2 0 1 1 0 0

0 1 2 1 0 0 2 1 0 0 3 0
, ,

1 0 1 2 0 0 1 1 0 0 0 1

0 0 0 0 4 0 0 0 3 0 0 0

1 0 0 0 0 2 0 0 0 1 0 0

C C

− − −   
   −   
   − −

= =   − −   
   −
   
− −      

 

2 3

0 0 1 0 0 0 0 0 0 0 1 0

0 0 2 1 0 1 0 0 0 0 1 0

1 2 0 0 1 1 0 0 0 1 0 0
, .

0 1 0 0 1 1 0 0 1 0 0 0

0 0 1 1 0 0 1 1 0 0 0 1

0 1 1 1 0 0 0 0 0 0 1 0

C C

−   
   − −   
   − −

= =   − − −   
   − −
   

− −      

 

From the equation (28), we write the real matrix Ĝ  and 

the real vector L̂ and *.C C= By calculation, we get ˆ ˆ ˆ ˆ.GG L L+ =  

Thus, by theorem 2, the Lyapunov equation (1) have an unique 

self-conjugate TA matrix solution ˆ ,X  and by formula (29), 

we obtain  

1 0 0 0 0

1 0 0 0

0 1ˆ .
0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

i

i j

j k i j
X

k

i

j

 
 − − 
 −

=  − 
 −
 
  

 

5. Conclusion 

In this paper, the solution to quaternion Lyapunov equation 

with tridiagonal-arrow matrix constraints is discussed. Firstly, 

a new characterization of TA matrix and self-conjugate TA 

matrix is given by using matrix straighten operator. Then, the 

constrained equation is transformed into a unconstrained 

matrix equation by using the real decomposition of quaternion 
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matrix and the Kronecker product of real matrix. Thus, the 

necessary and sufficient conditions for the solution to problem 

1 and its general solution expression are obtained. Finally, by 

using invariance of Frobenius norm of orthogonal matrix 

product, the optimal approximation solution of problem 2 is 

obtained under the condition of problem 1 solution set 

Ω ≠ ∅ . This paper offers an effective method to solve the 

problem of related constrained quaternion matrix. 
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