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Abstract: In this paper, it is shown that symmetry of a physical system is a transformation which may be applied to the state 

space without altering the system or its dynamical interaction in any way. The theory is applied to generalize the concept of 

symmetries and conservation laws with external to Hamiltonian systems with external forces. By this we obtain a generalized 

Noether’s Theorem which states that for Hamiltonian systems with external forces, a symmetry law generates a conservation 

law and vice versa. 
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1. Introduction 

Symmetries are among the most important properties of 

dynamical systems when they exist [1]. The study of 

symmetries is very important in the sense that they are 

equivalent to the existence of conservation laws. [2] has 

shown that in Hamiltonian system, symmetries are very close 

to the constants of the motion. Noether’s theorem has also 

advocated this concept. Also [3] applied symmetries and 

constants of motion and derived the reduced Hamiltonian 

system. Generally, symmetry of a physical system is a 

transformation which may be applied to the state space 

without altering the system or its dynamical interaction in 

any way. Consider for example motion of a particle in a 

central force field with potential ( )U x  where x  is the 

position vector of the particle. This system is not affected by 

rotations and they are referred to as a symmetry. The 

existence of such symmetries gives insight into the structure 

of the system i.e. any solution of the system must reflect 

these symmetries. Thus it is useful to make use of any 

symmetry information available in obtaining solutions of the 

system i.e. constants of the motion (conservation laws) which 

are defined as mappings :I TM → ℝ  such that 0dI dt = . 

Think for example, the energy of the system. It is usually a 

mapping on the tangent bundle and it is usually constant of 

the motion. The connection between the symmetry of a 

system and its corresponding conservation law is 

summarized in Noether’s theorem which follows later. It is 

therefore intended to formulate and analyse Symmetries and 

Conservation Laws for Hamiltonian Systems which finally 

summarized by the generalized Noether’s theorem. 

2. Formulation of the Concept of 

Symmetry 

Let M  be the configuration manifold for a physical 

system. Let ( ),  ,  L q q tɺ  be the Lagrangian of the system i.e. 

:L TM → ℝ  is a smooth function on the tangent bundle 

TM  of the system. Let :h M M→  be a smooth map on M  

and 
*

:h TM TM→  the corresponding bundle map. A 

Lagrangian L  is said to be invariant under the mapping h  if 

*
L h L=�  for any tangent vector v TM∈  i.e. ( ) ( )*

L h v L v=  

[1]. The extension of the symmetry of a physical system to 

dynamical systems yields the following: [4]. 

Definition 1 

(a) A symmetry for time-invariant external dynamical 

system 
e

W⊂∑ ℝ
 is a map :W Wψ →  which leaves 

e∑  invariant i.e. if ( ).
e

w ∈∑  then also 

( )( ). ,
e

wψ ∈∑  and if ( ).
e

w ∈∑  then there exists 

( ).
e

w ∈∑ɶ  such that ( )( ) ( ). .w wψ =ɶ . In short 
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( )
e e

ψ =∑ ∑  

(b) A symmetry for a dynamical system in state space form 

( )
i

X W⊂ ×∑
ℝ

 is a mapping 

( ),  : X W X Wϕ ψ × → ×  with : X Xϕ →  and 

:W Wψ →  which leaves 
i∑  invariant i.e. if 

( ) ( )( ). ,  .
i

x w ∈∑  then also 

( )( ) ( )( )( ). ,  .
i

x wϕ ψ ∈∑  and if ( ) ( )( ). , .
i

x w ∈∑  

then there exists ( ) ( )( ). ,  .
i

∈∑x wɶ ɶ  such that 

( )( ) ( )( )( ) ( ) ( )( ). ,  . . ,  .ϕ ψ =x w x wɶ . 

Example 

Consider a particle of mass m  moving in 3
ℝ  subject to a 

potential V  and to which n external force F  is applied. The 

external variables are F  and the observation of the position, 

i.e. y r= . If V  is invariant under rotations around the 

1
axise −  in 3

ℝ  then the external symmetry ψ  is given by 

simultaneously rotating y  and the direction of F  around 

1
axise − . The internal symmetry ϕ  is given by 

simultaneously rotating the position and the velocity or 

momentum around the 
1

axise −  [7]. 

