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Abstract: In this paper the idea is to use a coordinate transformation that takes a system of ordinary differential equations 

with no obvious solution to system of integrables. The techniques that which introduced presented the cases of symmetry 

transformations also the particular case that involving an integrating factory homogeneous coordinates all these 

transformations are interest in lie groups theory. 
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1. Introduction 

Generally speaking symmetry can be understood as a 

mapping between mathematical objects that preserves some 

properties of those objects. The most obvious example are 

geometric shapes. Consider a square. If we rotate a square by 

90 degrees we obtain the exact same square again that is a 

square with the same orientation. The same is true for 

rotations of 180, 270, or any integer multiple of 90 degrees. 

However, if we rotate the square by, say, 60 degrees we 

obtain an object that is distinguishable from the original its 

orientation. So the rotations of the square by integer 

multiples of 90 degrees form a (discrete) set of mapping from 

the square to itself i.e. a square is symmetric under certain 

rotations. Now consider a circle. We can also rotate a circle 

in its plane and obtain the same circle we started with, but 

now we may rotate by any amount we like and still obtain the 

same object we started with. Thus the rotations of the circle 

form a continuous set of symmetries of the circle [1]. 

Study of symmetry provides one of the most appealing 

practical applications of group theory. This was extensively 

shown by sophism Lie in the nineteenth century [1872-1899]. 

He investigated the continuous group of transformations 

leaving differential equations invariant creating what is now 

called the symmetry analysis of differential equations. His 

aim was to solve non-linear differential equations, which to 

some extended are may be cumbersome to solve. Intuitively, 

Lie's method of solving differential equations enables 

differential equations to be solved in an algebraic approach 

an as it is put across in [4]. In [5] John Starrett. Solving 

Differential Equations by Symmetry Groups, and Jacob 

Harry Burkman. Symmetry group solutions to differential 

equations [6]. also Peter J. Olver and Philip Rosenau. Group-

Invariant solutions of differential equations [7]. and E. S. 

Cheb-Terrab and T. Kolokolnikov. (2002). First- order 

ordinary differential equations symmetry and linear 

transformations [8]. and in [9] Mehmet can. Lie symmetries 

of differential equations by computer algebra, finally G. W. 

Bluman and S. Kumei.(1989).Symmetries and differential 

equations [10].  

The solutions for system of ordinary differential equation 

exhibit symmetries with some properties for solving those 

solutions so, we state with the following definitions: 

Definition 1. [2] A group is a set G together with a group 

operation such that for any two elements f and g of G, the 

product f ∙g is again an element of G. 

Definition 2. [3] An r-parameter Lie group is a group G 

which also carries the structure of an r-dimensional smooth 

manifold in such a way that both the group operation 

�: � × � ⟼ ���	, �� = 	 ∙ �	, ��� 

and the inversion 
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�: � ⟼ ���	� = 	��	�� 

are smooth maps between manifolds. 

In the study of ODE's and their solutions, we are interested 

in particular forms. Let ��: ��, �� ⟼ 	���, ��, �� = ��, �� be 

a transformation from �� �� ��  depending on a parameter � ∈  � 

that has the following properties: 

1. �� is bijective 

2. �� ∘ � = ��!  

3. �" = #, �ℎ% �&%'����. )ℎ*� �+, 	���, ��,0� = ��, ��. 
4. For each a there exists b such that �� ∘ � = �". 
5. The function 	 �+ -. �' / ⊂ � �, ��, �� ∈  D and 

analytic with respect to �. 
Then the set G of transformations ��  is an additive 

transformation group. 

Further, G is a one-parameter Lie group. 

Definition 3. [2] Asymmetry of a differential equation is an 

invertible transformation that maps solutions to solutions 

For the purposes of this paper we are interested in one-

parameter Lie groups that are the symmetries of a first order 

ODE. These are transformations of the form ����, �� =����, ��, ���, ��  with anonzero Jacobian �1�2 − �2�1 ≠ 0 . 

If the solutions of the ODE are defined on D ∈ � �, then the 

transformation G: D ⟼ D maps solutions to solutions. 

Example 1.consider the system 

&��&� = 5���  

&��&� = ��5� 

�� = 5�6 

�� = �6 

����, ��, ��� ⟼ �����, �����, ������ = ��, %���, %���� 

���� = �, ����� = %�5�6 , ����� = %��6 

Definition 4. [2] For a given point ��", �"�  and a 

continuous symmetry �∈ of an ODE, the set of points 7�∈��, ��: * < ∈ < 9 : ⊂  �� is an orbit of �∈ 

As ∈ varies continuously �∈��", �"�  traces a continuous 

curve in ��  that is transverse to the solution curves of the 

ODE. Along an orbit, a change in ∈ maps a solution curve to 

another solution curve. 

