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Abstract: This paper deals with the modeling and simulation study of Commensal-host species system together with the 

inclusion of parasite population. The model comprises of three populations viz. Host, Commensal and Parasite. The 

Commensal population gets benefit from Host population but the former do not do any harm to the latter. The parasite 

population gets benefit and also do harm to Host population. However, the Commensal population only harms the parasites. 

The mathematical model is comprised of a system of three first order non-linear ordinary differential equations. Mathematical 

analysis of the model is conducted. Positivity and boundedness of the solution have been verified and thus shown that the 

model is physically meaningful and biologically acceptable. Scaled model is constructed so as to reduce the number of model 

parameters. Equilibrium points of the model are identified and stability analysis is conducted. Simulation study is conducted in 

order to support the mathematical analysis. In the present model the Commensal population lies higher and the parasite 

population lies below respectively the host population. This fact is well supported by the mathematical analysis as well as 

simulation study. The results of analysis and simulation are presented and discussed lucidly in the text of the paper. 
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1. Introduction 

It has been the general observation that populations can 

sometimes undergo drastic changes in their abundance. These 

changes are not only unexpected but also are equally difficult 

to explain in simple manner either theoretically or 

empirically [1-2]. Many species have been driven to extinct 

and many others are at the verge of extinction due to several 

reasons such as overexploitation, predation, and the like [3]. 

In nature populations may interact in different ways with one 

another during their lifetime and even they may undergo 

from one type of interaction to another. 

The species populations in an ecosystem will interact in 

different ways and these interactions can be regarded as 

positive (+), negative (-) or neutral (0). For instance the 

interactions such as mutualism and commensalism are 

positive interactions while those such as intra and inter-

specific competitions, parasitism and predation are 

considered as negative interactions.  

Mathematical representations have been developed to 

address all these kinds of interactions. 

In general, in case of a two-species interaction the 

mathematical formulation can be expressed by a system of 

two equations as 

���
�� � r�N� 	1 � ���


�
� � a�� ���


�
��                    (1) 

Here in (1) �, � � 1, 2 but  � � �.  The parameters �� and 

��represent the intrinsic growth rate and carrying capacity of 

the species  �respectively. The variables   � and   ! represent 

the population densities of the species  �  and � respectively. 

The quantity "�!  is the interaction coefficient between 

species � and �. 

Some classical forms of the models addressing two 

interacting populations are represented by these types of 

system of equations depending on the signs of the interaction 
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coefficients"�! . In general, the positive sign of interaction 

coefficient indicates commensalism and mutualism while the 

negative sign of that indicates competition and predation. 

Also, the negative interaction includes all predator-prey and 

parasite-host relationships [4, 5]. In general, the Host-

Parasite interaction or parasitism is referred to as negative. 

According to equation (1), in absence of the species �, the 

species � will grow logistically and reaches its equilibrium 

value or carrying capacity �� over the timefrom any positive 

initial density and continues to persist for ever. From this the 

following two facts can be observed: (i) the interactions 

between the species� with �  are facultative. That is, species � can exist with orwithout being associated to species j and 

(ii) density-dependent mechanisms of species � alone govern 

the dynamics of the species �. 
However, it is well known that some symbiont is 

biologically incapable of existing without a partner: Let it be 

a mutualistic or a parasite or a predator. If the species � cannot persist alone in absence of species  �,  thenthe 

former’s population size  � is expected to decrease 

exponentially down to zero. To account the absence of 

species �, the equation (1) is modified by setting N� = 0 as 

����� = r�N� $1 − ���
� �%                           (2) 

The literature on the mathematical modeling of the 

negative interactions is very abundant [6-9]. But the 

modeling of positive interactions, particularly 

commensalistic ones have generated interest among 

researchers in recent years. 

Historically, the mutualistic interaction model that is 

described by Monod function form is elucidated by the 

following systems of ordinary differential equations: 

��&�� = r'N' $1 − �&
&()&*�*%                     (3) 

��*�� = r+N+ $1 − �*
*()*&�&%                     (4) 

Now based on these mutualistic model equations (3) – (4), 

in the present work it is proposed to derive an ecological 

model that describes commensalism. 

Recall that commensalism (0, +) is a relation in which one 

of the species known as the Commensal gets benefit without 

harming or affecting the other called the host. 

The reduction of mutualism to commensalism leads to 

setting of conditions on interaction coefficients as "'+  = 0 and  "+' >  0 . Thus, the mutualistic model becomes a 

commensal model and the system (3) and (4) reduces to the 

form as 

��&�� = r'N' $1 − �&
&%                        (5) 

��*�� = r+N+ $1 − �*
*()*&�&%                    (6) 

This model represents increase of N+ population when N' 

increases. That is, the growth of N+ population is somehow 

proportional to N'. However, the growth of N+  will neither 

harm nor influence in any manner that ofN'. 

