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Abstract: The theoretical investigations of resonance physical phenomena by nonlinear coupled evolution equations are 

become important in currently. Hence, the purpose of this paper is to represent an advance exp (-Φ(ξ))-expansion method with 

nonlinear ordinary differential equation for finding exact solutions of some nonlinear coupled physical models. The present 

method is capable of evaluating all branches of solutions simultaneously and this difficult to distinguish with numerical 

technique. To verify its computational efficiency, the coupled classical Boussineq equation and (2+1)-dimensional Boussinesq 

and Kadomtsev-Petviashili equation are considered. The obtained solutions in this paper reveal that the method is a very 

effective and easily applicable of formulating the exact traveling wave solutions of the nonlinear coupled evolution equations 

arising in mathematical physics and engineering.  

Keywords: Coupled Classical Boussinesq Equation, Boussinesq-Kadomtsev-Petviashili Equation, Solitary Wave Solution, 

Periodic Wave Solution 

 

1. Introduction 

The coupled nonlinear evolution equations (NLEEs) are 

widely used to describe many physical mechanisms of 

natural phenomena and dynamical processes in mathematical 

physics and engineering. The investigation of exact solutions 

of NLEEs plays an important role of these intricate physical 

phenomena and would be helpful to observe the wave 

translations in many branches of physics, chemistry and 

biology. In this article, we highlighted an analytical method, 

namely advance exp(- ( ))ξΦ -expansion method for finding 

more valuable explicit solutions of NLEEs. The valuable 

explicit form solutions provide a means to describe the 

salient features in various science, technology and 

engineering applications. It can be serve as a basis for 

perfecting and testing computer algebraic software, such as 

Maple, Mathematica, MatLab etc for solving NLEEs. It is 

notable that many nonlinear partial differential equations 

(NPDEs) of physics, chemistry and biology contain unknown 

parameters and unknown functions. Exact solutions permit 

research scholars to design and run experiments, by creating 

appropriate natural conditions, to determine these functions 

and parameters. There are several types of well-known 

methods that have been developed to construct analytical 

solutions of NLEEs such as the ( / )G G′ -expansion method 

[1-5], the modified simple equation method [6, 7], the tanh 

method [9-10], the Homotopy perturbation technique [11], 

the homogeneous balance method [12-14], the Hirota method 

[15], the Kudryashov method [16, 17], the Exp-function 

method [18, 19], the improved F-expansion method [20], the 

exp ( ( ))ϕ ξ− -expansion method [21-25] and so on. The 

choice of an appropriate ansatz is of great importance when 

using these analytical methods. Among these approaches, the 

proposed advance exp(- ( ))ξΦ -expansion method is easily 

applicable with the help of symbolic computation and 

powerful mathematical method to obtain more general 

solitary and periodic wave solutions of NLEEs in 

mathematical physics and engineering. The main idea of this 

technique is to express the exact traveling wave solutions of 

NLEEs in terms of trigonometric, hyperbolic and rational 
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functions that satisfy the nonlinear ordinary differential 

equation (ODE) ( ) exp( ( )) exp( ( )) 0ξ λ ξ µ ξ′Φ + Φ + −Φ = , 

where λ  and µ  real parameters. The advantage of the 

proposed method over the other existing methods is that it 

provides some new exact traveling wave solutions to the 

nonlinear PDEs. Algebraic manipulations of this method is 

also much easier rather than the others existing methods. 

There are several types of coupled NLEEs that appeared as 

model equations in mathematical physics, chemistry and 

biology, such as the coupled classical Boussineq equation 

appeared as a model equation to describe dispersive long gravity 

wave traveling in two horizontal directions on shallow water of 

uniform depth, and the (2+1) dimensional Boussinesq and 

Kadomtsev-Petviashili (BKP) equation also appeared as a model 

equation to describe various types of wave phenomena in 

mathematical physics and so on. The dispersive and nonlinear 

effects of these coupled NLEEs may be balanced and thus the 

solitary wave causes. The existence and appearance of solitary 

waves in complicated physical problems apart from the model 

equations of mathematical physics must be analyzed with 

sufficient accuracy. Therefore, the aim of this article is to 

explore a new study linking to the advance exp(- ( ))ξΦ -

expansion method for solving the coupled NLEEs to 

demonstrate the effectiveness and truthfulness of this method. 

