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Abstact: The classic theory of continuum mechanics does not preserve the continuity of the environment due to the use of 

the conditions of equilibrium of forces and the symmetry of the stress tensor. We used many unreasonable mathematical 

approximations when by the Boltzmann equation is solved to describe the equations of continuum mechanics. The paper 

presents an analysis of mathematical approximations underlying description in different environments, and new models, to 

avoid the resulting misunderstandings. For rarefied gas the self-diffusion and thermo-diffusion which were foretold by S. V. 

Vallander are obtained from kinetic theory. 
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1. Introduction 

The main questions of the modern mathematical theory are 

questions of identity to describe discrete and continuous 

media and to ensure continuity in the description of continua, 

noted A. Yu. Ishlinskii, and raised the question of the 

consistency of the physical parameters at the inter-element 

boundaries [1]. Classical mechanics of a continuous medium 

is based on a field description. Consequently, it deals with the 

distribution of points. In experiments and in computational 

mathematics we are dealing with elementary volume, that is, 

with material objects. In the first case, the rotation of the 

point, the distribution of the quantities inside the "point" is 

not important. Consequently, we discard some of the effects. 

Second, importantly, we actually postulate the symmetry of 

stresses using symmetric distribution functions, transferring 

the definitions of equilibrium physical quantities to the 

nonequilibrium case. Very important is the hypothesis of the 

exchange of physical quantities only along the normal, which 

corresponds to ignoring changes in the direction of motion 

within the elementary volume and the symmetry of the stress 

tensor. For small gradients, these approximations 

satisfactorily describe the processes that occur. For large 

gradients (turbulence, twisting of nanotubes, etc.), the 

adopted models do not work. A separate question is the 

description of discrete quantities by means of continuous 

quantities. The ergodic theorem does not work, whether a 

continuous function approximates a discrete quantity and 

what properties it must satisfy, it is not clear. 

It is due to the use of the conditions of equilibrium of 

forces and the symmetry of the stress tensor. An interesting 

fact consists in identical the Navier-Stokes equations, 

obtained as limits of integrals, and through the Delta-function 

[2, 3]. The present state of the classical kinetic theory can be 

found, for example, in [4, 5]. Consequently really the fluxes 

are into the elementary volume through normal but the fluxes 

that through the side surfaces, we do not consider. In 

addition, when constructing conservation laws, we use the 

Stokes theorem for the passage from the integral over the 

surface to the integral over the volume. The theorem does not 

take into account the possible rotation of the elementary 

volume under consideration, assuming that the extraintegral 

term is zero. In the presence of velocity circulation, which is 

characteristic of a turbulent flow, the extraintegral term does 

not zero. In conservation laws for space coordinates 

averaging is fulfilled but about times is not. We have laws 

that are not symmetric relatively time and space. It should be 

noted that for the kinetic theory (the Boltzmann equation) the 

law of conservation of angular momentum does not hold [6-

10]. Analysis of the recording of the Lagrangian function for 
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the collective interaction of the particles with the change of 

the inertia center of the moving particles and the effect 

influence angular momentum are made in more early work. 

But elementary volume can rotate around the axis of 

inertia or to be involved in the rotational movement. In both 

cases the flow density varies across the border on the value (�(��))/��. (�ʹ − �) +⋯	by the rotation of the elementary 

volume [5-9]. Macroscopic parameters are determined in the 

function of the Chapman-Enskog distribution which used 

parameters of the Euler equations. From this implies for the 

Chapman-Enskog equilibrium distribution function formally 

we have values (density, linear moment and energy) with the 

first-order error. 

This fact was noted by Hilbert without further use and 

correction. The Boltzmann equation is invariant with respect 

to the choice of macro-parameters in equilibrium function. 

Therefore, the coincidence of the Navier-Stokes equations 

and the construction is of formal nature. Order of 

approximation for the parameters in a locally equilibrium 

distribution function is different. The new stress tensor, 

energy and energy flux that obtained for the molecules with 

their rotations and oscillations as for mixture gases are 

another than in classical theory. For rarefied gas the self-

diffusion and thermo-diffusion which were foretold by S. V. 