The main objective of the present research is to study the 

dynamical behavior of a negative interaction between species 

assuming that the growth of commensal follows Monod 

functional response [10-11]. 

The paper is structured in a systematic manner. In section 

2, the basic assumptions and mathematical formulations of 

the model are presented. In section 3, the results on two-

dimensional sub-communities are briefly presented. The 

modeling is extended to three-dimensional communities and 

incorporated mathematical analysis and other results 

including stability analysis of equilibrium points. Finally, 

numerical examples are carried out and concluding remarks 

of the study with a brief discussion is presented in Section 4. 

2. Basic Assumptions and Model 

Formulation 

Mathematical ecology and epidemiology are major fields 

of study that have been separately treated by different 

researchers [3, 12-13]. Since transmissible disease in 

ecological situation cannot be ignored, it is very important 

from both the ecological and the mathematical points of view 

that the dynamics of ecological populations be studied 

subjected to epidemiological factors. A large number of 

studies have been conducted in this field of research [14-15]. 

In the common life, the disease may spread among the host 

and the commensal. Mathematical model plays an ever more 

important role in the study of eco-epidemiology. 

Furthermore, it provides understanding of the underlying 

mechanisms that influence the spread of disease and in the 

process it also suggests control strategies [6, 16-20]. 

The present study is conducted in a systematic way. 

Initially, simple mathematical models for a two-dimensional 

Commensal-host and host-parasite systems are framed 

separately. Finally, the model is extended to three-

dimensional case which is of prime importance of this study 

[21]. The model equations for two species host-Commensal, 

host-parasite systems and then for three species system will 

be presented in terms of system of first order non-linear 

differential equations. 

Let us start with considering the interaction between two 

species in which commensal would be benefited without 

harming the host. Both the commensal and host populations 

would follow logistic functional growths if the two 

populations live separately. However, in presence of host the 

logistic growth of commensal population would be 

influenced by Monod response function. The population 

dynamics of such commensal-host system can be 

mathematically modeled as  

�-�� = r'x �1 − -
&�  + �/&-01&(-�                       (7) 

�0�� = r+y �1 − 0
*�                               (8) 

Let us continue with considering the interaction between 
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two species in which parasite would be benefited by harming 

the host. The host population grows following logistic 

function and the parasite population decreases proportional to 

its size if the two populations live separately. However, if 

both the host and parasite populations live together their 

growths will be influenced by Monod response functions. 

The population dynamics of such host-parasite system can be 

mathematically modeled as  

�0
�� � r+y �1 � 0


*
�  � �/*03

1*(0�                 (9) 

�3
�� � � ∂z � �/603

16(0�                     (10) 

In this study, considering and carefully studying the 

mathematical modeling of two dimensional systems of 

commensal-host and host-parasite, the concept is extended to 

the three dimensional commensal-host-parasite systems. 

Hence, the three dimensional commensal-host-parasite 

systems can be mathematically modeled using first order 

nonlinear ordinary differential equations as follows: 

 �-
�� � r' x �1 � -


&
�  � �/&-0

1&(-� � γ g9x, z:          (11) 

�0
�� � r+ y �1 � 0


*
� – f9y, z:                 (12) 

�3
�� � � µ z � k9z, y: � αh9z, x:              (13) 

Here in (11-13), the functionsA9y, z:and k9z, y: represent 

the interactions between host and parasite populations where 

as g9x, z: and h9z, x:  representthe interactions between 

commensal and parasite populations with varying 

coefficients of interactions. 

Majority of the models assume that the parasite population 

increases the death rate of the host population and enhance 

the commensal population. This fact is visualized in the 

model equations too. 

Table 1. Notations and descriptions of the model parameters. 

Notation Description 

�', �' Growth rate and carrying capacity of commensal population 

9�' �'⁄ : Self inhabitation coefficient of commensal population 

�+, �+ Growth rate and carrying capacity of host population 

9�+ �+⁄ : Self inhabitation coefficient of host population 

C' The interaction coefficient of commensal-host populations 

C+, CD The interaction coefficients of host-parasite populations 

E Total death rate of parasites 

F' Response rate between host and commensal 

F+, FD Response rates between host and parasite 

G Interaction coefficient between commensal and parasite 

The model variables  H9I:, J9I: and  K9I:  represent the 

sizes of commensal, host and parasite populations 

respectively at any time t. 

The three model equations for 9dx/dt:, 9dy/dt: and 9dz/
dt: are constructed using several components, both variables 

and parameters, and each of which represents specific 

biological assumptions. 

The simple schematic interactions among the model 

variable is shown in the figure below. 

 
Figure 1. Interaction and flow diagram of the three species system. 

3. Two Dimensional Sub-systems 

Now the commensal-host and parasite-host models are 

stated in what follows.  