The rest of the paper has been prepared as follows. In 

section 2, the proposed advance exp(- ( ))ξΦ -expansion 

method is discussed in details. The section 3 presents the 

application of this method and physical explanation of the 

determined solutions. The advantages of this method and 

comparison with other methods are presented in section 4. 

Conclusions have been drawn in Section 5. 

2. The Methodology 

This section presents the briefly descriptions of the 

proposed advance exp ( ( ))ξ−Φ -expansion method. 

Let us consider general NLEEs as 

( , , , , , , ) 0t x x x t t t xf u u u u u u =… ,                    (1) 

where, ( , )u x t is an empirical function, f  is a polynomial in 

( , )u x t  and its partial derivatives in which the higher order 

derivatives and nonlinear terms are involved.  

The exp (-Φ(ξ))-expansion method [21-25] has been 

employed to look into exact solutions, wherein the nonlinear 

ODE ( ) exp( ( )) exp( ( ))ξ ξ µ ξ λ′Φ = −Φ + Φ + ; ,λ µ ∈ℜ  

provides only a few traveling wave solutions to the nonlinear 

NLEEs. From the references [21-25], we observe that the 

method does not give rich solutions to comprehend inner 

picture to the NLEEs. Therefore, in order to get more 

traveling wave solutions and to understand the inner structure 

apparently of the nonlinear physical phenomena, in this 

article we choose the ODE 

( ) exp( ( )) exp( ( )) 0ξ λ ξ µ ξ′Φ + Φ + −Φ =  as auxiliary 

equation and the general solutions of this ODE have been 

used. The descriptions of this proposed method as follows: 

If we combine the compound variables x and t by a single 

variable, that is, ( , ) ( ), ,u x t u k x V tξ ξ= = ±  where k and V 

arbitrary constants, then the equation (1) can be reduce to an 

ODE as 

( , , , , ) 0F u u u u′ ′′ ′′′ =⋯⋯⋯ ,                       (2) 

where, F  is a function of , , , ,u u u u′ ′′ ′′′⋯⋯⋯  and primes 

indicate the ordinary derivatives with respect to ξ . 

The proposed method allow us to write the traveling wave 

solution to the equation (2) in the following form 

( ) ( )( )
0

, 0

N i

i N

i

u a e a
ξξ −Φ

=

= ≠∑                       (3) 

where the coefficients (0 )ia i N≤ ≤  are constants to be 

determined and ( )ξΦ = Φ  satisfies the first order nonlinear 

ODE: 

( ) exp( ( )) exp( ( )) 0, , .ξ λ ξ µ ξ λ µ′Φ + Φ + −Φ = ∈ℜ    (4) 

It is notable that eq. (4) has the following six kinds of 

general solutions as follows: 

( )0( ) ln tan
λξ λµ ξ ξ
µ

 
 Φ = − +   

 
, 0,λµ >  

( )0( ) ln cot
λξ λµ ξ ξ
µ

 
 Φ = − − +   

 
, 0,λµ >  

( )0( ) ln tanh
λξ λµ ξ ξ
µ

 
 Φ = − − +   − 

, 0,λµ <  

( )0( ) ln coth
λξ λµ ξ ξ
µ

 
 Φ = − − +   − 

, 0,λµ <     (5) 

( )0

1
( ) lnξ

µ ξ ξ
 

Φ = − −  + 
, 0, 0,λ µ= >  

( )( )0( ) lnξ λ ξ ξΦ = − + , , 0,λ µ∈ ℜ =  

where 0ξ  is the integrating constant and 0λµ > or 0λµ <  

depends on sign of λ . We have been cheeked the solutions (5) 

by putting back into the original equation (4) found correct.  

The value of the positive integer N  can be determined by 

balancing the higher order derivative term and the nonlinear 

term appearing in ODE (2). If the degree of ( )u u ξ=  Is 

[ ( )]D u nξ = , then the degree of the other expressions will be 

found by the following formulae: 

( ) ( )
[ ] , [ ] ( )

s
p q

p

p q

d u d u
D n p D u np s n q

d d

ξ ξ
ξ ξ

 
= + = + +  

 
. 
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By substituting (3) into (2) together with the value of N , 

we obtain polynomials in ( )
e

ξ−Φ . We set each coefficients of 

the resulting polynomial to zero, yielding a system of 

algebraic equations for (0 ), , , ,ia i N k Vλ µ≤ ≤ . With the 

help of symbolic computation, such as Maple, we can 

evaluate the obtaining system and find out the values

(0 ), , , ,ia i N k Vλ µ≤ ≤ . Therefore, we are obtained the new 

multiple explicit solutions of NLEEs (1) by combining the 

equations (3) and (5) and inserting the value of

(0 ), , ,ia i N k λ µ≤ ≤  and V .  