2. Symmetry of Nonlinear System 

The develop a way to find the symmetries of a particular 

system. 

Lemma 1. A differential equation with a translational 

symmetry in the dependent variable is separable. 

proof. 

1.  Let ��;��, �, <� = �������, ������, <������ =��, � + ��, < + ��� 

2.  Let ��>��, �, <� = �������, ������, <������ =��, � + ��, < + ��� 

be a symmetry of the ODE 

&�
&� = ?���, �, <� 

&<
&� = ?���, �, <� 

then 1. w��u, v + ϵ�, p + ϵ�� = w��u��ϵ��, v��ϵ��, p��ϵ���
= dv�du� = d�v + ϵ��

du = dv
du = w��u, v, p� 

2. w��u, v + ϵ�, p + ϵ�� = w��u��ϵ��, v��ϵ��, p��ϵ���
= dp�du� = d�p + ϵ��

du = dp
du = w��u, v, p� 

Thus ?�, ?� *H% �'&%<%'&%'� �	 �, < *'& 

&�
&� = ?���� 

&<
&� = ?���� 

A separable equation that is integrable 

� = I ?����&� 

< = I ?����&� 

They have a way to convert any general symmetry into a 

translational symmetry, then the integrate to find the solution. 

To check whether a transformation is a symmetry, consider 

two solutions ����, <��� *'& ������, <����� 

That solve the same first order ODE 

1. dv
du = w��u, v, p� 

&��&�� = ?����, ��, <�� 

2. &<
&� = ?���, �, <� 

&<�&�� = ?����, ��, <�� 

A symmetry of the ODE is a transformation that maps 

��, �, <� ⟼ �����, �, <�, ����, �, <�, <���, �, <�� 

If we expand the differentials, and find: 

?����, ��, <�� = JK;
JL; = K;MJL!K;NJK

L;MJL! L;NJK = K;MJL!K;NKO�L�JL
L;MJL! L;NKO�L�JL = K;M!K;NP;�L,K,Q�

L;M! L;NP;�L,K,Q�                                (1) 
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?����, ��, <�� = JQ;
JL; = Q;MJL!Q;RJQ

L;MJL! L;RJQ = Q;MJL!Q;RQO�L�JL
L;MJL! L;RQO�L�JL = Q;M!Q;NP>�L,K,Q�

L;M! L;NP>�L,K,Q�                           (2) 

In principle we might like to solve this nonlinear partial 

differential equation for ��, �� *'& <� to explicity obtain the 

symmetry ��, �, <� ⟼ �����, �, <�, ����, �, <�, <���, �, <�� but this is 

generally impossible. 

However, we can find a linearization from the Taylor 

series expansion of (1), (2) from this and can construct the 

symmetry. This amounts to finding the vector field that is 

everywhere tangent to the coordinate curves in the new 

coordinate system ���, ��, <�� 

1. This is accomplished by expanding by expanding 

?����, ��, <��, ��, ��*'& <� in Taylor series about �� = 0 

?����, ��, <�� = ?���, �, <� + ϵ��wS��, �, <� &T�&ϵ� |V;W"

+ ϵ��wX��, �, <� &Y�&ϵ� |V;W"

+ ϵ��wZ�u, v, p� &[�&ϵ� |V;W" + ο�ϵ��� 

u��u, v, p� = � + ϵ� ]dU�dϵ� |V;W"_ + ο�ϵ��� 

v��u, v, p� = � + ϵ� ]dV�dϵ� |V;W"_ + ο�ϵ��� 

p��u, v, p� = < + ϵ� ]dp�dϵ� |V;W"_ + ο�ϵ��� 

2. This is accomplished by expanding by expanding ?����, ��, <����, �� *'& <� in Taylor series about �� = 0 

w��u�, v�, p�� = w��u, v, p� + ϵ��wS�u, v, p� dU�dϵ� |V>W"

+ ϵ��wX�u, v, p� dV�dϵ� |V>W"

+ ϵ��wa�u, v, p� dP�dϵ� |V>W" + ο�ϵ��� 

u��u, v, p� = � + ϵ� ]dU�dϵ� |V>W"_ + ο�ϵ��� 

v��u, v, p� = � + ϵ� ]dV�dϵ� |V>W"_ + ο�ϵ��� 

p��u, v, p� = < + ϵ� ]dP�dϵ� |V>W"_ + ο�ϵ��� 

1. since �u��ϵ��, v��ϵ��, p��ϵ��� = GV;�u, v, p� =
�U��u, v, p, ϵ��, V��u, v, p, ϵ��, P���u, v, p, ϵ�� we have 

&T�&�� |�;W" = u�d�0� = ξ�u, v, p�, dV�dϵ� |V;W" = v�d�0�
= η�u, v, p� 

And 
ga;
gV; |V;W" =  p�d�0� = τ�u, v, p� 

The vector fields (u�d�ϵ��, v�d�ϵ��) are the slope of the 

orbits of GV;  and thus can be integrated to obtain the the 

orbits. If ξ�u, v, p�=0 then the orbits of GV;are vertical lines. 

