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Abstract: An investigation of the unsteady magnetohydrodynamic fluid flow with heat and mass transfer of a viscous, 

incompressible, electrically conducting and Newtonian fluid past a vertical plate embedded in a porous medium taking into 

account induced magnetic field, first order chemical reaction and thermal radiation effect is carried out. The dimensionless 

governing coupled, non-linear boundary layer partial differential equations are solved by an efficient and unconditionally 

stable finite difference scheme of the Crank-Nicholson type. A computer software is used to iteratively solve the partial 

differential equations. The numerical solutions for fluid velocity, induced magnetic field, species concentration and fluid 

temperatures are depicted graphically. The effect of various non-dimensional parameters on the fluid flow profiles are 

discussed and physical interpretation given. Applications of the study include laminar magneto aerodynamics, materials 

processing and MHD propulsion thermo-fluid dynamics. 
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1. Introduction 

A fluid is a substance that continually flows under applied 

shear stress, regardless of its magnitude. 

Magnetohydrodynamic (MHD) is the study of interaction 

between the flow of an electrically conducting fluids and 

magnetic fields. The MHD problem is of great interest in 

current trends in mathematical modelling. This is due to its 

many applications in engineering problems e.g. MHD 

generators, plasma studies. The flow past a vertical plate has 

been studied by various researchers due to varied 

applications in MHD generators, plasma studies etc. 

Hydromagnetic flows and heat transfer have become more 

important in recent years because of its varied applications in 

agricultural engineering and petroleum industries. Recently, 

considerable attention has also been focused on new 

applications of magnetohydrodynamics (MHD) and heat 

transfer such as metallurgical processing. Melt refining 

involves magnetic field applications to control excessive heat 

transfer rate. Other applications of MHD heat transfer 

include MHD generators, plasma propulsion in astronautics, 

nuclear reactor thermal dynamics and ionized-geothermal 

energy systems. An excellent summary of applications can be 

found in Hughes and Young [1]. Sacheti et al. [2] obtained an 

exact solution for unsteady MHD free convection flow on an 

impulsively started vertical plate with constant heat flux. 

Takar et al. [3] analyzed the radiation effects on MHD free 

convection flow past a semi-infinite vertical plate using 

Runge-Kutta-Merson quadrature. Abd-El-Naby et al. [4] 

studied the radiation effects on MHD unsteady free 

convection flow over a vertical plate with variable surface 

temperature. Ramachandra Prasad et al. [5] have studied the 

transient radiative hydromagnetic free convection flow past 

an impulsively started vertical plate uniform heat and mass 

flux. Samria et al. [6] studied the hydromagnetic free 

convection laminar flow of an elasto-viscous fluid past an 

infinite plate. Recently the natural convection flow of a 

conducting visco-elastic liquid between two heated vertical 

plates under the influence of transverse magnetic field has 

been studied by Sreehari Reddy et al. [7]. In all these 

investigations, the viscous dissipation is neglected. The 

viscous dissipation heat in the natural convective flow is 

important, when the flow field is of extreme size or at low 
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temperature or in high gravitational field. Such effects are 

also important in geophysical flows and also in certain 

industrial operations and are usually characterized by the 

Eckert number. Whenever the temperature of surrounding 

fluid is high, the radiation effects play an important role and 

this situation does exist in space technology. In such cases 

one has to take into account the effects of radiation and free 

convection. A number of authors have considered viscous 

heating effects on Newtonian flows. Israel Cookey et al. [8] 

investigated the influence of viscous dissipation and 

radiation on unsteady MHD free convection flow past an 

infinite heated vertical plate in a porous medium with time 

dependent suction. Zueco Jordan [9] used network simulation 

method (NSM) to study the effects of viscous dissipation and 

radiation on unsteady MHD free convection flow past a 

vertical porous plate. Recently Suneetha et al. [10] studied 

the effects of thermal radiation on the natural convective heat 

and mass transfer of a viscous incompressible gray 

absorbingemitting fluid flowing past an impulsively started 

moving vertical plate with viscous dissipation. Very recently 

Hitesh Kumar [11] has studied the boundary layer steady 

flow and radiative heat transfer of a viscous incompressible 

fluid due to a stretching plate with viscous dissipation effect 

in the presence of a transverse magnetic field. 