3. Applications to Some Important 

Nonlinear Coupled Physical Models 

The section presents the application of the advance 

exp(- ( ))ξΦ -expansion method to find the exact traveling 

wave solutions of the coupled nonlinear evolution equations 

and physical explanations of the determined solutions. 

3.1. The Coupled Classical Boussineq Equation 

This subsection present the new study linking to the famous 

coupled (1+1)-dimensional classical Boussineq equation 

through the advance exp(- ( ))ξΦ -expansion method. 

The (1+1)-dimensional classical Boussineq equation is 

given as follows: 

{ } 1
(1 ) 0

3

0

t xxxx

t x x

v v u u

u uu v

+ + + = 

+ + = 

.                        (6) 

Here ( , )u x t  and ( , )v x t represents the evolutions the surface 

in any natural varied instances. The coupled equation is an 

important class of NPDEs, which was first introduced by Wu 

and Zhang [26] for modeling nonlinear and dispersive long 

gravity wave traveling in two horizontal directions on shallow 

water of uniform depth. There is an amount of literature [24, 

26-28], where the coupled equation is well studied. Gepreel 

[27] have been studied some traveling wave solutions via the 

generalized (G'/G)-expansion method. Zyed and Joudi [28] has 

found more traveling wave solution through the extended 

(G'/G)-expansion method. Recently, Roshid and Rahman [24] 

also studied the periodic and solitons solutions of the equations 

(6) through the exp(-Φ(ξ))-expansion method. The solutions 

which are found in [24] does not give rich solutions to 

comprehend inner picture to these equations. In addition to get 

the more valuable explicit form solutions to the classical 

Boussineq equations, we introduce the compound variables x 

and t to a single variable as 

( , ) ( ), ( , ) ( )u x t U v x t wξ ξ= = ,                        (7) 

where x V tξ = − , the coupled equation (6) reduces to the 

ODE as 

1
[(1 ) ] 0

3

0

Vw w U U

VU UU w

′ ′ ′′′− + + + = 

′ ′ ′− + + = 

                          (8) 

Integrating (8) once with regard to ξ , we obtain 

2

1
(1 ) 0

3

0
2

C Vw w U U

U
K VU w

′′− + + + = 

− + + =


                         (9) 

where, C  and K are integrating constants.  

According to the proposed advance exp(- ( ))ξΦ -expansion 

method, the solutions of the equations (9) can be written as 

- ( )
0 1( ) ,U a a e ξξ Φ= +  1 0a ≠                        (10) 

( )2
- ( ) - ( )

0 1 2( ) ,w b b e b eξ ξξ Φ Φ= + +  2 0a ≠              (11) 

By substituting (10) and (11) into the eq. (9) and equating 

the coefficients of 
- ( )( ) ,ie ξΦ ( 0,1, 2,3,4, )i = ⋯  equal to 

zero, we obtain a system of algebraic equations (for 

simplicity the algebraic equations are not displayed here). 

Solving the obtained system by using Maple, the following 

sets of solutions are obtained: 

2 2
0 0 0 0 0 1 0 1 2

1 2 2 2 2
1, , , , , 1, 0,

2 3 3 33
C a K a V a a a a b b bλµ µ λµ µ 

= − + + = − = = = = − − = = − 
 

                  (12)

By combining the equations (5), (10), (11) and (12), the Boussinesq equation (6) has the following new explicit solutions:

( )

( )

1 0 0 0

2
1 0 0

2
( , ) tan , 0

3

2 2
( , ) 1 tan , 0

3 3

u x t a x a t

v x t x a t

λµ λµ ξ λµ

λµ λµ λµ ξ λµ

  = + − + >      
 = − − − − + >   

                                                (13) 

( )

( )

2 0 0 0

2
2 0 0

2
( , ) cot , 0

3
,

2 2
( , ) 1 cot , 0

3 3

u x t a x a t

v x t x a t

λµ λµ ξ λµ

λµ λµ λµ ξ λµ

  = − − + >      
 = − − − − + >   

                                            (14) 
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( )

( )

3 0 0 0

2
3 0 0

2
( , ) tanh , 0

3
,

2 2
( , ) 1 tanh , 0

3 3

u x t a x a t

v x t x a t

λµ λµ ξ λµ

λµ λµ λµ ξ λµ

  = + − − − + <      
 = − − + − − + <   

                                            (15) 

( )

( )

4 0 0 0

2
4 0 0

2
( , ) coth , 0

3
,

2 2
( , ) 1 coth , 0

3 3

u x t a x a t

v x t x a t

λµ λµ ξ λµ

λµ λµ λµ ξ λµ

  = + − − − + <      
 = − − + − − + <   

                                            (16) 

5 0
0 0

2

5
0 0

2 1
( , ) , 0, 0

( )3
.