The ecological system under consideration consists of 

three species namely (i) Commensal population O9I: (ii) host 

populationP9I: and (iii) parasite population Q9I:. 

The Commensal-Host system: The host commensal model 

with type I functional response and carrying capacities is 

expressed as [21] 

�-
�� � r'x �1 � -


&
�  � βxy                        (14) 

�0
�� � r+y �1 � 0


*
�                             (15) 

However, this model does not include any other external 

forces like parasites. To fill the gap the present study 

modifies this model by including parasite population. 

The classical Lotka – Volterra model describes exponential 

growth of host and exponential decay of parasite populations. 

Also, the model equations accommodate Holling type I 

functional responses. Recall that, Holling type I functional 

response is linear. The simple form of the Lotka – Volterra 

model is given in terms of ODEs as [6, 22] 

�0
�� � y 91 � εz:                           (16) 

�3
�� � z9� ∂ � εky:                         (17) 

The classical Lotka – Volterra model is structurally 

unstable since the model allows the population to grow 

indefinitely and this is very unnatural and unrealistic. 

However, it can be used as groundwork for constructing 

more realistic representations [23]. To overcome this 

instability carrying capacity is required to be incorporated. 

The, interaction between host-parasite system can be 

modified with the inclusion of carrying capacity as 

�0
�� � r+y �1 � 0


*
� – εyz                        (18) 

�3
�� � � ∂z � εkyz                           (19) 

In the modified model the response function is still linear. 

But type II response is more realistic than type I functional 
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response. Thus, the model can be further modified by 

replacing type I functional response by type II response as 

�0
�� � r+y �1 − 0
*� – εf(y, z)                       (20) 

�3�� = − ∂z + βg(y, z)                           (21) 

The model (20) can be interpreted that the infected hosts 

are immediately eradicated as it is represented by the 

functional response  – εf(y, z) in the host equation. This 

implies that the infected hosts have no ability to recover from 

the disease. 

Now, in the present work the two species systems (14), 

(15), (20) and (21) are combined and formulated a three 

species system with the incorporation of the following 

features: (i)carrying capacities and functional responses are 

assigned to both the species: Commensal and Host (ii) no 

recovery is possible for the Host species once they get 

infected. It is also possible that the commensal species will 

change their behavior in a long run of time and act as 

parasites. However, this possibility is not considered here in 

the present study and the authors plan to take it up as their 

next study. 

3.1. The Three Dimensional Systems 

It is well known that Epidemiology and Ecology are two 

major and different fields of research. There are many 

epidemiological models and many ecological models, but 

certainly few models of the eco-epidemiology [1-3, 12-13, 

23-24]. 

The presence of logistic and functional response terms in 

the host equation can be interpreted s the natural growth rate 

and mortality rate due to parasites respectively. Here arise 

three cases: (i) if the logistic term dominates the functional 

response term the host population grows with positive growth 

rate (ii) if both the logistic and the functional response terms 

are equal then growth rate of the host population becomes 

zero. That is the host population size remains constant and 

(iii) if the functional response term is allowed to dominate 

logistic term then the host population grows with negative 

growth rate and eventually the population size extinct. This 

situation is not desirable. This possibility can be avoided by 

decreasing parasite population through the inclusion of 

parasite-commensal interaction [10- 11]. 

A three dimensional host–commensal-parasite system is 

formulated here to describe the host–parasite interactions. 

The model also includes the logistic growth rates for host and 

commensal populations. The total mortality rate of parasites 

due to natural death, increment of commensal and reduction 

of hosts is also accommodated. 

In view of the above, it is clear that the introduction of 

commensal population into host-parasite system plays a 

significant and complex role in the dynamical advancement 

of host-parasite interaction [11]. 

The objective of this study is to identify the influence of 

commensal on the dynamics of host-parasite interaction in 

the context of eco-epidemiology. The model, including all the 

aforementioned assumptions, for commensal-host-parasite 

interaction is constructed by combining systems (14), (15), 

(20) and (21). It can be expressed as a system of differential 

equations as follows: 

�-�� = r'x �1 − -
&�  + �/&-01&(-� + γxz                   (22) 

�0�� = r+y �1 − 0
*�  − �/*031*(0�                        (23) 

�3�� = −μz + �/60316(0� − αzx                          (24) 

Here in this system, the initial conditions of the model 

variables areOT >  0, PT >  0, QT >  0. 