The study of heat and mass transfer with chemical reaction is 

of great practical importance to engineers and scientists 

because of its almost universal occurrence in many branches 

of science and engineering. Possible applications of this type 

of flow can be found in many industries like power industry 

and chemical process industries. The effects of mass transfer 

on flow past an impulsively started infinite vertical plate with 

constant heat flux and chemical reaction have been studied 

by Das et al. [12]. Kandasamy et al. [13] presented an 

approximate numerical solution of chemical reaction, heat 

and mass transfer on MHD flow over a vertical stretching 

surface with heat source and thermal stratification effects and 

effects of chemical reaction, heat and mass transfer along a 

wedge with heat source and concentration in the presence of 

suction or injection. Muthucumaraswamy and Valliammal 

[14] have presented the theoretical study of unsteady flow 

past an exponentially accelerated infinite isothermal vertical 

plate with variable mass diffusion in the presence of 

homogeneous chemical reaction of first order. Sharma et al. 

[15] have investigated the influence of chemical reaction and 

radiation on an unsteady magnetohydrodynamic free 

convective flow and mass transfer through viscous 

incompressible fluid past a heated vertical porous plate 

immersed in porous medium in the presence of uniform 

transverse magnetic field, oscillating free stream and heat 

source when viscous dissipation effect is also taken into 

account. A finite difference solution of mass transfer effects 

on MHD flow of incompressible viscous dissipative fluid 

past an exponentially accelerated isothermal vertical plate, on 

taking into account the viscous dissipative heat, under the 

influence of chemical reaction through porous medium is 

evaluated by Gireesh et al. [16]. 

Formulation 

The two-dimensional unsteady magnetohydrodynamic 

mixed convective heat and mass transfer flow of a 

Newtonian, electrically-conducting and viscous 

incompressible fluid over a porous vertical infinite plate with 

induced magnetic field and conduction-radiation has been 

considered in Figure below. The vertical plate is permeable 

to allow for possible blowing or suction, and is infinite in the 

x-axis direction which is the direction of fluid flow and y-

axis is normal to it. Let ( )( )q u y , v,0=�  be the fluid 

velocity and ( )( )x yH H y , H ,0=
� � �

 be the magnetic induction 

vector at a point ( )x, y, z  in the fluid. The x -axis is taken 

along the plate in the upward direction, y -axis is normal to 

the plate into the fluid region. Since the plate is infinite in 

length in x -direction, therefore all the physical quantities 

except possibly the pressure are assumed to be independent 

of x. Injection of the fluid takes place through the porous 

wall of the vertical plate with uniform velocity 0v which is 

greater than zero for injection. It is assumed that no 

polarization voltages exists since the plate is insulated. The 

wall is maintained at constant temperature and 

concentration wC  higher than the ambient temperature T∞  

and concentration C∞  respectively. The plate is non-

conducting and the applied magnetic field is of uniform 

strength 0H  and applied transversely to the direction of the 

main stream taking into account the induced magnetic field; 

 

Figure 1. Flow configuration. 

The following assumptions are implicit in our analysis: 

1. The fluid is assumed to be incompressible hence 

density of fluid is assumed to be constant of both time 

and space. 

2. The ratio of the square of fluid velocity V and that of 

the square of velocity of light c is negligibly small  

3. There is chemical reaction taking place in the fluid. 

4. The plate is non-conducting. 

5. The magnetic field is considered relatively strong and 

constant. 
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6. A short circuit problem where no charge accumulate is 

considered. Thus electrostatic force is negligible. 

7. Fluid is Newtonian. 

8. Fluid has constant thermal conductivity. 

9. Fluid flow is assumed to be laminar. 

1.1. Governing Equations 

1.1.1. Equation of Continuity 

The equation of continuity also known as equation of 

conservation of mass is derived based on two fundamental 

principles namely; The mass of the fluid remains constant as 

the fluid particles flow in the flow field. The continuum 

hypothesis which states that there are empty spaces between 

particles that were in contact and that the fluid volume is not 

affected by an increase in pressure i.e. the flow is continuous. 