Vallander need to obtain from kinetic theory. So all this 

questions require study. In works [6-10] these questions were 

solved partly, but their properties were discussed not full. In 

work [11] the self-diffusion and thermo-diffusion were 

obtained from phenomenologically consideration. In this 

work these effects are obtained from kinetic theory. In 

conclusion, we note that in the construction of statistical 

theories of an equilibrium liquid in the Clausius theory, for 

pressure, eq. [12] 

� − ��� = 	−	�� 	�� � �(�) 	�(�	)��, 
where �(�)  is the power of the intermolecular interaction 

force 		��(�)���(�) , �(�) -potential,�(�	) =	dφ (r) / (dln (r)), and 

�(�	) is the pair distribution function; i.e. the value of the 

same structure (dimensional) as the term in the equations 

with allowance for the angular momentum, that is  = (� −
	�!) × 

	��(�)
�# , �! 	− position of the  inertia. So 

� − ��� = 	−	16	��&(�(�) + � � �� )	�(�	)��. 
Additional force should contribute at high temperatures. 

For inert gases at medium and low temperatures, the 

contribution is negligible. 

For rarefied gas the angular momentum is value of first 

order. For the water molecules we have the potential for 

interaction of dipole and so it have some maximum and 

minimum, but angular momentum is main correlation effect 

for point molecules and another interaction is values of 

smaller. Then it seems probable that for pressure is to be 

sufficient if liquefied gases are simple, for example Ar, of 

two virial coefficients and binary interaction of particles. The 

effect of a small distortion of circular orbits will be small due 

to the incommensurability the time of the rotation and 

displacement times of the molecules. For water, additional 

components will arise in connection with the asymmetry of 

the molecules and the perturbation of the basic potential by 

the interaction of the hydrogen parts with each other and with 

the nucleus of the second molecule. 

2. Deduction Equations with the  

Self-Diffusion and Thermo-Diffusion 

The main function in mechanics is the Lagrangian 

recorded relative to the fixed pole. However, the center of 

inertia moves for many material systems. Consequently, the 

general form of the derivative of the Lagrange function for a 

moving system has the form 

�'
�( = ∑ * +'+,- ./0 + +'

+,10 ./2 	34 + ∑ * +'
+(,-56) (./0 − 70 ) +4

+'
+(,10 560 ) 	(./2 − 72)3, 
7 = ∑ 8-	#-	8-4 , 

for electrical interaction 7 = ∑ 9-	#-	8-4 . 

Usually the Lagrange equation is written without boundary 

conditions. 

Derivative determines the force. In addition, uneven 

distribution of physical quantities gives rise to the additional 

force due to the appearance of the angular momentum. 

Result: 

: = 	:!	 +	�;�#-, 
where : - force, acting on the particle, :!	 - the force without 

taking into account the angular momentum, the   – the 

angular momentum of force acting on the particle, 	�4 . 

Equations have a higher order than the classic. Consequently, 

additional boundary conditions should be set. For Boltzmann 

equation must set boundary condition for the flow. For the 

equations of a continuous medium, you can specify the 

components of the velocity at the outer edge of the boundary 

layer and the velocity and vorticity. The classical kinetic 

theory is presented in books [13-16]. Based on the 

modification of the Lagrangian were derived modified 

Liouville equation and Boltzmann. It should be noted that the 

classical Boltzmann equation does not comply with the law 

of conservation of angular momentum. This is clearly seen if 

we multiply equation of speed on radius-vector of the particle 

to get momentum. Even with central interaction we get 

different values for the non-equilibrium conditions. In 

numerical calculations by the difference scheme using the 

grid pitch that is smaller the mean free path and with the 

ideology of a closed volume not obtain the influence of the 

angular momentum due to the absence of collisions. The 

method of molecular dynamics makes it possible to track the 

influence of the angular momentum if the total forces 

including the force from the action of the moment are 
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considered. Consider the equations for the s-particle 

distribution function (F=) [11-14] 

1>? @:?@A = 	−	 1>?B�4C
?

4D�
	@:?@�4 +

12>? B @ФGH�4 − �IHJ@�4
@:?@K4

?

4,ID�(IL4)
+ 

+ �
MNOP∑ �∑ +ФGH#-5	#QHJ+#-

RID?S�?4D�  
+TNOPG(,#P,…,#N,#Q,VP,…,VN,VQJ+W- ��I�KI + 

+ �
MNOP∑ � VQ8R?S� 	+TNOPG(,#P,…,#N,#Q,V,…,VN,VQJ+#Q ��I�KI + 

+ �
MNOP∑ ∑ � +ФGH#-5	#QHJ+#Q

RID?S�?4D� +TNOPG(,#P,…,#N,#Q,V,…,VN,VQJ+WQ ��I�KI +
	+ �
�MNOX∑ +ФGH#-5#QHJ+#-

?4,ID?S�(IL4)
+TNOXG(,#P,…,#N,#Q,VP ,…,VN,VQJ+WQ ��4��I�K4�KI 

It is usually assumed that when |�I| → ∞  
+
+#Q  :� 	→

0, HKIH → ∞	 ++VQ :� 	→ 0.	In a equilibrium stream, all physical 

values flows should be known. 