To reduce the number of model parameters and to 

determine which combinations of parameters control the 

behavior of the system, the system (22), (23) and (24) is 

dimensionalize with the following scaled parameters: 

r = �r'r+� ; r' ≪ r+;  0 < � < 1;  X = � 1k'� ;  β = � β'r'α'� ; h' = � 1α'� ; 
  δ = �Z [&� ;  h+ = � '
*� ;  k = � /*[*1*� ; m' = � '1*� ;  σ = � μ[&� ;  ε = � /6[&16� ;  

m+ = � 1αD� ;  θ = � αr'� 

After manipulation the system (22), (23) and (24) takes the 

form in terms of scaled quantities as  

�-�� = x − mx+  + � /-0'(_&-� + δxz                 (25) 

� �0�� = y − h+y+  − � 
03'(`&0�                    (26) 

�3�� = −σz + � a03'(`*0� − θzx                    (27) 

Further, all the model parameters and hence the scaled 

parameters are supposed to be positive constants.  

3.2. Dynamical Behavior of the System 

Since the state variables O, P and  Q represent population 

sizes, positivity implies that the population sizes never 

become negative. The boundedness may be interpreted as a 

natural restriction to the growth of populations as 

consequences of limited resources. 

Here, some basic dynamical properties of the system are 

discussed subjected to positive initial conditions. 
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Let b( denote the set of all non-negative real numbers 

and  bD( = cH ∈ bD: H = (O, P, Q) "fg O, P, Q ∈ b(h . When 

the functions on the right-hand of the model equations (22), 

(23) and (24) are denoted by a vector as  i = (A', A+, AD) then 

clearly i ∈ j(b(D ). 

The fundamental theorem of existence and uniqueness 

assures the existence and uniqueness of the solution for the 

model system together with the given initial conditions. 

3.2.1. Positivity of the Solution 

Here the positivity of each population size such as O(I), P(I) and Q(I) is verified. These system variables must have 

the positive values in order to be biologically meaningful. 

The positivity of these biological or system variables is tested 

and the results are presented in the form of a lemma as 

follows: 

Lemma 1 Every solution of system (22), (23) and (24) 

together with the positive initial conditions exists in the 

interval [0, ∞) and they are non-negative. That 

is, O(I), P (I) and z (I )≥ 0) for all Im  0. 

Proof For  I ∈ [0, o] , as the system is continuous and 

locally Lipschitzian C, then the solution O(I), P(I) and Q(I) 

of the system with given initial conditions exists and unique 

on [0, o] where 0 < o < +∞. 
Verifying the positivity of O(I): The commensal equation 

of the system (22) is solved analytically and its solution is 

obtained as 

x(t) = xT exp 	t ur' �1 − xk'� + � β'yα' + x� + γzv dt� 

The exponential function is always non-negative and the 

initial commensal populationxT  is assumed to be positive. 

Therefore, O(I) > 0 for allI ≥ 0.  

Verifying the positivity of P(I): The host equation of the 

system, (23) and is solved analytically and its solution is 

obtained as 

y(t) =  yT exp 	t ur+ �1 − yk+� − � β+zα+ + y�v dt� 

The exponential function is always non-negative and the 

initial host population yT  is assumed to be positive. 

Therefore, P(I) > 0 for allI ≥ 0.  

Verifying the positivity of Q(I): The parasite equation of 

the system (24) is solved analytically and its solution is 

obtained as 

z(t) = zT exp 	t u� βDyαD + y� − αx − μv dt� 

The exponential function is always non-negative and the 

initial host population zT  is assumed to be positive. 

Therefore, Q(I) > 0 for allI ≥ 0. 

Hence, all the solutions of the system (22), (23) and (24) 

are positive for all t≥ 0 under the considered positive initial 

conditions. 

3.2.2. Boundedness of the System 

In this section, all the solutions of system (22), (23) and 

(24) are shown to be bounded. The boundedness of the 

system is presented in the form of a lemma as follows: 

Lemma 2 All solutions of the system (22), (23) and (24) 

with positive initial conditions are bounded as x ≤ (1 m⁄ )[1 + βk+ + δc], y ≤ k+ and z ≤ c. Here c is strictly a 

positive constant. 

Proof: Boundedness of the host population: To show that 

the host population is bounded it is appropriate to start with 

the scaled host equation from the model system.  

Thus,  

� dydt = y − h+y+  − � kyz1 + m'y� 

It is true that the term  [kyz (1 + m'y)⁄ ] is positive since 

each member of it is a positive quantity. Thus, without loss of 

generality the host population equation can be re-expressed 

as: 

� gPgI ≤ P − ℎ+P+ 

Performing of some simple algebraic manipulations and 

also using partial fractions reduces it to; $ _*'z_*0 + '0%  dy ≤
�'{� dt  

Application of integration reduces it to: log $ ~'z_*0% ≤
�'{� t + log c' 

Here the quantity c'is an arbitrarily integral constant and 

must be positive. Applications of anti-logarithm lead the 

inequality to: [P (1 − h+y)⁄ ] ≤ c'e� [⁄  or  

Equivalently  y�1 + c'h+e� [⁄ � ≤ c'e� [⁄  

P ≤ c'e� [⁄
[1 + c'h+e� [⁄ ] 

P ≤ c'[ez(' [⁄ )� + c'h+] 
Now ez(' [⁄ )� → 0 as I → ∞. Thus, the inequality for Ptakes 

the form as: P ≤ '_*. 

