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Abstract: The application of partial differential equations to drumhead vibration, signal transmission and chemical 

communication in insects has been investigated. This study looked at three cases in communication namely: a single drumbeat 

on an idealized circular drumhead being struck at the centre of the circular membrane; signal transmission in a Coaxial cable 

and finally concentration of pheromone in still air within a tunnel. The governing equation of Case I was solved using 

separation of variables method whereas Laplace transform was used to solve Cases II and III. MATLAB software was then 

used to obtain simulations on the solutions obtained from the three cases. It was concluded that vibrations of a circular 

drumhead as a result of a single drumbeat mainly concentrates around the centre of the membrane and tends to flatten out 

further away from the centre. Signal propagation decreases with increasing distance and so the shorter the cable the less signal 

strength is lost. Finally, concentration of pheromone can only last for a given time and distance. 
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1. Introduction 

Humans gather most of our information in the outside 

world through sight and sound and relay the same 

information to the next party. In the process, we engage in 

communication. First, when we consider vibrations of a 

drumhead; it’s worth noting that when the drum head is 

struck, the head vibrates in and out and physically displaces 

the air inside the drum. These vibrations create areas of high 

and low pressure and it’s these changes in air pressure that 

creates the sound that we hear [1]. There exists infinitely 

many ways in which a drumhead can vibrate depending on 

the tension of the membrane, shape of the drum head, the 

number of times the drum is hit, the hitting point of the drum, 

the damping, the air pressure and the air volume inside the 

drum. [1] studied a Ghanaian drum; a drum that has strings 

holding the drumhead in place both from its upper and lower 

circles thus altering the tension on the drumhead. This 

deviates from the circular drum with constant tension on the 

drum head that possess both harmonic and rhythmic 

characteristics. [2] investigated the motion of a stretched 

elastic circular membrane which is subjected to a restorative 

force proportional to the velocity. [3] carried out a research 

on vibration of a Koch drum. He considered the vibrating 

membrane with fixed boundary and described the natural 

modes of vibrations by the eigen functions of the Laplacian 

on the region and then approximated the Koch drum with 

discrete grid of points. On the other hand [4] focused on the 

tone of a drum and observed that this tone is as a result of the 

oscillating vibrations of the drumhead attached to the drum 

shell. The oscillating drumhead creates vibrations within the 

drum which radiates outwards and is perceived as tone by our 

ears. Similarly [5] provided an algorithm of Elzaki projected 

differential transform method to solve the vibration equation 

of a very large membrane with given initial conditions. 

Signal transmission takes place over a guided or unguided 

medium. The guided medium includes a coaxial cable, 

twisted pair cables and fiber-optic cable while the unguided 

medium is the wireless/free space (air, water, vacuum). This 

study focuses on a coaxial cable. According to [6], a coaxial 

cable is a transmission line consisting of two coaxial 

cylindrical conductors separated by a dielectric. In this paper 
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we have referred to these coaxial cylindrical conductors as 

inner and outer conductors. [7] formulated a mathematical 

telegraph equation in terms of voltage and current for a 

section of transmission line. They solved the mathematical 

equation by reduced transform method under the assumption 

that the cable is imperfectly insulated so that there are both 

capacitance and current leakage to ground. In addition, [8] 

used finite difference approximations (second order 

difference method) in solving the passive cable equation by 

applying a current injection of −0.01μ ∙ A with duration of 1 

second to the cable at a single location and obtained the 

resulting voltage as a function of space and time. 

