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Abstract: Fisher, McKenna, and Boyer showed that if a graph G is hamiltonian, then its Mycielski graph µ(G) is hamitonian. 

In this note, it was shown that for a bipartite graph G, if its mycielski graph µ(G) is hamiltonian, then G has a Hamilton path. 
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1. Introduction 

All graphs considered in this paper are finite and simple. 

For notation and terminology not defined here, we refer to 

West [16]. Mycielski [13] found a kind of construction to 

create triangle-free graphs with large chromatic numbers. For 

a graph G  on vertices { }n21 v,,v,vV ⋯= , the Mycielski graph 

( )Gµ  of G  is defined as  

( )( ) { } { }zyyyxxxzYXGV nn ,,,,,,,, 2121 ⋯⋯∪∪ ==µ  

z  is adjacent to every 
iy , and 

if ( )GEvv ji ∈ , then ( )( )GEyyxx jiji µ∈, . 

For example ( ) 52 CK =µ , an ( )2
2 Kµ  is known as the 

Grötsch graph, see Figure 1. Mycielski showed that ( )2Kkµ  is 

triangle-free and has chromatic number 2+k . In general, for 

a graph G  (not necessarily a triangle-free graph),

( )( ) ( ) 1+= GG χµχ , where ( )Gχ  denotes the chromatic 

number of G . 

 

Figure 1. ( ) 52 CK =µ  and Grötsch graph. 

Recently, a number of papers are devoted to the various 

parameters of Mycielski graphs, such as the fractional 

chromatic number [9], circular chromatic number [2, 5, 8, 10, 

12], connectivity [1, 6]. Total chromatic number [3], hub 

number [11], covering number [14], total weight choosability 

[15], Hamilton-connectivity [7]. 

A spanning cycle (resp. path) of a graph is called Hamilton 

cycle (resp. Hamiton path). A graph is said to be hamiltonian 

if it has a Hamilton cycle. In general, it is NP-hard to decide 

whether a graph has a Hamilton cycle or not. Our main 

objective is to search best possible condition for a graph G  

whose Mycielski graph is hamiltonian. Fisher, McKenna, and 

Boyer [4] obtained the following results. 

Theorem 1.1. ([4]) If G  is hamiltonian, then ( )Gµ  is 

hamiltonian. 

Theorem 1.2. ([4]) If G is not connected, then ( )Gµ  is not 

hamiltonian. 

Theorem 1.3. ([4]) If G  has at least two pendent vertices, 

then ( )Gµ  is not hamiltonian. 

One might suspect that the converse of Theorem 1.1 is true. 

Conjecture 1.4. For a graph G , if ( )Gµ  is hamiltonian, 

then G  has a Hamilton cycle. 

But, the conjecture is not true, see the graph 
4,4,4Θ  in 

Figure 2. Clearly, ( )4,4,4Θµ is not hamiltonian by Lemma 2.1. 

However, a Hamilton cycle of ( )4,4,4Θµ  is given. 
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Figure 2. 4,4,4Θ  and a Hamilton cycle of ( )4,4,4Θµ . 

In this note, we show the converse of Theorem 1.1 is almost 

true for bipartite graphs. Precisely, we show that for a biparite 

graph G , if the mycielski graph ( )Gµ  of a graph G  is 

hamiltonian, then G  has a Hamilton path. 

2. Main Theorem 

For a graph G , ( )Gc  denotes the number of components 

of G . The following is the well-known 1-tough condition for 

the hamiltonicity of graphs. 

Lemma 2.1. If G  is hamiltonian, then for any nonempty 

subset ( )GVS ⊆ , ( ) SSGc ≤− . 

A bipartite graph [ ]WBGG ,=  is said to be balanced if 

WB = . 