But  h+ = � '
*� . That is P ≤ k+ . Therefore the host 

population P(I)is bounded above by its carrying capacityk+. 

Boundedness of the parasite population: To show that the 

parasite population is bounded it is appropriate to start with 

the scaled parasite equation from the model system. 

Thus, 

dzdt = −σz + � εyz1 + m+y� − θzx 

It is true that the term(θzx)is positive since each member 

of it is a positive quantity. Thus, without loss of generality 

the parasite population equation can be re-expressed as: 

dzdt ≤ −σz + � εyz1 + m+y� 
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�1z� dzdt ≤ −σ + � εy1 + m+y� 

But, � a0'(`*0� = �/6[& � � 016(0� ≤ �/6[& �since� 016(0� ≤ 1.  

Thus, the inequality can be re-expressed as 

�1z� dzdt ≤ −σ + �βDr' � 

On applying integration, it can be obtained that  log z ≤ $−σ + �β6[&�%  t + log c. 

This equivalent to: z ≤ c e$z� (��6�& �% �
. 

Here the quantityc is an arbitrarily integral constant and 

must be strictly positive due to logarithmic function. 

Now there arise three cases, namely the exponent may be 

negative or positive or zero. These cases as analyzed as 

follows: 

(i) If $−σ + �/6[&�% < 0 then as t → ∞ the exponential term 

takes a value zero and thus to get  z ≤ 0 . But this, 

having negative parasite population, is biologically not 

feasible. Hence this possibility is not considered. 

(ii) If $−σ + �/6[&�% > 0 then as t → ∞ the exponential term 

takes a value ∞ and thus to get z ≤ ∞. But this, having ∞ parasite population, is biologically not feasible. It is 

an unbounded case. Hence this possibility is not 

considered. 

(iii) If $−σ + �/6[&�% = 0 then as t → ∞ the exponential term 

takes a value 1  and thus reduces to  z ≤ c.  Hencethis 

possibility is not considered. Thus the parasite 

population z is bounded above by an arbitrarily positive 

constant c. 

Boundedness of the commensal population: To show that 

the commensal population is bounded it is appropriate to start 

with the scaled commensal equation from the model system. 

Thus, 

dxdt = x − mx+  + � βxy1 + h'x� + δxz 

dxdt = x 	1 − mx + � βy1 + h'x� + δz� 

It has been already shown that the population sizes of host 

and parasite are bounded. That is, y ≤ k+and z ≤ c. Here it 

can be observed that δz ≤ δc and� /0'(_&-� < CP ≤ Ck+ . In 

view of these observations the commensal equation takes the 

form as: 

dxdt  ≤  x[1 − mx + βk+ + δc] 
dxdt  ≤  x[q − mx ] 

Here � = [1 + βk+ + δc] is strictly a positive quantity. 

Applying partial fraction and integrating: log $ -�z`-% ≤ �I +log �+ 

Here the quantity c+is an arbitrarily integral constant and 

must be strictly positive due to logarithmic function. 

	 xq − mx� ≤ �+��� 

x ≤ �+����
1 + m �+��� 

Thus, x ≤ �*�����(` �* 

It can be observed that �z�� → 0 as I → ∞and thus x ≤ �̀
. 

That is, the commensal population is bounded above 

byx ≤ � '̀ � [1 + βk+ + δc]. 
Therefore, the solution of the model system (22-24) is 

bounded. That is x(t) ≤ � '̀ � [1 + βk+ + δc] , y(t) ≤ k+ and z(t) ≤ c. 

3.3. Existence of Equilibrium Points 

The scaled system of model equations now can be 

expressed as: 

dxdt = x 	1 − mx + � βy1 + h'x� + δz� 

� dydt = y 	1 − h+y − � kz1 + m'y�� 

 dzdt = z 	−σ + � εy1 + m+y� − θx� 

The equilibrium points of the system can be obtained by 

setting 
���� = �~�� = ���� = 0 in the model equations. 

This leads to the following optional relations: 

x = 0                                      (28) 

or, $1 − mx + � /0'(_&-� + δz% = 0                  (29) 

y = 0                                      (30) 

or, $1 − h+y − � 
3'(`&0�% = 0                  (31) 

z = 0                                      (32) 

or, $−σ + � a0'(`*0� − θx% = 0                  (33) 

The solutions of these optional relations can be the 

equilibrium points. There are eight possible combinations of 

the relations. These combinations and their solutions or 

equilibrium points are as mentioned below: 
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Table 2. Possible combinations of the solution of the systems. 