For no equilibrium flows, such boundary conditions are 

not realized. The formula uses the average density, but this is 

suitable for relaxation problems and is not suitable for 

problems with large gradients. Then hypothesis about 

molecular chaos is break. Known solution of the Chapman-

Enskog obtained using many approximations. On the other 

hand, the classical laws of conservation, which we consider 

in this part enters the normal velocity component 

+
+( 	� �]^	_  + � �>�]`	a =	�  0 ]^	_ . 

For a viscous gas, the formula for the transition from the 

integral over the surface to the integral over the volume must 

be generalized, that is, the circulation of the velocity must be 

taken into account. Hence the Stokes formula (Ostrogradsky, 

Gauss) [17] should be generalized. 

∭ (+c+d(e) +	+f+g +	+h+i 	)�� = 	∬ [	l cos(�, p) +?qrst	(�, u) + 	v cos(�, w)]�t, 
&(l	�p + q	�u + v	�w	) 	= 	y [(@v@u(?)(�)

−	@q@p)	cos		(�, p) 	
+ (	@l@w 	− 	@v@p	)	cos		(�, u) + 

+z	@q@p −	@l@u{ cos(�, w)]	�t. 
For the plane case, the connection between boundary 

conditions is most clearly manifested after taking the integral 

by parts and circulation by virtue of formulas 

Here l, q, v  – continuous functions, �  – volume, t  – 

surface, |  – closed curve. Consequently, equation for 

distribution function. Consequently, in the classical theory, 

we ignore the circulation of velocity at the boundary of an 

elementary volume, which does not allow us to approach the 

solution of the turbulence problem. For the distribution 

function we have equation 

}(	A + �A, p+(ξ∙n)dt,	p+(ξ∙ ^)�A, K4 +	��-8 �A)�p�K	= }(	A, p, K4)	�p�K + (∆S − ∆5)	�pdKdt 

As a result, we need to get the conservation law in the 

form of 

+�
+( 	+ 	+[(��)∙�S(��)∙�]+d-  = 0. 

In classical only normal flows are considered. 

Where n, τ - the unit vectors along the normal and 

tangential to the surface; } −  distribution function, p –

coordinate, A- time � − density, ξ- velocity. If the Boltzmann 

equation is written out in the projections, more properly, all 

the same in the arbitrariness of the volume should be 

considered normal and tangential velocities. The velocity 

projections on the coordinate axes are used in the numerical 

analysis. Therefore, the error values are of the order of self-

diffusion and thermal diffusion, which will be determined by 

the tangential components. To understand the process of self-

diffusion and thermal-diffusion we turn to the equilibrium 

distribution function and investigate the effect of small 

additions to the values of macroscopic parameters on its 

value. The equilibrium function 	}!	  = 

�! � 8
�������/� �5�

(�	�	�)XX��� . Let ∆ is a small correction. The 

behavior of the function we are interested in the effect of 

calculating the Hilbert hypothesis macro parameters through 

the equilibrium distribution function. 

For � ∙ � 

1(� + ∆�)	&(� + ∆�
+ ⋯)(	 C2(��(� + ∆�))

�� �5	8(V5�5∆�)X��(�S∆�) �K	 ∙ 

&(� + ∆� +⋯)K C2��(� + ∆�))
���5	8(V5�5∆�)X��(�S∆�) �K. 

Formulas are expanded into series with accounting that 

one of formula for	� ∙ � and for (��) coincides. Difference 

among approximations is defined items at first degree of 

increment and have structure of the Chapman-Enskog 

solution. 

�
� (1 − ∆�

� +⋯)	� � �1 + ∆�
� +⋯�� 8

����)�
�X �1 −

�
� 	∆�� …� �5	

�(����∆�)XX�(�O∆�) �K = 

�
� 	(1 − ∆�

� +	∆��  

+…)	�1 −
�
� 	∆�� …�	� � � 8

����)�
�X �5�(�	�	�)XX��� �5	�(�	�	�)XX��� �5	�(V5�)∆�5⋯∆�� �	�K = 
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�
� 	(1 +…)	�1 − �

� 	∆�� …�	� � � 8
����)�

�X �5�(�	�	�)XX��� 	(	1 −
	8(�	5	�)X���� �−	2(K − �)∆�	 − ⋯ ∆�

� �)	�K 

C(K − � − ∆�)�2�(� + ∆�) = 	C(K − �)�2�� 	(1 + 2(K − �)∆� +⋯) z1 − ∆�� { = 

C(K − �)�2�� 	(1 + 2(K − �)∆� +⋯ ) −	∆�� ) 
For large values of the number of particles both formulas 

coincide. In general, we obtain values of various functions. 