The equation can be expressed in tensor form as Hughes et 

al. (1964) 

( )j

j

u 0
t x

∂ρ ∂+ ρ =
∂ ∂                                  (1) 

By the assumption that the fluid if incompressible the 

equation (1) reduces to 

( )j

,

u 0
x

∂ =
∂                                         (2) 

1.1.2. Momentum Equation 

The equation of conservation of momentum is derived 

from the Newton’s second law of motion, which states that 

the time rate change of momentum of a body matter is equal 

to the net external forces applied to the body. Using the fact 

that the flow is incompressible with invariant viscosity the 

equation becomes; 

j 2i
j i i

j j

u u P
u u F

t x x

 ∂ ∂ ∂ρ + = − + µ∇ + ρ  ∂ ∂ ∂ 
                (3) 

Since there is no large velocity gradient here, the viscous 

term in Equation (3) vanishes for small µ and hence for the 

outer flow, beside there is no induced magnetic field along x-

direction gradient, so we have 

P
0 g

x
∞

∂= − − ρ
∂

                                   (4) 

The Boussinesq Approximation gives 

( ) ( )*T T C C∞ ∞ ∞ρ − ρ = ρβ − + ρβ −                      (5) 

From equation of continuity 
u

0
y

∂ =
∂

 and 0v v=  since 

velocity in y- direction is injection velocity. We regard the 

porous medium as an assembly of small identical spherical 

particles fixed in space, considering Brinkman (1947) for 

porous medium. From equations above momentum equation 

reduces to; 

( ) ( )
2

* e 0 x

0 w w 2

p

H Hu u u
v g T T g C C u

t y K yy

µ  ∂∂ ∂ ∂ ν+ = β − + β − + ν − + ∂ ∂ ρ ∂∂ 
                                      (6) 

1.1.3. Energy Equation 

The equation of conservation of energy is derived from the 

First Law of Thermodynamics, which states that the amount 

of heat added to a system ��  equals change in internal 

energy �� plus the work done. It can be expressed as  

rj

j j

j j i

qH P
u H u P

t x t x x

∂∂ ∂ ∂ ∂ρ + ρ = + − + ϕ
∂ ∂ ∂ ∂ ∂         (7) 

In this study we consider the flow of viscous 

incompressible fluid with 
pC  being a constant, we consider 

radiation and viscous dissipation, and then the energy 

equation can be expressed as  

2 * 3 2
2

p T * 2

16 TDT u T
C K T

Dt y 3K y

∞  σ∂ ∂ρ = ∇ + µ + ∂ ∂ 
              (8) 

1.1.4. Concentration Equation 

The equation of species concentration is based on the law of 

conservation of mass. This equation is used when the porous 

medium is saturated with fluid and obeys Darcy’s law. 

Convection is one of the major modes of heat transfer and mass 

transfer. The equation of species concentration is given as 

2

l

dC
D C K C

dt
= ∇ −                                (9) 

From equation (9) we can come up with the following 

equation; 

( )
2

0 m l2

C C C
v D K C C

t y y
∞

∂ ∂ ∂+ = − −
∂ ∂ ∂

                (10) 

1.1.5. Induction Equation 

Since the magnetic field is varied we have to solve the 

magnetic induction equation given by 

( ) 2

e

B 1
q B B

t

∂ = ∇× × + ∇
∂ σµ

�
� � ��

                    (11) 

It describes the evolution of magnetic field. The first time 

on the right-hand side is the advective term that describes the 

interaction of the field with the flow velocity. The second term 

on the right hand side is a diffusive term. In the absence of the 

fluid flow velocity, the diffusive term leads to a decay of 

magnetic field. The magnetic induction equations is given as 
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2

x x x
0 0 2

e

H H Hu 1
v H

t y y y

∂ ∂ ∂∂+ = +
∂ ∂ ∂ σµ ∂

              (12) 

The equations (7), (8), (10) and (12) are the specific 

equations for the problem and are solve simultaneously. 