Otherwise they are the solution to 

&�
&� = η�u, v, p�

ξ�u, v, p�  

2. since �u��ϵ��, v��ϵ��, p��ϵ��� = GV>�u, v, p� =
�U��u, v, p, ϵ��, V��u, v, p, ϵ��, P���u, v, p, ϵ�� we have 

&T�&�� |�>W" = u�d�0� = ξ�u, v, p�, dV�dϵ� |V>W" = v�d�0�
= η�u, v, p� 

And 
ga;
gV> |V>W" =  p�

d�0� = τ�u, v, p� 

The vector fields (u�d�ϵ��, p�d�ϵ��) are the slope of the 

orbits of GV>  and thus can be integrated to obtain the the 

orbits. If ξ�u, v, p�=0 then the orbits of GV>  are vertical lines. 

Otherwise they are the solution 

&<
&� = τ�u, v, p�

ξ�u, v, p� 

Definition 5. [3] the canonical coordinates (r(u, v, 

p),+���, �, <�, +���, �, <��  of a differential equation are the 

coordinates in which the equation becomes separable. 

In the simplest case we look for coordinates that admits a 

symmetry +V;,>: �H, +�, +�� ⟼ �r, +� + ϵ�,�, +� + ϵ�,��.  Then the 

tangent vector at �H�GV;,>��, �, <�, +��GV;,>��, �, <�, +��GV;,>��, �, <�� =
�H��, �, <�, +���, �, <�, +���, �, <�� is 

j &H
&ϵ�

|V;,>W", &�+� + ϵ�,��
&ϵ�,�

|V;,>W", &�+� + ϵ�,��
&ϵ�,�

|V;,>W"k = �0,1,1� 

Taking derivatives with respect to ϵ� *� ϵ� = 0, and get 

&H��, �, <�
&ϵ�,� |V;,>W" = &H

&�
&�

&ϵ�,� |V;,>W" + &H
&�

&�
&ϵ�,� |V;,>W"

+ &H
&<

&<
&ϵ�,� |V;,>W" = &H

&� l + &H
&� m + &H

&� n
= 0 
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&+���, �, <�
&ϵ�,� |V;,>W"

= &+�&�
&�

&ϵ�,� |V;,>W" + &+�&�
&�

&ϵ�,� |V;,>W"

+ &+�&<
&<

&ϵ�,� |V;,>W" = &+�&� l + &+�&� m + &+�&< n
= 1 

&+���, �, <�
&ϵ�,� |V;,>W"

= &+�&�
&�

&ϵ�,� |V;,>W" + &+�&�
&�

&ϵ�,� |V;,>W"

+ &+�&<
&<

&ϵ�,� |V;,>W"

= &+�&� l + &+�&� m + &+�&< n = 1 

or 

HLl + HKm + HQn = 0                         (3) 

+�Ll + +�Km + +�Qn = 1                    (4) 

+�Ll + +�Km + +�Qn+= 1                   (5) 

A system of first order linear partial differential equations 

that can be solved for H = H��, �, <�, +���, �, <�  and  +���, �, �, <�. In the canonical coordinates equation (1), (2) 

becomes the separable equation 

&+�&H = +�M + +�N�d
HL  + HK�d  

&+�&H = +�M + +�R<d
HL  + HQ<d  

which can be solved for +��H� *'& +��H�. In order to recover 

the solution in the original (u, v, p) coordinates the 

transformation��, �, <� ⟼ �H,  +�,  +�� must be invertible i.e 

HL+�K − HK+�L ≠ 0 

HL+�Q − HQ+�L ≠ 0 

Example 1.consider the equations 

JK
JL = �!Q

K                                         (6) 

JQ
JL = L!KL

Q                                        (7) 

from (6) we get 

H = � 

&�
&� = 1 + <

�  

�&� = �1 + <�&� 

��
2 = ��1 + <� + o 

∴  +� = ��
2 ,  +� =  1 + < 

&+�&H = +�M + +�N�d
HL  + HK�d = 0 + ��d

1 + 0 = ��d 

&+�&H = +�M + +�R<d
HL  + HQ<d = 0 + <d

1 + 0 = <d 

now from (7) we obtain 

H = � 

&<
&� = � + ��

<  

<&< = �� + ���&� 

<�
2 = ��

2 + � ��
2 + o 

<�
2 = ��

2 �1 + �� + o 

∴  +� = 1 + �, +� = <�
2  

&+�&H = +�M + +�N�d
HL  + HK�d = 0 + �d

1 + 0 = �d 

&+�&H = +�M + +�R<d
HL  + HQ<d = 0 + <<d

1 + 0 = <<d 

3. Standard Integration Techniques 

There is some standard techniques for solving differential 

equations and see that they are unified by methods of 

symmetry. 