2 2 1
( , ) 1 , 0, 0

3 3 ( )

u x t a
x a t

v x t
x a t

λ µ
ξ

λµ λ µ
ξ

  = − = >  − +   


   = − − − = >  − +   

                                                      (17) 

 

 

Figure 1. Exact periodic traveling wave solutions of (a) 1( , )u x t  and (b) 

1( , )v x t  with 3 , 3.x t− ≤ ≤  

 

 

Figure 2. Exact traveling wave solutions of (a) topological kink nature for 

3( , )u x t  with 3 , 3x t− ≤ ≤ and (b) non-topological bell nature for 3( , )v x t  

with 3 , 3.x t− ≤ ≤  
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Figure 3. Exact solitary wave solutions of 1-soliton nature for (a) 4 ( , )u x t

and (b) 4 ( , )v x t  with 1 , 1.x t− ≤ ≤
 

From the above determined solutions, we observe that the 

proposed method according to auxiliary equation (4) gives 

more valuable explicit form solutions to the classical 

Boussinesq equation. The solutions of the classical 

Boussinesq equation are also represented various types of 

solitary and periodic wave solutions according to the 

variation of the physical parameters. Solutions 1( , )u x t and 

1( , )v x t  are presents the periodic traveling wave solutions 

with fixed parametric values 00.5, 0.5, 1aλ µ= = = and 

0 0.5ξ = , which are shown in figure 1. Solutions 2 ( , )u x t and 

2 ( , )v x t  are also presents the periodic and singular type 

periodic wave solutions according to the fixed values

00.5, 0.5, 1aλ µ= = = and 0 0.5ξ = . Solution 3( , )u x t

represent the solitary wave solution of topological kink 

nature while 3( , )v x t represent the solitary wave solution of 

non-topological bell nature corresponding to the values 

1,λ = −  1,µ =  0 2 / 3a = and 0 1ξ = , which are shown in 

figure 2. Solutions 4 ( , )u x t and 4 ( , )v x t  are presents the 

solitary wave solutions of 1-soliton type with fixed 

parametric values 1,λ = − 1,µ =  0 2 / 3a =  and 0 5ξ = , 

which are shown in figure 3. Finally, solutions 5( , )u x t and 

5 ( , )v x t  are also represented the solitary wave solutions of 

soliton nature according to the variation of the parameters. 

These types of traveling wave solutions would be helpful for 

researcher to describe the dispersive long gravity wave 

propagation in two horizontal directions on shallow water of 

uniform depth or any natural varied physical instances. Other 

figures are ignored for convenience.  

3.2. (2+1) Dimensional Boussinesq and Kadomtsev-

Petviashili (BKP) Equation 

Let us consider the following coupled (2+1) dimensional 

BKP equation [29-32] as 

6( ) 6( )

y x

x y

t xxx yyy x y

u w

v w

w w w wu wv

=
= 
= + + + 

          (18) 

Here ( , , )u x y t , ( , , )v x y t and ( , , )w x y t  presents the 

evolutions the surface in any natural varied instances. The 

coupled equation (18) is also appeared as a model equation 

for describing various types of physical phenomena in 

mathematical physics. Many research scholar in mention in 

refs. [29-31] have been derived the (2+1) dimensional BKP 

equation. From the articles in mention ref. [32, 36], we have 

also observed that the reduce ODE (4.7) is incorrect (sec 

more details in Appendix 1 and 2). 