Lastly, chemical signaling is the oldest and most 

widespread form of communication in animals. Some 

animals i.e. ants, honey-bee, and termites etc perceive 

nothing except a chemical world and all of their behavior is 

regulated by a relatively small number of substances 

(pheromone). In nature, chemical signals are used for inter-

cellular and intra-cellular communication [9], whereas 

pheromones are used for long range communication between 

members of the same species such as social insects [10]. The 

chemical signals can therefore be used for communication at 

both microscopic and macroscopic scales. [11] carried out a 

research on mathematical modeling of ant pheromone: 

determination of optimum pheromone evaporation rate and 

simulation of pheromone tracking abilities. She investigated 

whether there is an optimum rate of pheromone evaporation 

when there is a certain probability of food randomly 

appearing in the foraging area. [12] worked on an individual-

based model of ant-trail formation where the simulated ants 

followed a random walk process and modeled pheromone 

deposition and evaporation times by Poisson process. From 

these researches, it’s evident that little investigations has 

been done on a single drumbeat on an idealized circular 

drumhead being struck at the centre of the circular 

membrane; signal transmission in a Coaxial cable and finally 

concentration of pheromone in still air within a tunnel. This 

study aimed at showing how diffusion and oscillatory effects 

plays an important role in communication. It finds its 

application in many real life situations related to 

communication in animals and human beings. 

2. Formulation of the Problem 

Case I: This case considers an idealized drum having a thin 

membrane stretched over a circular frame of unit radius. The 

vibrating membrane is radially symmetric and of constant 

tension. Its motion is governed by wave equation and so we 

will model a single drum beat using the 2D wave equation. 

Consider an open disk Ω of unit radius centered at the origin 

which represents the “still” drum head shape at any time t, 

the height of the drum head shape at a point (x,y) in Ω 

measured from the “still” drum head shape will be denoted 

by u(x,y,t), which can take both positive and negative values. 

Let ∂Ω denote the boundary of Ω, i.e. circle of unit radius 

centered at the origin, which represents the rigid frame to 

which the drum head is attached. The mathematical equation 

that governs the vibration of the drum head is the 2D wave 

equation with zero boundary conditions. 
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Since we are considering the vibration of a circular 

drumhead that is radlialy symmetric, the function u(r,t) does 

not depend on the angle �. Therefore (2) reduces to 
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* )for0 ≤ r ≤ 1              (3) 

C = √ (1**
ρ2 ) is a positive constant, which gives the speed at 

which transverse vibration waves propagate in the 

membrane. 

Boundary Conditions: u(r,t)=0 on ∂Ω for all t≥0; r=1 since 

the drumhead is tautly held down at the boundary. 

Initial conditions: 

Initial displacement: u(r,0)=0; its zero because the 

membrane is initially flat. 

Initial velocity: 

�3
�4 = 5−V7   0 ≤ r ≤ b 

0        b ≤ r ≤ 1  at t = 09 

Case II: Here, the researcher derived the equation for 

signal transmission in a cable using x to denote the 

longitudinal direction. The derivation was based on the 

assumptions that the potentials vary with distance along the 

line; that the transmitter is located at x=0 and the receiver is 

at an arbitrary location x up the line. 

Consider some segment (x, x+dx) along the inner and 

outer conductor of a cable. (see fig. 1). 

Let :7(;), <7(;), =7,:7(; + >;)?@><7(; + >;)  be the 

current, voltage and resistance at some distances along the 

outer conductor and let :A(;), <A(;), =A,:A(; + >;)?@><A(; +
>;) be the current, voltage and resistance at some distances 

along the inner conductor. Let �B?@>=B  be the capacitance 

and resistance respectively. Ohms law for the segment (x,x 

+dx) gives:  

<A(x)– <A(x + dx) = :A(x)=Adx                   (4) 

<7(x) −  <7(x + dx) = :7(x) =7dx             (5) 

Dividing through by dx in equations (4) and (5) and taking 

the limit as dx→0  


EF

�  =  −=A:A(x)                                  (6) 


EG

�  =  −=7:7(x)                                  (7) 

Differentiating (6) and (7) w.r.t x  
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Subtracting (8) and (9) 


��HI%HK� 

�� �  � ri 
JI


� � =7
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Next we use the current conservation equation (Kirchoff’s 

Law): 

:A  �x � dx�  �  :A�x�  �  :L �x� dx              (11) 

:7 �x � dx�  � :7�x�  � :L �x� dx              (12) 

Dividing through by dx in equations (11) and (12) and 

taking the limit as dx→0, we obtain 

JI

� � :L�x� and 


JK

�  �

 � :L�x�  which implies that :L  �x�  �  
JI

� �  � 
JK


� . Inserting 

this in (10) and redefining the transinsulator potential as 

V � <A– <7, (10) now becomes  

∂�V
∂x� �  ��rI � r7�Is �x�  

Or 

N�O
NP�

�*QR *G� �  � :L �x�                       (13) 

 

Figure 1. Longitudinal cross-section of a Coaxial Cable. 