We note that if ( ),  ϕ ψ  is a symmetry for 
i∑ , then ψ  

is an external symmetry for external behaviour 
e∑  of .

i∑  

Accordingly, using differential geometry approach we give 

the following definition. 

Definition 2 

Let ( ),  ,  ,  X W B f∑  be a smooth nonlinear system. A 

symmetry for this system is given by a triplet ( ),  ,  ϕ ψ φ  such 

that : X Xϕ → , :W Wψ → , and : B Bφ →  are 

diffeomorphism for which the following diagram commutes. [4]. 

c 

We note that if ( ),  ,  ϕ ψ φ  is a symmetry for 

( ),  ,  ,  X W B f∑ , then ( ),  ϕ ψ  is a symmetry for 

( ),  ,  ,  
i

X W B f∑  and ψ  is a symmetry for 

( ),  ,  ,  
e

X W B f∑  in the sense of definition 1. 

Suppose that the symmetry of a physical system is given 

by a one parameter group of diffeomorphisms sh  which 

leaves the Lagrangian invariant i.e. *

sL h L=�  for all s . In 

the above example of the motion of a particle in a central 

force field, the parameter s  is the rotation angle and the one-

parameter group is a group of rotations. Then we have the 

following definition of infinitesimal symmetries which 

correspond to 1 and 2. 

Definition 3 

Let ( ),  ,  ,  X W B f∑  be a smooth nonlinear system. An 

infinitesimal symmetry is given by a triple ( ),  ,  S T R  with 

,  S T  and R  vectorfields on ,  X W  and B  respectively 

such that ( ),  ,  
t t t

S T R  is a symmetry for every t ∈ℝ  and 

small i.e. if ,  ,  t t tS T R  are the one-parameter groups 

generated by ,  S T  and R  respectively, then the following 

diagram commutes. [4]. 

 

The consequence of the commutativity of the above 

diagram is that the one-parameter group ( ),  
t t

S T  acting on 

X W×  takes a feasible state/external signal trajectory into a 

similar pair. 

Since the objective of this paper is to relate symmetries 

when they exist to conservation laws, we shall next define a 

conservation law. 

Definition 4 

Let ( )
i

X W⊂ ×∑
ℝ

 be a dynamical system in state space 

form and let 
e

W⊂∑ ℝ
 be its external behaviour. Let 

:eF W → ℝ  be such that for every 
e

w∈∑ , ( )( ).eF w ∈  

locally integrible vector-valued functions on ℝ , and let 

:F X → ℝ . The pair ( ),  
e

F F  is called a conservation law if 

( )( ) ( )( ) ( )( )
2

1

2 1

t

e

t

F x t F x t F w dτ τ− = ∫        (1) 

Holds for all ( ),  
i

x w ∈∑  and for all 
2 1

t t≥ . F  is called 

the conserved quantity. [4]. 

The interpretation of equation (1) is that the change of F  

along a trajectory x  is a function of the external trajectory 

w  only. 

We use the differential geometry to equation (1). Let 

:F X → ℝ  be a smooth function. Define :F TX → ℝ  by 

( ) ( )F v dF v=ɺ  for TX∈v  [4]. 

Definition 5 
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Let ( ),  ,  ,  X W B f∑  be a nonlinear dynamical system 

with ( ),  f g h=  such that :g B TX→  and :h B W→ . Let 

:F X → ℝ  and :
e

F W → ℝ  be smooth functions. Then the 

pair ( ),  
e

F F  is called a conservation law if eF g F h=ɺ � �
 

[4]. 

If ( ),  x u  are fibre respecting coordinates for B , then 

( )
1

,  
n

i i

F
F x x

x=

∂=
∂∑ɺ ɺ  [5]. Therefore ( ) ( )

1

,  ,  
n

i

i i

F
F g x u g x u

x=

∂=
∂∑ɺ � . 