To get the new valuable explicit form solutions to the 

equations (18), we introduce the compound variables x, y, 

and t to a single variable as 

( , , ) ( ), ( , , ) ( ), ( , , ) ( ),u x y t u v x y t v w x y t w x y V tξ ξ ξ ξ= = = = + − ,                                                  (19) 

where V  is an arbitrary constants. By substituting eq. (19) 

into eq. (18), we obtain the following coupled nonlinear 

ordinary differential equations: 

0

0 0

2 6( ) 6( ) 0

u w

v w

w Vw uw vw

′ ′− = 
′ ′− = = 
′′′ ′ ′ ′+ + + = 

.                (20) 

Integrating the ODEs (20) and neglecting the constants of 

integration for convenience, we obtain 

0

0 0

2 6 6 0

u w

v w

w Vw uw vw

− = 
− = = 
′′ + + + = 

.                (21) 

Therefore, the solutions of the ODEs (21) can be 
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represented according to the advance exp( ( ))ϕ ξ− -expansion 

method as 

( )
( )
( )

2
( ) ( )

0 1 2 2

2
( ) ( )

0 1 2 2

2
( ) ( )

0 1 2 2

( ) , 0

( ) , 0

( ) , 0

u a a e a e a

v b b e b e b

v c c e c e c

ϕ ξ ϕ ξ

ϕ ξ ϕ ξ

ϕ ξ ϕ ξ

ξ

ξ

ξ

− −

− −

− −

= + + ≠ 
= + + ≠ 

= + + ≠


       (22) 

where 0 1 2, , ,a a a  0 1,b b , 2 ,b 0 1,c c  and 2c are unknowns 

constants to be determined later. By substituting eq. (22) 

in the eq. (21) and collecting all terms with same power of 

the coefficient of ( )e ϕ ξ−  together, we obtain a system of 

algebraic equations. The system of algebraic equations is 

overlooked for convenience. Solving the resulting 

algebraic equations, we obtain the following set of 

solutions: 

Set 1: 

{ 2
0 0 0 1 1 1 2 2 2

1
8 , , 0,

3
V a b c a b c a b cλµ λµ µ = − = = = − = = = = = = − 


                                      (23) 

Set 2:  

{ }2
0 0 0 1 1 1 2 2 28 , , 0,V a b c a b c a b cλµ λµ µ= = = = − = = = = = = −                                         (24) 

According to Set 1 and Set 2 and the general solutions of (4), the traveling wave solutions of BKP equation (18) are obtained 

in the following form:  

( )( )2
1 1 1 0

1
( , , ) ( , , ) ( , , ) tan 8 , 0,

3
u x y t v x y t w x y t x y tλµ λµ λµ λµ ξ λµ= = = − − + + + >                    (25) 

( )( )2
2 2 2 0

1
( , , ) ( , , ) ( , , ) cot 8 , 0,

3
u x y t v x y t w x y t x y tλµ λµ λµ λµ ξ λµ= = = − − + + + >                    (26) 

( )( )2
3 3 3 0

1
( , , ) ( , , ) ( , , ) tanh 8 , 0,

3
u x y t v x y t w x y t x y tλµ λµ λµ λµ ξ λµ= = = − + − + + + <                 (27) 

( )( )2
4 4 4 0

1
( , , ) ( , , ) ( , , ) coth 8 , 0,

3
u x y t v x y t w x y t x y tλµ λµ λµ λµ ξ λµ= = = − + − + + + <                (28) 

( )( )2
5 5 5 0( , , ) ( , , ) ( , , ) sec 8 , 0,u x y t v x y t w x y t x y tλµ λµ λµ ξ λµ= = = − + − + >                         (29) 

( )( )2
6 6 6 0( , , ) ( , , ) ( , , ) cos 8 , 0,u x y t v x y t w x y t ec x y tλµ λµ λµ ξ λµ= = = − + − + >                        (30) 

( )( )2
7 7 7 0( , , ) ( , , ) ( , , ) sec 8 , 0,u x y t v x y t w x y t h x y tλµ λµ λµ ξ λµ= = = − − + − + <                      (31) 

( )( )2
8 8 8 0( , , ) ( , , ) ( , , ) coth 8 , 0,u x y t v x y t w x y t x y tλµ λµ λµ λµ ξ λµ= = = − − − + − + <                     (32)

From the solutions (25) to (32), we observe that the 

proposed advance exp ( ( ))ξ−Φ -expansion scheme according 

to subsidiary equation (6) gives more valuable explicit form 

solutions to the BKP equation. These solutions would be 

more useful to describe physical mechanism of natural 

phenomena in applied sciences or any varied natural 

instances, where the standard BKP equation is applicable. 