Combination of relations Equilibrium point 

(28) (30) (32) �T 
(28) (30) (33) �T 
(28) (30) (32) �' 
(28) (31) (32) �+ 
(29) (31) (32) �D 
(29) (31) (33) �� 
(29) (31) (33) �� 
(29) (30) (33) Not biological 

It can be observed that the first two combinations lead to 

the same equilibrium point�Twhile the last combination leads 

to biologically infeasible solution. Thus, six equilibrium 

points are possible. Now the coordinates of these six possible 

equilibrium points as given below: 

(1) ET90, 0, 0) Trivial steady state 

(2) E' � '̀ , 0, 0�Only the commensal population exists 

(3) E+ �0, '_* , 0�Only the host population exists 

(4) ED �xD, '_* , 0� Both commensal and host 

populations exist.  

This can be interpreted as a disease free equilibrium 

point. Here, xD =  _*(_&z`)(�_&*(`z_&)*(�` _&_*(_*(/)
+ ` _&_* . 

Note that the expression for  xDis valid as long as the 

parameters satisfy the condition m ≤  h'. 

(5) E�(0, y�, z�) Both host and parasite populations 

exist.  
(6) Here y� = � �az�`* � and  z� = �'
� $1 + � ��&a z � `* �% $1 −

� ��*a z � `* �% . Note that the expression for y�  is valid 

if ε > � m+ . Similarly, the expression forz�  is valid 

if ε > �(m+ + h+). 

(7) E�(x�, y�, z�)All the three viz., commensal, host 

and parasite populations exist. 

where x� = a0��('(`*0�) − �� , z� = ('(`&0�)('z_*0�)
 - ATy�D + A'y�+ + A+y� + AD = 0 , where the values 

of A�, i = 0,1,2,3. But to solve this it is tedious, thus each 

coefficient is considered as a constant and they are defined as 

follows: 

AT = kTnD − n'k' + n+;n' = θσh+m'+, n+ = θ+kβm'(1 + σ), nD = θ+σkβ,  

A' = n� − n'n�;n� = θ+βσm'+,n� =  m'(θσ − σ+h+), 

A+ = kTk' + nn� + nD;kT=2θσm' − θσh+ − θσh+m' + m+kσ + kθm' − kmε. 

AD = nk', n= θσ + kmσ + kθ, k' = θσ − h'σ+ + h'σε. 

Variation matrix 

To analyze the stability of the equilibrium points the community matrix called Jacobian matrix is determined as follows:  

Let �-�� = h(x, y, z), �0�� = f(x, y, z)and �3�� =  g(x, y, z). Also, the components of the Jacobian matrix are given 

by: J =  
¤
¥¦

§_§- §_§0 §_§3§¨§- §¨§0 §¨§3§©§- §©§0 §©§3ª
«¬ 

But in case of the present model the functions are given by h = x − mx+  + β-0'(_&- + δxz,  

A = �'{� $y − h+y+  − � 
03'(`&0�%and  g = −σz + a03'(`*0 − θzx and thus the Jacobian matrix takes the components as 

J =
¤
¥¦

1 − 2mx + /0('(_&-)* + δz /-'(_&- δx
0 �'[� $1 − 2h+y − 
3('(`&0)*% − 
0'(`&0−θz a3('(`*0)* −σ − θx + a0'(`*0ª

«¬                                        (34) 

3.4. Analysis of the System 

Here the stability of the model at the equilibrium point 

(22), (23) and (24) is analyzed. The local stability of the 

steady state is determined based on the nature of the 

eigenvalues of the variation matrix. 

Theorem 1 The trivial equilibrium point ET(0, 0, 0)is 

unstable. 
Proof The eigenvalues of the variation matrix 

(JET)at ETare given by; g�I(­T − ®¯ )=0. Thus, ®' = 1 > 0, ®+ = '{ > 0 and  

®D = −σ < 0. Since ®' = 1 > 0, the equilibrium point ET is 

unstable. 

Theorem 2. The equilibrium point  E' � '̀ , 0, 0� is 

unstable. 

Proof: The Jacobian matrix at equilibrium  E'gives us the 

eigenvalues; ® = −1 < 0, '{ > 0 , and −σ − °̀ < 0 . Then,  E' is unstable whenever it exists. 

Theorem3The equilibrium point  E+(0, y∗, 0) is unstable. 

Proof The characteristic equation of the variational matrix 

(JE+)is given by; 
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det(J' − λI)=0⟹(1+ /_* − λ )(−1− λ)( −σ + a_*(`* − λ)=0 

⟹ λ' = 1 + µ�* , λ+ = z'[ , λD = −σ + a_*(`* . Since ®' >0,the equilibrium point E+ is unstable.  