Subject to initial and boundary conditions  

For 
0 w w, x

0 x

t 0 y 0,u 0, v v ,T T ,C C H 0

t 0 y ,u U ,T T ,C C ,H 0∞ ∞

> = = = = = =

> = ∞ → → → →
    (13) 

1.2. Non-dimensionalization 

Non-dimensionalization has the ability to reduce 

complicated physical problem into more feasible one for 

solutions and also enable scientists work with model without 

limiting themselves to specific measurements and units. 

Theoretical solutions obtained in non-dimensional form are 

free of units and more flexible. In the present MHD problem 

we are define the various non-dimensional parameters and 

then deal with the non-dimensionalization process. 

1.2.1. Non-dimensional Parameters 

The following non-dimensional parameters were 

considered in this paper. 

1.2.2. Prandtl Number, Pr 

This is the ratio of fluid properties controlling the velocity 

and the temperature distributions. It is the ratio of viscous 

force to thermal force. 

p

T

C
Pr

K

ρ ν
=                                         (14) 

1.2.3. Local Temperature Grash of Number, Gr 

This is a non-dimensional number which normally occurs 

in natural convection problem. It is the ratio of thermal 

buoyancy forces to viscous hydrodynamic forces.  

( )w

3

0

g T T
Gr

U

∞ν β −
=                               (15) 

1.2.4. Local Mass Grashof Number, Grm 

It is the ratio of species buoyancy forces to viscous 

hydrodynamic forces. 

( )*

w

m 3

0

g C C
Gr

U

∞ν β −
=                            (16) 

1.2.5. Eckert Number, Ec 

This expresses the relationship between the kinetic energy 

in the flow and the enthalpy. It represents the conversion of 

kinetic energy into internal energy by work that is done 

against the viscous fluid stresses. 

( )
2

0

p w

U
Ec

C T T∞

=
−

                             (17) 

1.2.6. Schmidt Number, Sc 

The Schmidt number quantifies the relative effectiveness 

of momentum and mass transport by diffusion in the 

hydrodynamic (velocity) and the concentration (species) 

boundary layers. It physically relates the relative thickness of 

the hydrodynamic layer and mass transfer boundary layer.  

m

Sc
D

ν=                                         (18) 

1.2.7. Hartmann Number 

This is the ratio of magnetic force to viscous force 

e 0

0

H
M

U

µ
=

ρ
                                        (19) 

1.2.8. Magnetic Prandtl Number 

This approximates ratio of momentum diffusivity and 

magnetic diffusivity 

m ePr = σµ ν                                         (20) 

1.2.9. Permeability Parameter 

Measures effective permeability of the phase 

2

i 2

0 pU K

νχ =                                         (21) 

1.3. Non-dimensionalizing Equations Governing Fluid 

Flow 

For this particular problem we let 0U  to be characteristic 

velocity in freestream. To non-dimensionalize the equations 

governing the flow we used the transformations: 

2

* * *0 0

0 w w

* *0 e x

0

0 0

yU tUT T C Cu
y ,u , , , t

U T T C C

v H
v H

U U

∞ ∞

∞ ∞

− −
= = θ = ϕ = =

ν − − ν

µ
= =

ρ

                                                     (22) 

Using the transformations (22) and with help of (21), (20), 

(19), (18), (16), (15) and (14) the non-dimensional forms of 

(6), (8), (10) and (12) are 

* * 2 * *
*

m i* * *2 *

u u u H
S Gr Gr M u

t y y y

∂ ∂ ∂ ∂+ = θ + ϕ + + − χ
∂ ∂ ∂ ∂

            (23) 
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2
2 * 2

* * *2 * *2

1 u R
S Ec

Pr Prt y y y y

 ∂θ ∂θ ∂ θ ∂ ∂ θ+ = + + ∂ ∂ ∂ ∂ ∂ 
          (24) 

2

* * *2

1
S k

Sct y y

∂ϕ ∂ϕ ∂ ϕ+ = − ϕ
∂ ∂ ∂

                     (25) 