If we define the current :L �x�  as the sum of the 

contribution made by the resistor =B: �% &
 TU

�V and the current 

through a capacitor ��Cs 
H


 ). (13) then becomes 

N�O
NP�

�*QR *G� �
H
*V

 �  CW

H


 Multiply through by rW  and divide through by 

rWCW, 

&
XY�*QR *G�


�H

�� �  H

*VXY  �  
H


                   (14) 

This becomes D 
�H

�� �  βV �  
H



  where D �  &
XY�*QR *G� and 

β �  &
*VXY   where β is the loss of energy between the inner 

and the outer conductor � ; which gives us the governing 

equation for 0<x<∞ and −∞<t<∞ 

Boundary and Initial conditions:  

� V (0,t)=A cos _4 to account for the fact that we need an 

oscillatory data when solving this signal transmission 

equation at x=0  

� V(x,t)→0 as x→∞ since the transinsulator potential 

diminishes with increase in distance from the 

transmitter. 

� V(x, 0)=0 since the transinsulator potential is initially 

zero. 

Case III: Since the transmission of chemical signals 

(pheromones) takes place by the process of diffusion in 

which the random movement of molecules transports the 

chemical away from its source, we solved the 1D diffusion 

equation under the assumptions that diffusion is in the 

direction of the ants locomotion (x-axis), the release of 

pheromones lasts for a sufficiently long time and that the 

effects of wind and turbulence are ignored.  

Consider an ant emitting an alarm chemical into the still 

air of a tunnel. Let C(x,t) denote the concentration of the 

chemical xcm from the source at time t, then the governing 

equation is 

X 


  � D 
�X

`(�, x>0, t>0; where D is the diffusion coefficient. 

This equation models the flow of chemicals on the ground at 

a time t on emission by an ant. 

Boundary conditions:  

� 

X 


 �  �Aδt at  x=0, A>0, where δt  is the Dirac delta 

function. This negative is imposed because pheromone 

concentration falls in still air. Aδt is a constant because 

in this study we consider release of pheromone as a 

discrete pulse. 

� C(x,0) =0, x>0 since initially there is no release of 

pheromone in the tunnel.  

� lim(de ��;, 4� � 0 , t>0 since the concentration of 

pheromone in still air diminishes with increasing 

distance from the source and the signal no longer elicits 

a response at an infinitely longer distance. 

3. Analytical Solutions 

The set of differential equations in the three cases were 

solved analytically subject to the various boundary and initial 

conditions stated for each case. Case I was solved using 

separation of variables method while Case IIand III were 

solved using Laplace transform method. 

Case I:  

Consider the equation 


��


� �  �� )
��


*� � &
*


�

*, fg= 0 .  = .  1            (15) 

and let  

U(r,t) = R(r)T(t)                                 (16) 

Differentiating (16) w.r.t r and t and inserting in (3)  

RT" �  �� �R"T � &
* RkT� or  
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&
l�

m"
m  �  n"Rop

q
n                               (17) 

Since the LHS of (17) does not depend on r, and RHS does 

not depend on t, both sides must be equal to some constant 

say – µ (separation constant). 

Then 

T" � µ��T � 0                             (18) 

(simple harmonic oscillator equation). 