But ( ),  F g x uɺ �  is the time derivative of F  in x  along a 

trajectory of the vectorfield ( ).,  g u . Equation (3) therefore 

yields ( ) ( )( ),  ,  .
e

d
F x u F h x u

dt
=  We note that 

dF

dt
 is the 

Lie derivative ( ).,
£

g
F . 

If the external influence to a system is absent then 

( )( ) 0eF w t =  .
e

w∀ ∈∑  The conservation law amounts to 

( )( ) ( )( )1 2F x t F x t=  
2 1

t t∀ ≥  and 0
d

F
dt

= . 

Various laws of conservation are particular cases of 

Noether’s theorem. Noether’s theorem relates the symmetries 

of the configuration manifold of a Lagrangian system to 

conservation Laws. The consequence of the existence of 

symmetries is the existence of symmetries of a first integral 

of the equations of motion. This is the content Noether’s 

theorem and we shall state it. For simplicity only the 

autonomous case shall be considered. 

Theorem 1: (Noether’s theorem) 

Let ( ),  M L  be a Lagrangian system and let :sh M M→ , 

s ∈ℝ  be a one-parameter group of diffeomophism. If the 

system ( ),  M L  admits symmetry under the mapping sh , 

thenthe Lagrangian system of equations corresponding to the 

Lagrangian L  has a first integral :I TM → ℝ . In local 

coordinates of M , I  is given by ( ) ( )
0

,  
s

s

L h
I q q q

q s =

∂ ∂=
∂ ∂

ɺ
ɺ

 [4]. 

Proof 

Let nM = ℝ  be the coordinate space. Denote the solution 

of the Lagrange’s equations by ( )q t= Ψ  where 

: MΨ →ℝ . It is easy to see that since :sh M M→ , it 

follows that the Lagrangian L  is invariant under the 

mapping * :sh TM TM→ . Consequently, the mapping 

:sh MΨ →� ℝ  which is just a translation of the solution of 

the Lagrange’s equations for any s . 

Now define the mapping : nφ × →ℝ ℝ ℝ  by 

( ) ( )( ),  sq s t h tφ= = Ψ . By the hypothesis of invariance of 

L  under the mapping sh , we have 

( )
( ) ( ), ,  

0 ,  
q s t q s t

L L d L d

s q ds q dsφ φ

φ φφ φ
= =

∂ ∂ ∂= = +
∂ ∂ ∂

ɺɺ

ɺ
ɺ

ɺ
   

  (2) 

The mapping 
constant

: n

s
φ

=
→ℝ ℝ  for fixed s  satisfies 

Lagrange’s equations 

( ) ( )( ) ( ) ( )( ),  , ,  ,  , ,  
L L

s t s t s t s t
t q q

φ φ φ φ ∂ ∂ ∂= ∂ ∂ ∂ 
ɺ ɺ

ɺ
.  (3) 

Define ( ) ( ) ( )( ),  ,  , ,  
L

F s t s t s t
q

φ φ ∂=  ∂ 
ɺ

ɺ
 and substitute 

F

t

∂
∂

 for 
L

q

∂
∂

 in (2) equation to get 

0
d L dq L d dq

dt q ds q dt ds

 ∂ ∂  = +   ∂ ∂   ɺ ɺ
 

d L dq

dt q ds

 ∂=  ∂ ɺ
 

dI

dt
=  

3. Symmetries and Conservation Laws 

for Hamiltonian Systems 

In this section we specialize the concept of symmetries to 

Hamiltonian systems. In this case it becomes stronger for the 

reason that we shall want it to preserve the symplectic 

structure. Define a symmetry for a Hamiltonian system as 

follows: 

Definition 6 

Let ( ),  ,  ,  M W B f∑  be a full Hamiltonian system. An 

internal symmetry ( ),  ,  ϕ ψ φ  is called Hamiltonian if ϕ  and 

ψ  are simplectomorphism i.e. 