Integrating Factors 

For an inhomogeneous first- order linear equation 

JK
JL +  q���� = �����                      (8) 

JQ
JL +  q���< = �����                      (9) 

The standard approach is to multiply both side by an 

integrating factor and integrate to obtain 

� = %r s;JtMu I %� r s;JtMu �����&� 

< = %r s>JtMu I %� r s>JtMu �����&� 

we observe how this solution arises using symmetries the 

homogeneous equation 

�vd + q�����v = 0 
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<vd + q����<v = 0 

are separable and directly integrable 

�v = %r s;JtMu  

<v = %r s>JtMu  

Since equation (8),(9) are linear, if �Q, <Qare a solution to 

(8),(9) 

� = �Q + �v 

< = <Q + <v 

are also solution. Hence the transformation 

��;: ��, �, <� ⟼ ��, � + ���v���, < + ��<v���� 

��>: ��, �, <� ⟼ ��, � + ���v���, < + ��<v���� 

are a symmetry of (9),(10). The orbits of ��; , ��>  are vertical 

lines, so we can set r=u for one of the canonical coordinates, 

also have 

��d���� = �v��� 

<�d���� = <v��� 

and get 

+� = �
�v 

+� = <
<v 

In the canonical coordinates (r,+�, +�� , equation (8), (9) 

becomes: 

1. ds�dr = s�S du + s�X dv
rS du +  rX dv = − v vxd�u�

vx�u�� + 1
vx�u�

dv
du 

= �������v���
�v���� + 1

�v���
&�
&�

= q�����
�v��� + 1

�v��� ������ − q������ 

= �����
�v��� = ���H�

�v�H� 

= %� r s;JtMu ����� 

Integrating obtains 

+��H� = +����=r %� r s;JtMu �����&� 

and inverting the transformation yields the solution in the 

original coordinates (u, v, p): 

� = +�����v = %� r s;JtMu I %� r s;JtMu ����� &� 

2. &+�&H = +�L&� + +�Q&<
HL&� + HQ&< = − <<vd���

<v���� + 1
<v���

&<
&�  

= <�����<v���
<v���� + 1

<v���
&<
&�

= q����<
<v��� + 1

<v��� ������ − q����<� 

= �����
<v��� = ���H�

<v�H� = %� r s>JtMu ����� 

Integrating obtains 

+��H� = +���� = I %� r s>JtMu �����&� 

and inverting the transformation yields the solution in the 

original coordinates (u, v, p): 

< = +����<v = %� r s>JtMu I %� r s>JtMu ��� �����&� 

4. Homogeneous Coordinates 

A homogeneous equation has the form 

�d = q yK
Lz                               (10) 

[d = q y{
Lz                                (11) 

The transformations 

��;: ��, �, <� ↦ �%�;�, %�;�, %�;<� = ���, ��, <�� 

��>: ��, �, <� ↦ �%�>�, %�>�, %�><� = ���, ��, <�� 

are symmetries of (11),(12) and since 

(��d����, ��d����, <�d����� =%�;��, �, <� the orbite of ��; 

(��d����, ��d����, <�d����� =%�>��, �, <� the orbite of ��>  

are straight lines through the origin plus the origin itself. 

Thus 

H = �
� , H = <

� 

are constant on the orbits. If we 

let +� = ln � , +� = ln � 

equation (4), (5) is satisfied and the Jacobian of the 

transformation ��, �, <� ⟼ �H, +�, +�� is non-zero. In these coordinates 

(11), (12) is transformation into the separable equation 

1. &+�&H = +�L + +�K�d
HL +  HK�d =

�
L

− K
L> + s;�N

M�
L

= 1
q� �H� − H 

� = %r ;
�yNMz�NM 

� = H%r ;
�yNMz�NM 
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� = H%r ;
������ 

2. ds�dr = s�S + s�Zpd
rS +  rZ pd =

�
S

 − Z
S> + �>��

��
S

= 1
F� �r� − r 

< = %r ;
�yRMz�RM 

< = H%r ;
�yRMz�RM 

< = H%r ;
������ 

5. Conclusion 

In this paper, we concluded that the symmetry transform 

for solving system of ordinary differential equation it is 

obtain by some technical was give with some system of 

integrables. 
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