Next we solve (18); we shall consider three cases of µ 

i) µ � 0  

T"= 0; T (t) = At+B 

This is a linear case that does not depict our oscillatory 

physical situation, so we reject it.  

ii) µ r 0; �  � s� 

T" �  s�t�T �  0; v� � s�t�, m � wαc 

T�t�  �  Cyzl{  �  Dy%zl{. This solution show exponential 

growth or decay that does not depict our physical situation, 

we reject it too.  

iii) µ | 0; �  s� 

T" �  s�t�T �  0; v�  � s�t � 0; m � wiαc 

}�t� � ECos�αCt� � FSin�αCt� . Applying the B.C: 

U(r,0)=0 implying that T(0)=0 but E=0 therefore 

                              (19) 

This gives us the required solution.  

Rewriting the RHS of (17) using �µ, we obtain: =�R" �
rRk �  µ=�R � 0 or 

=�R" � rRk �  s�=�R � 0                       (20) 

Which is an example of Bessel’s equation. We use 

Bessel’s equation in this situation because according to 

[13] they are useful when dealing with circular geometry 

and can be expanded as an infinite series. The solution to 

(20) is R�r�  � G�7 �αr�  �  �7�αr�. But for our case, the �7 

functions are not allowed as �7 d ∞ asr d 0 . Only 

�7functions are allowed since they are finite at r=0. We 

therefore have: 

R�r�  � �7�αr�                              (21) 

Combining (19) and (21) and applying the Superposition 

Principle, we obtain the solution  

U�r, t�  �  ����sin��Ct��7���r�
e

��&
 

Or U�r, t�  �  ∑ ���sin��Ct��7���r�e��&            (22) 

Applying the initial condition: 

�3
�4 � ��=� � 5�V7   0 . r . b 

0        b . r . 1  at t � 09 

Differentiating (22) w.r.t t and inserting t=0  

g�r� �  ∑ �H�β�C�J7 β�re��& . Next we apply Fourier 

Bessel Series and use Bessel’s recurrence relation to obtain 

the value of �� , the amplitude of displacement of the 

drumhead.  

Rewriting (22) we get the solution as: 

U�r, t� �  %��7� 
X ∑ �&����� 

���������
∞��&  sin β�Ct�7 �β�r� . The 

values of �7�β�) for n = 1,2,3,4 were used in MATLAB to 

obtain various simulations of circular drumhead vibration for 

different values of t.  

Case II:  

Consider the passive cable equation  

D ∂�V
∂x� �  βV � ∂V

∂t  

Applying Laplace transform to both sides 

We obtain  

s <� �x, s� � V�x, 0� � D 
�H�

��  � β <��x, s�  but V�x, 0� �

0, so D 
�H�

��  – ��RY

�  �<�  � 0. 

Upon solving we get  

<��x, s� � �&y√���U
  �( � ��y% √���U

  �(
                     (23) 

V�x, t� d 0 ?¡; d ∞;  so 0 � �&ye � ��y%e 

We fix �& =0 to avoid the exponential from growing 

infinitely. So (23) now reduces to 

<��x, s� �  ��y% √���U
  �(

                           (24) 

Next we find the Laplace transform of the first boundary 

condition.  

L£V�0, t�¤  � A L �cosωt� �  A s
ω� � s� 

Hence (24) reduces to 

<��x, s�  � y% √��
 �( Y

¦�R Y� y% √� U
 �(

               (25) 

Lastly we get the Laplace inverse of (25) 

V�x, t�  �  Ay% √��
 �(§% &¨ s

ω� �  s� y% √� U
 �(©

�  Ay% √��
 �(tg¡�ωt � ;�D�. 

The solution to this problem is therefore V�x, t�  �
 Ay% √��

 �(tg¡�ωt �  ;�D�. 

where √��
ª� shows how exponential amplitude decay as the 

signal travels down the line. 

Case III: In this case, the researcher uses Laplace 

transform to solve 


X 


 � D 
�X

`(� , x | 0, t | 0                        (26) 

Applying Laplace on both sides of (26), we obtain 

s �« �x, s�  �  C�x, 0� � K ∂��«
�;� 

But C(x,0)=0 from the third B.C as stated in Case III – 
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problem formulation above. 