(i) 
*ϕ ω ω=  

(ii) 
* e eψ ω ω=  

with 
*ϕ  and 

*ψ  the pullbacks of ω  and eω  by ϕ  and ψ  

respectively. [7] has pointed out that for minimal systems we 

don’t have to assume a priori that : M Mϕ →  is a 

symplectomorphism. ϕ  is implied by the external symmetry 

ψ  as shown by the following proposition. 

Proposition 1 

Let ( ),  ,  ,  M W B f∑  be a full Hamiltonian and minimal 

system. Let ( ),  ,  ϕ ψ φ  be an internal symmetry and ψ  a 

symplectomorphism. Then ϕ  is necessarily also a 

symplectomorphism [6]. 

Proof 

Let ( ),  f g h= . Because ( ),  ,  ϕ ψ φ  is a symmetry, 

( )f B  is mapped by ψ  and 
*

ϕ  onto ( )f B  where 
*

ϕ  is the 

derivative map of ϕ . Therefore ( ),  ,  ,  M W B f∑ ɶ  with 

( )*
,  f g hϕ ψ=ɶ � �  is again a Hamiltonian system. Hence 
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( )( ) ( )** * *

*

e
g hϕ ω ϕ ω=ɺ  and ( )( )** * * * *

*

e e
g h h gω ω ψ ω ϕ ω= = =ɺ ɺ  

where we have used 
* e eψ ω ω= . This yields 

* 0g ω =ɺ  with 

*ω ω ϕ ω= − . [4] has derived that ∑  satisfies the 

minimality rank condition, then 0ω =  and 
*ϕ ω ω= . 

We shall now consider the case of the infinitesimal 

symmetries for Hamiltonian systems. 

A vectorfield S  on a symplectic manifold ( ),  M ω  is called 

a symmetry for Hamiltonian vectorfield 
H

X  on M  if [6]. 

(i) The Lie derivative £ 0
S
ω = , 

(ii) ( ) 0S H =  where H  is the Hamiltonian function. 

From (i) it follows that S  has locally a corresponding 

Hamiltonian function :F M → ℝ  and so (ii) implies that 

( ) 0
H

X F =  and therefore F  is a conserved quantity for 

H
X . Conversely for :F M → ℝ  such that ( ) 0

H
X F =  it 

follows that 
F

S X=  satisfies (i) and (ii) and so S  is a 

Hamiltonian symmetry. 

The generalization of the above to the Hamiltonian system 

yields the following definition: 

Definition 7 

Let ( ),  ,  ,  M W B f∑  be a full Hamiltonian system. An 

infinitesimal symmetry ( ),  ,  R S T  for ∑  is called 

Hamiltonian if S  and T  are locally Hamiltonian 

vectorfields i.e. £ 0
S
ω =  and £ 0e

T
ω =  [9]. 

A conservation law for a Hamiltonian system can be 

constructed in the following way: 

Consider a Hamiltonian system with an input u . For every 

u  we get a Hamiltonian vectorfield on M  denoted by X u . 

If ( ),  ,  R S T  is a Hamiltonian symmetry for 

( ),  ,  ,  M W B f∑  then there exists functions :F M → ℝ  

and :eF M → ℝ  with 
F

S X=  and e
F

T X=  such that 

x M∀ ∈  and ( ),  x u B∈ , ( )( ) ( )( ),  u eX F x F h x u=  where 

( ),  :g h f B TM W= → ×  [9] We note that FS X=  and 

eF
T X=  implies that F  and eF  are Hamiltonian functions. 

The pair ( ),  eF F  is the conservation law for the 

Hamiltonian system ( ),  ,  ,  .M W B f∑  

The interpretation of the above construction is that the 

change of F  along the trajectories of the system is a function 

of the external variables. Knowledge of the external variables 

together with the initial conditions can determine the 

behaviour of F  as a function of time. 

We conclude with the generalized Noether’s theorem. 

Theorem 2: (Generalized Noether’s theorem) 

Let ( ),  ,  R S T  be an infinitesimal symmetry for a full 

Hamiltonian system ( ),  ,  ,  .M W B f∑  Then locally there 

exists a conservation law ( ),  .eF F  Conversely if ( ),  .eF F  

is a conservation law, then there exists a Hamiltonian 

symmetry ( ),  ,  R S T  such that FS X=  and eF
T X=  [4] 

The following proposition will be needed for the proof of 

Noether’s theorem. 