Theorem4The equilibrium point  ED �xD, '_* , 0� is 

locally asymptotically stable if  H > 1 and · > a_*(`* , 

otherwise it is unstable. 

Proof: The Jacobian matrix at equilibrium  EDgives us the 

eigenvalues; λ' = 1 − H,  λ+ = −1 and λD = −σ − θ ¸z¹&+ +a_*(`* where º =  X(b − »') + µ
�*¼'(�&�½�¾&* �¿* , »' = �z�&��& . 

b = �h'+(m − h')+ + 4m h'h+(h+ + β)
m h'h+ , · =  σ + θ R − l'2  

Now, λ' < 0, when H < 1 ,this implies that H >1 when  X > ℎ' . Moreover,λD < 0 whenever 
ε_*(`* < · and 

also X > ℎ'. 

Thus  ED  is stable when these conditions are satisfied 

otherwise unstable. 

Theorem5. The equilibrium point E�(0, y�, z�) is 

stable. 

Proof: The characteristic equation of the variation matrix 

(J E�) is given by; 

(1 + βpD + δv − λ) �1 − 2h+pD − 
ÃÄ& − λ� �−σ + a�az�`&(`*� − λ�=0                                                  (35) 

pD = /�az�`&,p' =  ¼1 + m' � �az�`*�¿+ , Å =�Æ
� �a*za�`&z�a_* (az�`*)* �. 

⟹ λ' = 1 + pD + δv, λ+ = 1 − 2h+pD − 
ÃÄ& , λD = −σ + a�az�`&(`*�; 

λ' < 0, when m' > a�,λ+ < 0 when b > 1 and ε > �(m+ + h+) where R = 2h+pD + 
ÃÄ&; λD < 0, when m' < m+. 

Therefore E�(0, y�, z�)is stable. 

Theorem 5. The interior point E�(x�, y�, z�)is stable when È > ��Éz�*�. 

Proof: The variational matrix of E5 at the equilibrium point takes form as 

­ = Ê"'' "'+ "'D0 "++ "+D"D' "D+ "DD
Ë; Where,"'' = 1 − 2Xx� + � µ~∗

('(�&-�)*� , "'+ = � µ-�'(�&-�� 

"'D = Ìx�, "++ = �'[� �1 − 2ℎ+y� − Í3�('(�&0�)*�,"+D=− � Í0�'(�&0��;"D' = −Îz�,"D+ = � É3�('(�*0�)*�,"DD =  −� − Îx� + É0�'(�*0�; 

The characteristic equation gives; 

®D + Ï®+ + �® + � = 0;                                                                             (36) 

Where Ï = ("''+"+++"DD) > 0, � = "''"DD+"''"+++"++"DD−"'D"D' > 0 and 

� = "++"D'"'D−"'+"+D"D'> 0 when  È = PÐ > � ��Éz�*��. 
Therefore, all the roots of equation (36) will have negative 

real roots if È = PÐ and by Hurwitz Routh criteria of sufficient 

condition for stability, E�(x�, y�, z�) is stable. 

4. Numerical Simulations 

Numerical examples or simulation study is used to confirm 

and support the results of mathematical or theoretical 

analysis. 

That is, in order to verify the theoretical predictions of the 

model the numerical simulations are carried out. For that 

purpose a set of biologically valid parametric and initial 

values are used. 

All parameter values chosen here are realistic and at the 

same time they obey the stability conditions.  

The pictorial representation of the simulation study of 

population dynamics of host-parasite model in absence of 

commensal population is given in Figure 2. 
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Figure 2. Dynamics of host-parasite populations in absence of commensal. 

In Figure 2 the parametric values used are, h+ � 0.020, 

k � 0.500, m' � 0.200, σ=0.9, ε � 0.08, m+ � 0.60. 

Figure 2 shows the population dynamics of two dimensional 

host-parasite systems in absence of the commensal population. It 

is expected that the host population grows logistically but decays 

due to parasites. Similarly, the parasite population decays 

naturally but grows due to host. In the figure three phases of 

population dynamics are observed: (i) Phase 1 is the time 

interval from origin to the time of occurrence of maximum value 

for P (ii) Phase 2 is the time interval from the occurrence of 

maximum value for P to that for Qand (iii) Phase 3 is the time 

interval from the occurrence of maximum value for Q. In phase 1, 

both host and parasite populations increase. In phase 2, the host 

population decreases while the parasite population increases. In 

phase 3, both host and parasite populations decrease. 

The following observations can be made from Figure 2: 

(i) The parasite population is increasing since the 

availability of host population is also increasing. This 

fact is being supported by the population curves in the 

figure 2in Phase 1. 

(ii) The host population is decreasing since the parasite 

population is increasing. This fact is being supported 

by the population curves in the figure 2 in Phase 2. 