The obtaining solutions are also gives various types of 

solitary and periodic wave solutions according to the 

variation of the additional free parameters. Some of the 

important solitary and periodic wave solutions are described 

and presented in graphically. Solutions ( )1 , ,u x y t , 

( )1 , ,v x y t , ( )1 , ,w x y t , ( )2 , ,u x y t , ( )2 , ,v x y t  and 

( )2 , ,w x y t
 
are presented the exact periodic wave solutions 

according to the fixed values 0.5λ = , 1µ = , 0 0.5ξ = , and
 

0y = . The shape of the periodic solution is shown in Figure 

4. Solutions ( )3 , ,u x y t , ( )3 , ,v x y t , ( )3 , ,w x y t  and 

( )4 , ,u x y t , ( )4 , ,v x y t , ( )4 , ,w x y t
 
are represented the 

solitary wave solutions of peakon type and cupson type 

corresponding to the values 0.25λ = − , 0.5µ = , 0 0.5ξ =
and 0y = respectively. The solitary wave solutions of 

peakon type and soliton type are shown in Figure 5 (a) and 5 

(b) respectively. Solutions ( )5 , ,u x y t , ( )5 , ,v x y t , ( )5 , ,w x y t  

and ( )6 , ,u x y t , ( )6 , ,v x y t , ( )6 , ,w x y t
 
are presented the 

solitary wave solutions of compacton type and singular 

soliton type corresponding to the values 0.25λ = , 0.5µ = , 
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0 0ξ = and 0y = respectively. Compacton is a new category 

of solitons with compact spatial hold up such that each 

compacton is a soliton restricted to a finite core. It has 

remarkable soliton property that after colliding with other 

compactons, they come back with the same coherent shape. 

The solitary wave solutions of compacton type and singular 

soliton type are shown in Figure 6 (a) and 6 (b) respectively. 

Solutions ( )7 , ,u x y t , ( )7 , ,v x y t , ( )7 , ,w x y t  and ( )8 , ,u x y t , 

( )8 , ,v x y t , ( )8 , ,w x y t
 
are presented the solitary wave 

solutions of non-topological bell type and singular soliton 

type corresponding to the values 0.25λ = − , 0.5µ = , 0 0ξ =
and 0y = respectively. The shape of the non-topological bell 

type solitary wave solution obtain from the solution 

( )7 , ,u x y t  is shown in Figure 7. Other figures are 

overlooked for convenience. 

 

Figure 4. Shape of exact peeriodic wave solutions of the solution ( )1 , ,u x y t
 

with 0y = and 5 , 5x t− ≤ ≤ . 

 

 

Figure 5. Shape of exact solitary wave solutions of (a) peakon nature for 

( )3 , ,u x y t  with 3 , 3x t− ≤ ≤  and (b) cupson nature for ( )4 , ,u x y t  with 

10 , 10x t− ≤ ≤ . 

 

 

Figure 6. Shape of exact solitary wave solutions of (a) compacton nature for 

( )5 , ,u x y t  with 1 , 1x t− ≤ ≤  and (b) soliton nature for ( )6 , ,u x y t  with 

3 , 3x t− ≤ ≤ . 
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Figure 7. Shape of exact non-topological bell nature solitary wave solution 

of ( )7 , ,u x y t
 
with 10 , 10x t− ≤ ≤ . 

4. Advantages and Comparison 

From the references [21-24], we observe that the exp (-

Φ(ξ))-expansion method does not give rich solutions to 

comprehend inner picture to the NLEEs. Therefore, in order 

to get more traveling wave solutions and to understand the 

inner structure apparently of the nonlinear physical 

phenomena, in this article we choose the ODE (4) as 

auxiliary equation and their solutions have been used. The 

main advantage of the introduced method is that it offers 

more general valuable and huge amount of exact traveling 

wave solutions with some free parameters. The exact 

solutions have its extensive importance to interpret the inner 

structures of the natural phenomena in mathematical physics, 

chemistry and biology. The explicit solutions represented 

various types of solitary wave solutions according to the 

variation of the physical parameters. In this article, various 

types of solitary and periodic wave solutions are presented 

graphically in Fig. 1 to 7. This method not only re-derives all 

known solutions in a systemic way but also obtains some 

entirely new and more explicit solutions to the nonlinear 

NLEEs. The algebraic manipulation of this method with the 

help of Maple is much easier than the other existing method. 

Sometimes the method gives solutions in disguised versions 

of known solutions that may be found by other methods. 