* * 2 * *

* * *2 *

m

H H 1 H u
S M

Prt y y y

∂ ∂ ∂ ∂+ = +
∂ ∂ ∂ ∂

                   (26) 

The corresponding boundary conditions are 

* * * * *

* *

t 0; y 0,u 0, 1, 1,H 0, y

u 1, 0, 0, H 0

≥ = = ϕ = θ = = → ∞

→ ϕ → θ → →
   (27) 

2. Method of Solution 

The final set of governing equations (21), (22), (23) and 

(24) cannot be solved numerically since they are highly 

coupled and nonlinear. Together with the boundary 

conditions (25), a numerical solution is constructed using 

finite difference method (FDM). The velocity, temperature, 

concentration and induction are functions of space (y) and 

time (t). There is therefore a necessity to discretize the time 

and space coordinates to form a solution mesh. 

Using Crank-Nicolson method the momentum equation 

t y m yy y iu Su Gr Gr u MH u+ = θ + ϕ + + − χ      (28) 

Becomes 

( )

i, j 1 i, j i 1, j 1 i 1, j 1 i 1, j i 1, j

m y

i 1, j 1 i, j 1 i 1, j i, j i 1, j i, j 1 i, j

i2

u u u u u u
S Gr Gr MH

t 4 y

u 2u u 2u u u u

22 y

+ + + − + + −

− + + + + +

− − + − 
+ = θ + ϕ + ∆ ∆ 

 − + − + + 
  − χ   ∆   

                                        (29) 

From equation (29) the values of u at time step j+1 and j are appearing on both sides of the equation. This equation (29) is 

used to predict the values of u at time step j+1, so all values of u at time step j are assumed to be known. We rearrange equation 

(29) above so that values of u at time j+1 are on the left and values of u at time j so that we get; 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )( )

2 2

i 1, j 1 i, j 1 i i 1, j 1

2 2

i 1, j i, j i i 1, j

2

m y

u S t y 2 t u 4 y 4 t 2 t y u S y t 2 t

u t y 2 t u 4 y 4 t 2 t y u 2 t S y t

Gr Gr MH 4 t y

− + + + +

− +

− ∆ ∆ − ∆ + ∆ + ∆ + χ ∆ ∆ + ∆ ∆ − ∆ =

∆ ∆ + ∆ + ∆ − ∆ − χ ∆ ∆ + ∆ − ∆ ∆ +

θ + ϕ ∆ ∆

                    (30) 

The Crank-Nicolson scheme is implicit, hence a system of equations for u must be solved at each time step. 

If we let coefficients of interior nodes be; 

( )
( ) ( )( )

( )
( )
( ) ( )( )

( )
( ) ( )( )

i

2 2

i i

i

i i 1, j

2 2

i i, j i

i i 1, j

2

m y

a S t y 2 t

b 4 y 4 t 2 t y

c S y t 2 t

d u t y 2 t

e u 4 y 4 t 2 t y

f u 2 t S y t

g Gr Gr MH 4 t y

−

+

= − ∆ ∆ − ∆

= ∆ + ∆ + χ ∆ ∆

= ∆ ∆ − ∆

= ∆ ∆ + ∆

= ∆ − ∆ − χ ∆ ∆

= ∆ − ∆ ∆

= θ + ϕ ∆ ∆

                                                                  (31) 

For � = 2,3,4,5. . . � − 1  

Substituting equations from (31) into equation (30) we get; 

i i 1, j 1 i i, j 1 i i 1, j 1 i i ia u b u c u d e f g− + + + ++ + = + + +                                                                   (32) 

The system of equations can be represented in matrix for as 
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3

21,m2 2 2 2 2

2,m3 3 3 3 3

3,m 4 4 4

N 1,mN 1 N 1 N 1 N 1 N 1 N 1

fua b c ... ... 0 d e g

fu0 a b c .. ... d e g

u d e gf

u0 0 0 a b c d e gf−− − − − − −

        
        
        
        = + + +
        
        
                

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮⋮








 

                                        (33) 