Proposition 2 

Let ( ),  ,  ,  M W B f∑  be a nonlinear dynamical system 

with ( ),  f g h= .Then ( ),  ,  R S T  is an infinitesimal 

symmetry iff 

i. 
*g R S= ɺ  

ii. 
*

h T= . 

*
g  and 

*
h  are derivative maps of g  and h  respectively 

[10].  

Proof 

We note that ( ),  ,  R S T  is an infinitesimal symmetry iff 

diagram (1) commutes for every ( ),  ,  
t t t

R S T  with t  small. 

This is equivalent to 

(a) * tt
S g g R=� �  

(b) t tT h h R=� �  

Differenting (a) and (b) with respect to t  at 0t =  we get 

(i) and (ii). 

Now we proceed with the Generalized Noether’s theorem. 

For a Hamiltonian system ( ),  ,  ,  M W B f∑  we have 

* * eg hω ω=ɺ  (By proof of Proposition 1) 

( ) ( )* *,  ,  eg R h Rω ω⇒ − = −ɺ , 

( ) ( )* * * *
,  ,  eg R g h R hω ω⇔ − = −ɺ , (By proposition 2) 

( ) ( )* *

edF g dF h⇔ − = −ɺ , 

( ) ( )ed F g d F h⇔ =ɺ � � . 

We have used the fact that ( ),  S dFω − =ɺɺ  when 

( ),  S dFω − =  [4]. We have thus obtained 

eF g F h=ɺ � � . 

Therefore ( ),  eF F  is a conservation law. (c.f. definition 4) 

Conversely: 

Let ( ),  eF F  be a conservation law. This is equivalent to 

eF F−ɺ  restricted to ( )f B  equal to zero. For ( ),  x x TM∈ɺ  

and w W∈  we set ( )( ) ( ) ( ),  ,  ,  e eF F x x w F x x F w− = −ɺ ɺɺ ɺ  

such that :eF F TM W− × →ɺ ℝ . eF F−ɺ  is therefore a 

Hamiltonian function. Hence we can define the Hamiltonian 

vectorfield eF F
X

−
 on the symplectic manifold 

( )* *

1 2,  eTM W π ω π ω× −ɺ . With 
F

X ɺ  the Hamiltonian 

vectorfield on TM and eF
X  the Hamiltonian vectorfield on 
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W  we have 

( ),  e eFF F F
X X X

−
= ɺɺ

. Because eF F−ɺ  restricted to ( )f B  

is zero, it follows that 

( ) ( )* *

1 2 ,  0e

e e

k kF F
X X X F Fπ ω π ω

−
− = − =

ɺ

ɺɺ  on ( )f B  for all 

Hamiltonian vectorfield 
k

X  tangent to ( )f B . 

( ),  e eFF F F
X X X

−
= ɺɺ

 is also tangent to ( )f B  since ( )f B  is 

Lagrangian. If we denote 
F

X  by S  and eF
X  by T  then we 

say ( ),  S Tɺ  is tangent to ( )f B  and for t  small we obtain 

( ) ( ) ( )* ,  tt
S T f B f B=  

We construct a Hamiltonian symmetry ( ),  ,  R S T  by 

defining a 1-parameter family :t B Bφ →  such that 

( )* ,  t tt
S T f f φ=� �  for t  small and a vectorfield R  on B  

by ( ) ( )
0

t

t

d
R

dt

φ
=

=x x . 

4. Conclusion 

The concept of symmetry for Hamiltonian systems has 

been formulated and analysed. It was shown that symmetry 

of a physical system is a transformation which may be 

applied to the state space without altering the system or its 

dynamical interaction in any way. Symmetries and 

conservation laws with external to Hamiltonian systems with 

external forces has been analysed. The conservation law for a 

Hamiltonian system was constructed and which was 

concluded by generalized Noether’s theorem. 
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