Many scholar applied different methods for finding the 

traveling wave solutions to the coupled classical Boussineq 

equation and the BKP equation. If we put 1λ = , then the 

solutions 3( , )u x t  and 3( , )v x t  of the classical Boussineq 

equation are equal to the solution 

( )0 0 0

2
( , ) tanh

3
u x t a x a tσ µ µ ξ 

 = + − − − +  
 

 and 

( )2
0 0

2
( , ) sec 1

3
v x t h x a t

µ µ ξ  = − − − + −   
 with 1σ =

which are found in the article [28] and solutions 4 ( , )u x t and 

4 ( , )v x t  of the classical Boussineq equation are also equal to 

the solution ( )0 0 0

2
( , ) coth

3
u x t a x a tσ µ µ ξ 

 = + − − − +  
 

 

and ( )2
0 0

2
( , ) csc 1

3
v x t h x a t

µ µ ξ  = − − + −   
with 1σ =

which are also found in article [28]. The solutions 

8 8 8( ) ( ) ( )u v wξ ξ ξ= =  which are found in the article [32] are 

equivalent to our obtain solutions

7 7 7( , , ) ( , , ) ( , , )u x y t v x y t w x y t= = . It is worth mentioning 

that the (G'/G)-expansion method is special case of the 

extended G'/G)-expansion method. N. A. Kudryashov [34] 

have been investigated that the ( / )G G′ -expansion method is 

equivalent to the well known tanh-method. So, comparison 

our obtain solution with the (G'/G)-expansion method and the 

extended (G'/G)-expansion method is sufficient. Beside this, 

we achieved our solutions via the advance exp(-Φ(ξ))-

expansion method with the auxiliary ODE 

( ) exp( ( )) exp( ( )) 0ξ λ ξ µ ξ′Φ + Φ + −Φ =  while the (G'/G)-

expansion method and the extended (G'/G)-expansion 

method performed with others. It noteworthy to point out that 

some of our solutions are coincided with already published 

results, if the parameters taken particular values which 

authenticate our solutions. Therefore, it can be decided that 

the proposed method is powerful mathematical tool for 

solving nonlinear evolutions equations and all kinds of 

NLEEs can be solved through this method.  

5. Conclusions 

The advance exp(- ( ))ξΦ -expansion method has been 

successfully implemented to construct new generalized 

traveling wave solutions to the classical Boussineq equation 

and the (2+1) dimensional BKP equation. The obtained 

solutions in this article are expressed by the hyperbolic 

functions, trigonometric functions and rational functions. We 

have noted that the advance exp(- ( ))ξΦ -expansion method 

changes the given difficult problems into simple problems 

which can be solved easily. We hope this method can be 

more effectively used to many others NLEEs arising in 

mathematical physics and engineering. The graphical 

representations explicitly reveal the high applicability and 

competence of the proposed algorithm. 

Appendix 

Appendix 1 

Zheng [32] have converted the (2+1) dimensional 

Boussinesq and Kadomtsev-Petviashili equation to ODEs as 

follows: 

Now, we consider the (2+1) dimensional Boussinesq and 

Kadomtsev-Petviashili equation: 
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y xu w=                                       (33) 

x yv w=                                      (34) 

6( ) 6( )t xxx yyy x yq q q qu qv= + + +                 (35) 

In order to obtain the traveling wave solutions of (33), (34) 

and (35), we suppose that 

( , , ) ( ), ( , , ) ( ), ( , , ) ( ),u x y t u v x y t v w x y t w x y c tξ ξ ξ ξ= = = = + − ,                                   (36) 

a, d, c are constants that to be determined later.  

By using the wave variable (36), Eqs. (33)-(35) can be 

converted into ODEs into eq. (18), we obtain the following 

coupled nonlinear ordinary differential equations: 

0u q′ ′− =                                     (37) 

0v q′ ′− =                                     (38) 

2 6 6 6 6 0q cq uq qu vq qv′′′ ′ ′ ′ ′ ′− − − − − =           (39) 

The converted ODE (39) may be incorrect. 

Appendix 2 

From the article [36], we have also observed that the 

converted ODEs 

0

0 0

2 6 6 0

U W

V W

W cW UW VWξξ

− =
− = = 
− − − = 

                  (40) 

according to wave variable transformations 

( , , ) ( ),U x y t U ξ=  ( , , ) ( ),V x y t V ξ=  ( , , ) ( )W x y t W ξ=  

where, x y c tξ = + − may be incorrect.  
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