Doing the same for Energy Equation 

( )2

t y yy y

1
S Ec u R

Pr
θ + θ = θ + +                                                                        (34) 

In matrix form we can represent this as 

1,m2 2 2 2 2 2

2,m3 3 3 3 3 3

N 1,mN 1 N 1 N 1 N 1 N 1 N 1

l p r 0 0 w v k z q

0 l p r 0 w v k z q

0 0 0 l p r w v k z q−− − − − − −

θ            
            θ            = + + + +
            
            θ             

⋯

⋯

⋮⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
                                   (35) 

For the concentration equation 

t y yy

1
S k

Sc
ϕ + ϕ = ϕ − ϕ                                                                                (36) 

In matrix form we can represent this as 

1,m2 2 2 2 2 2

2,m3 3 3 3 3 3

N 1,mN 1 N 1 N 1 N 1 N 1 N 1

a b c 0 0 d e f

0 a b c 0 d e f

0 0 0 a b c d e f−− − − − − −

ϕ        
        ϕ        = + +
        
        ϕ         

⋯

⋯

⋮⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
                                        (37) 

The Induction equation is written as 

t y yy y

m

1
H SH H Mu

Pr
+ = +                                                                                (38) 

In matrix form we can represent this as 

1,m2 2 2 2 2 2

2,m3 3 3 3 3 3

N 1,mN 1 N 1 N 1 N 1 N 1 N 1

HA B C 0 0 D E F G

H0 A B C 0 D E F G

H0 0 0 A B C D E F G−− − − − − −

          
          
          = + + +
          
          
           

⋯

⋯

⋮⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
                                        (39) 

Finally, the block of tridiagonal matrices (33), (35), (37) and (39) are solved using MATLAB algorithm and results presented 

in graph which we are going to do in the next chapter. 

3. Results and Discussion 

Since the problem has been non-dimensionalized, the default values are chosen which are used to determine the changes 

which will bring to the fluid flow. The choice made for default values of fluid properties are; 

3

m i mS 10,Gr Gr 1 10 , 2, M 2, Pr 0.07, Pr 0.35,Sc 0.04, K 1, R 20= = = × χ = = = = = = =                     (40) 

3.1. Effects of Magnetic Parameter 

While keeping all fluid properties at their default values, 

the magnetic parameter was varied as M = 1,2,3���4. The 

results obtained are presented in figure below. 

It is observed that magnetic parameter affects both 

velocity and induced magnetic field. The magnetic parameter 
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increases with decrease in both velocity and induced 

magnetic field. The above observations is as a result of the 

final set of governing equations. It can be deduced that the 

velocity of the fluid decreases with increase in magnetic 

parameter. We also notice that there is a fall in induced 

magnetic field as magnetic parameter increases. It is noticed 

that induced magnetic flux peaks a short distance from the 

plate, and then decays to zero in free stream. 

Physically, the magnetic parameter is a measure of the 

magnetic field strength within the fluid. It actually represents 

ratio of electromagnetic forces to viscous forces. The 

presence of a magnetic field in an electrically conducting 

fluid introduces a force called Lorentz force, which acts 

against the fluid if the magnetic field is applied in the normal 

direction. 

 

Figure 2. Fluid flow profiles for various magnetic parameters. 

3.2. Effects of Injection Velocity 

While keeping all fluid properties at their default values, the Injection parameter was varied S = 5,10,15���20. The results 

obtained are presented in figure below 

 

Figure 3. Fluid flow properties for various injection parameter. 
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It is observed that injection velocity has a significant effect 

on velocity, temperature, concentration and induced magnetic 

field profiles. An increase in injection parameter leads to 

increase in velocity, temperature, concentration and induced 

magnetic field. Velocity near the plate increases owing to 

presence of foreign gases in flow field. 

Increase in injection causes a rise in concentration profiles. 

Injection means and increase in molecular diffusivity which 

consequently result in the rise of concentration. 

3.3. Effects of Prandtl Number 

While maintaining the other fluid properties at their 

default values, the Prandtl number was varied Pr �

0.17,0.35, ��� 0.71. The results obtained are shown in the 

figure below. 