Lemma 2.2. Let G  be a bipartite graph. If ( )Gµ  is 

hamiltonian, then G  is balanced. 

proof. Let ( )WB,  be the bipartition of G , and let WB ′′,  

be the corresponding vertices in ( )Gµ , and z be the special 

vertex. By contradiction, suppose that G  is not balanced, 

and that WB > . Take { } WWzS ′= ∪∪ . Then 

( )( ) 122 +>=′=− WBBBSGc ∪µ , which contradicts the 

fact of Lemma 2.1. This shows that WB = . 

Lemma 2.3. For a graph G , ( )Gµ  is hamiltonian if and 

only if G  has a walk P  with two distinct end vertices 1v  

and 2v , say, with the following additional properties: 

(1) every vertex of G  appear precisely twice on P , and 

(2) there exists an edge e of P , such that eP −  is divided 

into two walks 1P  and 2P , and if for every vertex ( )GVv ∈ , 

if v  appear twice on some 
iP , then the length of [ ]vvP ,  is 

odd; and otherwise, the length of [ ]vvP ,  is even. 

Proof. First we show the necessity. Let C  be a Hamilton 

cycle of ( )Gµ . Then zC −  is a path of ( )Gµ  joining two 

vertices 1y , 2y , say, in Y . Recall that 1y  and 2y  

correspond to 1v  and 2v  in G, respectively. 

Walking along on the path zC −  from 1y  to 2y , one 

obtain a walk P  in G , with the property that (1) every 

vertex of G  appear twice on P . Let e be the unique edge of 

P , which joins two vertices in X , and let 1P  and 2P  be the 

two walks results from P  deleting e . Let v  be a vertex of 

G , and assume that v  corresponds to a vertex x  of X  and 

a vertex y  of Y . Then the walk [ ]vvP ,  corresponds to the 

path of ( )[ ]yxzC ,− , and thus they have the same length. By 

the definition of Mycielski graph, Y  is an independent set of 

( )Gµ , the length of ( )[ ]yxzC ,−  is odd if and only if v  

appear twice either on 1P  or 2P . This proves (2). 

If there is a walk in G  with the property in the assumption 

of the lemma, one could find a Hamilton path in ( ) zG −µ  
with two end vertices in Y  by going along on the walk, and 

thereby connecting them to z , we are able to obtain a 

Hamilton cycle of ( )Gµ . 

Now we are ready to present our main theorem. 

Theorem 2.4. Let G  be a bipartite graph. If ( )Gµ  is 

hamiltonian, then G  has a Hamilton path. 

Proof. Let C  be a Hamilton cycle of ( )Gµ . Then, as in 

proof of Lemma 2.3, one could get a walk P  with the 

properties described in the assumption in Lemma 2.3. Let 

21,, PPe  be those, as given in Lemma 2.3. We claim that 

both 1P  and 2P  are Hamilton paths of G . Note that there 

is no vertex of G  appear on 1P  or 2P  twice. Since, 

otherwise, by Lemma 2.3, the length of [ ]vvPi ,  is odd if 

there is such a vertex v  in G . It implies that G  has an 

odd cycle, which contradicts our assumption that G  is 

bipartite. Since every vertex of G  appear on P  twice, 

and by our claim that every vertex of G  appear on 
iP  at 

most once, we conclude that every vertex of G  appear on 

iP  precisely once, and thus both 1P  and 2P  are Hamilton 

paths of G . 

3. Conclusion 

In this short note, it was shown for a biparite graph G , if 

the mycielski graph ( )Gµ  of a graph G  is hamiltonian, then 

G  has a Hamilton path. We conclude with posing the 

following two conjectures. 

Conjecture 3.1. For a graph G , if ( )Gµ  is hamiltonian, 

then G  has a Hamilton path. 

For a positive integer k , let us define ( ) ( )( )GG
kk 1−= µµµ , 

where ( ) ( )GG µµ =1 . 

Conjecture 3.2. For a graph G  without isolated vertices, 

there exists a natural number 
0k , such that ( )Gkµ  is 

hamiltonian for all 
0kk ≥ . 
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