Functionally, the Boltzmann equation is invariant with 

respect to the choice of macro parameters of the distribution 

function. It is necessary to compare the equilibrium 

distribution function with macroparameters taken from the 

Euler and Navier-Stokes equations. The difference will give 

us a small increment functions. We find that for the Euler 

equations (zero approximation of the Chapman-Enskog) the 

difference is zero. There are differences to the first 

approximation. The first approximation is responsible for the 

tangential component (�4I  tensor of viscous stresses). Euler 

equations are obtained with the use of locally-equilibrium 

distribution function. Consequently, they are responsible for 

the normal component of the velocity values regardless of 

macroparameters. Upon receipt of the first order correction 

of the terms included in the final decision of the Chapman-

Enskog leave only after integration over the phase velocity ξ. 

The integrals are taken from }K fξ function, i.e. for (ρu). 

Consider 

����( = 
�
� 	}! +�+( 	+ �

�
�
� }! +�	+( 	+ 

8�X
���X }! +�+(  + }! �8�� (	K − �) +�+(� +	K ∙ ��� 	}! 	+�+d 	+ 	�− ��	� �� }! +�+d 	+ 	 8�X���X }! 	+�+d 	+ 	}! 	�8�� (	K −�) +�+d�� = 

=2�(}!, }!��) = � }!}�! 	�	��(�)� 	+ 	�(�)� −	��(�) −
�(�)� �	�	���	 �K�K = 0. 

In classic case 

+��+( ⃒(D! =	}! �8�� 	�r4rI − �� r�]4I�	+�-+( 	+ 	 ��� 	+�+( 	r4 *�8��� r� − 	53�. 
The Boltzmann equation was wrote for full function and 

have the local equilibrium function and addition item. The 

tangent velocity component is obtained because off ξ have 

arbitrary direction of velocity relative position of coordinate 

axes 

�� ∙ (^ ∙ }K	)�t	� K	= ��£�	 (^ ∙ }K	)�p	dK 
τf	give us addition item. Besides local equilibrium function 

}!  we have addition item 
W-Q�W 	�8��	� r4 	rI −	,-W 	�8��	� �1 −

	�X¦ 8��	� r4] . Main account gives derivatives of local 

equilibrium function. These items definite the self-diffusion 

and thermo-diffusion which were foretold by S. V. Vallander. 

The second derivative is result item c§	 ∙ 	 ¨©¨ª«. 

3. Definition of Macroparametrs for 

Multi-Components Mixture 

We can suggest the new formulation of some macrovalues 

(temperature, stress tensor, flow heat): in classic theory [11-

14] for mixture of many components gas 

�
� 	�	� = �

�∑ �8���X�� }��ξ�, ( n = ∑ ��R�D�  ), 

here	�—number of components, �—temperature, r� =	 ξ�  – 

u, one’s velocity of molecules, ξ�	 velocity of molecules. 

Another definition is 

32 	�	� =
� �∑ ���� C�� �∑ ���к r���2 }�ξ 

Then we have one term is traditional and another is as the 

second viscosity. For stress tensor 

we can have 

l4I =	&¯B��� C��
r�°

4
¯B��� C��

r�°
I
}	�K 

For the flux of the heat 

q = � �∑ ���к r��I �∑ ���к r��� /2f�ξ 
What we take in experiment? 

}²(!) =	�² � C2����
�/� exp �− C2�� r²�� 

or for exclusive temperature 

}²(!) =	�² � 8
����¶��/� exp �− 8

���¶ r²��. 
For full temperature we cannot conclude the right 

probability. 

4. Conclusion 

The modified equations of continuum and Boltzmann 

equation in more early our works taking into account 

influence of angular moment and delay, as well as the 

position of the center of inertia of the elementary volume 

were made. The role of dispersion and delays in physical and 

chemical relaxation processes was set. The effect of angular 

momentum and, as a consequence, the nonsymmetrical of the 

stress tensor in the elementary volume was received. A model 

of the collective effects in the Lagrangian function was built. 

Now we obtain the self-diffusion and thermo-diffusion which 

were foretold by S. V. Vallander by phenomenological theory 

by kinetic theory. This is making another value for pressure 

of the mixture a rarefied gas and gas with internal degrees of 

freedom. Probably, exactly, these values are measured in all 

experiments. 
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