 

Figure 4. Fluid flow properties for various Prandtl Number. 

It is observed that increase in Prandtl number leads to 

decrease in velocity, temperature and induced magnetic field. 

Except for small region near the plate. No effects on the 

concentration. 

Physically, increase in Prandtl number leads to decrease in 

thermal boundary layer and lower average temperature 

within boundary layer. The smaller Prandtl number is 

equivalent to increase in thermal conductivity of fluid and 

heat is able to diffuse away from heated surface more rapidly 

for higher values of Prandtl number. As a result the flow is 

decelerated. Higher Prandtl number possess higher 

viscosities implying that such fluids will flow slower than 

lower Prandtl fluids. As a result velocity will decrease 

substantially with increase in Prandtl number. 

We notice that induced magnetic field decrease with 

increase in Prandtl number and also magnetic parameter. 

3.4. Effects of Eckert Number 

While maintaining the other fluid properties at their 

default values, the Eckert number was varied as Ec = 0.002, 

0.01, 0.03and 0.05. The results obtained are shown in the 

figure below. 
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Figure 5. Fluid flow properties for various Eckert Numbers. 

From the graphs we can observe that Eckert number has 

significant effect on temperature, velocity and induced 

magnetic field. The Eckert number affects the temperature 

profiles the most because from the governing equations it 

directly affect the energy equation. We can observe from the 

graphs that as Eckert number is increased the temperature of 

the fluid flow increases hence increases the velocity of the 

fluid flow. Eckert number has no much effect on induced 

magnetic field near the plate but at free it reduces. Physically, 

Eckert is the ratio of kinetic energy to the enthalpy. This 

means that a larger Eckert number implies more kinetic 

energy. The effects of viscous dissipation on the flow field is 

to increase the energy, yielding a greater temperature and as a 

consequence greater buoyancy force. This enhance the 

temperature hence increase in velocity of fluid flow. 

3.5. Effects of Schmidt Number 

While maintaining the other fluid properties at their 

default values, the Schmidt number was varied as Sc = 0.02, 

0.04, 0.1and 0.2. The results obtained are shown in the figure 

below 

We observe that Schmidt number affects mostly the 

velocity, induced magnetic field and concentration profiles. 

There is no observable effects on temperature profiles. 

Increase in Schmidt number leads to reduction in velocity 

and concentration profiles and also reduction of induced 

magnetic field near the plate and increase in the free stream. 

Mathematically, these observations can be explained from 

the relation in the governing equations above. We notice that 

there exists an inverse relationship between the concentration 

and Schmidt number, therefore the inhibition of 

concentration profile on increasing Schmidt number. The 

effects on velocity and induced magnetic field is affected by 

the concentration. 
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Figure 6. Fluid flow properties for various Schmidt number. 

3.6. Effects of Grashof Parameters 

While maintaining the other fluid properties at their default values, the Grashof parameter was varied as Gr = 1× 10
1
, 1× 10

2
 

and 1× 10
3
. The results obtained are shown in the figure below 

 

Figure 7. Fluid profile for various Grashof numbers. 
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We observe from the graphs some significant change in 

velocity, temperature and induced magnetic field but no 

much change in concentration. We notice that when Grashof 

Number is increased the velocity and the temperature of fluid 

flow increases. For the induced magnetic field it increases 

near the plate and decays to the relevant free stream.  

Physically, increase in Grashof number leads to an upward 

acceleration of fluid in the vicinity of vertical wall caused by 

increasing buoyancy. A rise in velocity and temperature 

means heating of fluid. Curves shows that the peak values of 

velocity increase rapidly near the wall of the porous plate as 

Grashof number increases and decays to the relevant free 

stream velocity. A positive increase in Grashof clearly 

accelerates velocities. Grashof number is proportional to the 

thermal buoyancy generated by free convection currents. 

Increase in buoyancy will therefore aid the flow. 

3.7. Effects of Radiating Parameter 

While maintaining the other fluid properties at their 

default values, the Radiating parameter was varied as 

R=10,20and30. The results obtained are shown in the figure 

below 

 

Figure 8. Fluid flow profile for various radiating parameter. 