K ∂��«
�;� �  s�« �x, s� �  0 

It’s solution is �«�x, s� �  �&y  √�­
®�( � ��y% √�­

®�(
 

Using the next B.C: lim(de C�x, t� � 0 , we obtain 

0 � �&ye  � ��y% e. But since the exponential must not be 

allowed to grow indefinitely, we make �& � 0 so we now 

have 

�«�x, s�  �  ��y% √�­
®�(

                           (27) 

Differentiating (27) w.r.t x; 

d�«
dx �  � �� √�¯

°�y% √�­
®�(

 

Next we find the Laplace transform of the initial 

condition as stated in Case III under problem formulation 

above 

L¨∂C
∂x ©  � �AL £δt¤ but L £δt¤  � 1 

d�«
dx � �A at x � 0 

(27) now becomes  �« �x, s�  �  A√�L
²�y% √�®

­�(
 

On applying Laplace inverse the final solution becomes 

C�x, s� �  √� ²
³{�y√�´ µ�

¶·¸ �
                    (28) 

4. Discussion of Results 

 

Figure 2. Simulations on drumhead vibration at different times. 

Key: t=1 stands for the time before the membrane is hit, t=2, 4, 6, 8 and 10 

shows the membrane’s vibration after 2s, 4s, 6s, 8s and 10s respectively. 

CASE I, from the simulations in figure 2 above, the 

researcher concluded that there is no vibration of the 

membrane initially since the membrane is initially flat. 

When a slight force is applied (single drumbeat) at the 

centre of this circular drumhead, there is a slight 

deflection of the membrane due to the pressure exerted on 

the membrane; a single drumbeat causes vibrations to be 

localized around the centre of the drum (hitting point) and 

the membrane gradually flattens at a distance further away 

from the centre. This was observed for all times t=2s, 4s, 

6s, 8s, 10s. 

CASE II 

 

Figure 3. Signal propagation with changing distance and time. 

Figure 3, (a) shows that for all time t, the signal strength 

decreases with increasing distance. The longer the distance 

the signal travels, the more it gets attenuated and finally after 

propagating through a long distance, the signal gets vanished 

completely, (b) depicts the fact that there is distortion as 

signal is being transmitted for different distance travelled for 

all t, (c) gives how signal transmission varies with both 

distance and time. It was also noted that the closer the 

distance is to the transmitter(x=0), the faster the signal 

propagation. This explains the reason why normally receivers 

are put close to the transmitters. 

CASE III:  

 

Figure 4. Showing pheromone travelling at different times and distance. 

Finally, for Case III it was noted that the shorter the time 

the pheromone travels along the tunnel the higher the 

concentration of pheromone within the channel. Figure 4(a) 
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shows that at all times, pheromone concentration decreases 

gradually with increasing distance and later stabilizes at some 

further distance from the source. This implies that ants no 

more receive the alarm message at a given distance from the 

source; (a) implies that the concentration of pheromone is 

generally greater at a distance closer to the source of the 

pheromone itself; (b) shows that pheromone concentration 

within the tunnel is higher at shorter times and decreases as 

time increases. (c) depicts the fact that concentration 

increases and reaches its maximum at some given distance 

and time; then it decreases gradually as a result of 

evaporation and diffusion of the pheromone along the tunnel 

as both distance and time increases. After some times, the 

concentration falls below the threshold value throughout the 

tunnel and the signal no longer elicits a response. 

5. Conclusion 

It was concluded that vibrations of a circular drumhead as 

a result of a single drumbeat mainly concentrates around the 

centre of the membrane and tends to flatten out further away 

from the centre. For the case of signal propagation, we 

concluded that signal propagation decreases with increasing 

distance and so the shorter the cable the less signal strength is 

lost. Finally, concentration of pheromone can only last for a 

given time and distance. Once the concentration reaches 

some particular time and distance, the ants can no longer 

receive any signal since the pheromonal path will have 

disappeared completely. 
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