(iii) The parasite population is decreasing since the 

availability of host population is also decreasing. This 

fact is being supported by the population curves in the 

figure 2 in Phase 3. And once the parasite population 

decreases the host population would be sustain to 

alive.

 

Figure 3. Extinction of parasite population or disease free situation. 
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In Figure 3 the parametric values used are m=0.084, β �

0.219, h' � 0.185, δ � 0.242 , σ =0.169,  � � 0.191, h+ �

0.344, k � 0.371, m' � 0.64, m+ � 0.461 , θ � 0.478,  ε �

0.382 

Here as the time progresses population size of the parasite 

extinct and the population sizes of both host and commensal 

converge to their respective carrying capacities. It is a disease 

free situation. But, extinction of any population is not desirable. 

Thus, the parametric values used here are not satisfactory. 

 

Figure 4. Parasite populations lying near to zero or less disease situation. 

In Figure 4 the parametric values used are m=0.219, β �

0.247, h' � 0.264, δ � 0.146 ,  � � 0.107, h+ � 0.275, k �

0.292, m' � 0.421 , σ � 0.219 , ε � 0.933, m+ � 0.635 , 

θ �0.719 

Here as the time progresses population size of the parasite 

stays closer to zero and the population sizes of both host and 

commensal converge to their respective carrying capacities. 

It is not a disease free situation but, less disease situation. 

 

Figure 5. Abnormal population of parasite or high disease situation. 
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In Figure 5 the parametric values used are m=0.9,  β �

0.691, h' � 0.096, δ � 0.079 ,  � � 0.298, h+ � 0.466, k �

0.483, m' � 0.640 , σ � 0.764 , ε � 0.876, m+ �

0.854,θ �0.371. 

Here as the time progresses population size of the parasite 

increases higher and the population sizes of both host and 

commensal converge to their respective carrying capacities. 

In this case the host population is dominated by both 

commensal and parasites. That is the dependents are more. 

Also, the disease is more in the system. However, this 

dynamics appears not interesting. 

 

Figure 6. Balancing sizes of populations. 

In Figure 6 the parametric values used are m=0.882, β �

0.107, h' � 0.14, δ � 0.837 ,  � � 0.202, h+ � 0.135, k �

0.882, m' � 0.826 , σ � 0.404 , ε � 0.798, m+ �

0.258, θ �0.674. 

Initially the population sizes fluctuate more but as the time 

progresses they converge to their optimum or stable values. 

Ultimately the population sizes maintain some balance 

among themselves. Hence, the dynamics shown in this 

simulation are highly accepted. The figure also supports that 

the interior equilibrium point is stable. 

5. Conclusions 

 In the present study the population dynamics of a three 

dimensional commensal-host-parasite system have been 

taken up for investigation. A mathematical model for this 

three-dimensional system is developed by studying carefully 

and incorporating the futures of two-dimensional systems. 

The positivity and boundedness of the model variables are 

verified and hence shown that the newly developed three-

dimensional system is biologically valid. To reduce the 

model parameters and to highlight the more important 

parameters, the scaled parameters have been introduced and 

the scaled model equations are constructed. Six equilibrium 

points have been identified and following Jacobian matrix 

method their stability is tested. Though the calculation of 

interior equilibrium point involves very complex algebraic 

operations, it appeared that it is stable. However, the 

simulation study conducted promises that the interior 

equilibrium point is stable. In this paper, the model presented 

here only involves commensal, host and parasite, and only 

considers the case that the Monod type responses function. 

It is interesting to consider the interaction between multi-

commensal, multi-hosts and multi-parasites and the other 

interaction of the parasites in the model, and study the 

dynamical behaviors of the multi-hosts and multi-parasites 

system. Beside this, in the model harvesting rates as well as 

recovery of the population is not assumed. These 

assumptions will be considered in a future study. 

In the present model the commensal has all the three 

positive growth rates due to nature, host and parasite; the 

host grows naturally but decays due to parasite; the parasite 

grows due to host but decays naturally and due to 

Commensal. In other words it can be put as; 

Commensal has no negative growth rate; Host has one 

negative growth rate and the Parasite has two negative 

growth rates. Hence the following results:  

(i) The population size of Commensal always lies above 

that of both the host and parasite. This fact is well supported 

by the simulations of the figures (3) to (6). 

(ii)Though the Commensal population lies higher, the host 

and parasite compete for the second position.  
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(iii) In case if parasite dominates host i.e., more disease 

situation, the parasite appears in the second position i.e., 

Commensal-parasite-host pattern occurs. In general, this 

situation is not that much appreciated. 

(iv) In case if there is either no or less disease i.e., no or 

less parasites, the host appears in the second position i.e., 

Commensal-host-parasite pattern occurs. This fact is seen in 

the simulated figures (3), (4) and (6). This pattern of the 

species is most expected and appreciated. 
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