We can observe that from the graphs that as we increase 

Radiating parameter the velocity, temperature and induced 

magnetic field increases.  

Physically, a large value of radiating parameter 

corresponds to an increased dominance of thermal radiation 

over conduction. Thermal radiation supplements thermal 

diffusion and increases the overall thermal diffusivity of the 

regime. Since he local radiant diffusion flux model adds 

radiation conductivity to the convectional thermal 

conductivity. As a result the temperature in the fluid region is 

significantly increased hence increased velocity of the fluid 

flow. 

3.8. Effects of Permeability Parameter 

While maintaining the other fluid properties at their 

default values, the Permeability parameter was varied as χ i 

=1, 2, 4. The results obtained are shown in the figure below. 
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Figure 9. Fluid flow for various permeability parameter. 

9 Flow profile for various Permeability parameter values. 

We observe some slight changes in the graphs as 

permeability parameter is changed. We can observe that as 

permeability parameter is increased the velocity of fluid 

reduces slightly. And no much significant change in induced 

magnetic field as it has small change near the plate and 

increases in freestream slightly. 

Physically, presence of porous medium increases 

resistance to flow resulting in decrease in flow velocity. 

4. Conclusion 

In this paper effects of chemical reaction and viscous 

dissipation on MHD free convection flow past a porous 

vertical plate with variable surface temperature and 

concentration have been studied numerically. Implicit finite 

difference method is employed to solve the equations 

governing the flow. From the present numerical 

investigation. The study concluded that visco-elasticity 

decreased the temperature profiles in the flow field for small 

values of the Prandtl number; and that the temperature 

profiles decreased with increase in the strength of the 

magnetic field. From the present numerical investigation, 

following conclusions have been drawn: 

� It is found that the velocity decreases with increasing 

magnetic parameter (M). 

� Under the influence of chemical reaction, the flow 

velocity reduces 

� The increasing value of the viscous dissipation 

parameter enhancing the flow temperature 

� A decrease in concentration with increasing Schmidt 

number as well as chemical reaction parameter is 

observed. 

� It is marked that the rate of concentration transfer 

increases with increasing values of chemical reaction 

parameter ‘K’ and Schmidt number ‘Sc’. 

Nomenclature 

Roman 

symbols 
Quantity 

q
�

 Velocity vector of fluid 

H
�

 The magnetic induction vector 

0H  Externally applied transverse magnetic field 
*

xH  Induced magnetic field along x-direction 
*C  Species concentration 

pC  Specific heat at constant pressure 
*

C∞  Species concentration in free stream 
*

wC  Species concentration at surface 

D  Chemical molecular diffusivity 
g  Acceleration due to gravity 

rG  Thermal Grashof number 

mG  Mass Grashof number 

M  Magnetic parameter 
a  Absorption coefficient 
Q  Temperature gradient heat source parameter 

k  Chemical reaction parameter 

mPr  Magnetic Prandtl number 

Pr  Prandtl number 
*σ  Stefan-Boltzmann constant 

Sc  Schmidt number 
*T  Temperature 
*

wT  Temperature of the fluid at the surface 
*

T∞  Temperature of the fluid in the free stream 

u  Velocity components in x-direction 

0U  Dimensionless free stream velocity 

0v  Injection velocity 

J
�

 Current density 



 American Journal of Applied Mathematics 2016; 4(2): 62-74 74 

 

rq  Radiative heat flux 

Greek 

symbols 
 

β  
Coefficient of volume expansion for heat 

transfer 

*β  
Coefficient of volume expansion for mass 

transfer 
η  Magnetic diffusivity 

eµ  Magnetic permeability 

µ  Viscosity of fluid 

θ  Dimensionless fluid temperature 

κ  Thermal viscosity 
ν  Kinematic viscosity 
ρ  Density 
σ  Electrical conductivity 
τ  Shearing stress 
ϕ  Dimensionless species concentration 

Ec  Eckert number 

jiσ  Stress tensor 
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