
 
American Journal of Applied Mathematics 
2016; 4(1): 11-19 
Published online January 11, 2016 (http://www.sciencepublishinggroup.com/j/ajam) 
doi: 10.11648/j.ajam.20160401.12 
ISSN: 2330-0043 (Print); ISSN: 2330-006X (Online)  

 

Modeling the Combined Effect of Vertical Transmission and 
Variable Inflow of Infective Immigrants on the Dynamics of 
HIV/AIDS 

Tadele Tesfa Tegegne
1
, Purnachandra Rao Koya

1, *
, Temesgen Tibebu Mekonnen

2 

1School of Mathematical and Statistical Sciences, Hawassa University, Hawassa, Ethiopia 
2Department of Mathematics, Debere Birhan University, Debere Birhan, Ethiopia 

Email address: 
tade_burte@yahoo.com (Tadele. T. T.), drkpraocecc@yahoo.co.in (P. R. Koya), temesgenttt@yahoo.com (Temesgen. T. M.) 

To cite this article: 
Tadele Tesfa Tegegne, Purnachandra Rao Koya, Temesgen Tibebu Mekonnen. Modeling the Combined Effect of Vertical Transmission and 

Variable Inflow of Infective Immigrants on the Dynamics of HIV/AIDS. American Journal of Applied Mathematics.  

Vol. 4, No. 1, 2016, pp. 11-19. doi: 10.11648/j.ajam.20160401.12 

 

Abstract: In this paper, a Non linear Mathematical model is proposed and studied the combined effect of vertical 
transmission (MTCT) and variable inflow of infective immigrants on the dynamics of HIV/AIDS. Vertical transmission means 
propagation of the disease from mother to children. ‘Variable inflow of infective immigrants’ includes both the aware and 
unaware infected immigrants. The equilibrium points of the model are found and the stability analysis of the model around 
these equilibrium points is conducted. The stability analysis on the model shows that the disease free equilibrium point �� is 
locally asymptotically stable when �� <  1. The positive endemic equilibrium point �∗ is shown to be locally asymptotically 
stable when �� >  1. Further it is shown that �� > �� 	 , this shows that the basic reproduction number of the present model is 
greater than the one which is obtained from the model modeled without vertical transmission. Through vertical transmission 
the disease flows from infected mother to children. That is, Vertical transmission contributes positively to the spread of the 
disease. Numerical simulation of the model is carried out to assess the effect of unaware HIV infective immigrants and vertical 
transmission (MTCT) in the spread of HIV/AIDS disease. The result showed that HIV infective immigrants and vertical 
transmission (MTCT) significantly affects the spread of the disease. Screening of the disease reduces the spread of HIV and 
also prevents mother to child transmission. It is well accepted that both vertical transmission and immigration contribute 
positively to the spread of the disease and these two parameters cannot be avoided in practice. Hence, the purpose of this study 
is to investigate the combined effect of vertical transmission, unaware and aware infected immigrants on the spread of 
HIV/AIDS and offers possible intervention strategies. 

Keywords: HIV/AIDS, Unaware and Aware Infective Immigrant, Vertical Transmission (MTCT), Screening,  
Local Stability, Reproduction Number 

 

1. Introduction 

Human immunodeficiency virus (HIV) is a lent virus, a 
member of the retrovirus that causes Acquired 
Immunodeficiency Syndrome (AIDS). HIV infection in 
humans is considered as a pandemic disease by the world 
health organization (WHO). From the discovery of AIDS in 
the year 1981 till 2006 the records show that more than 25 
million people have been killed worldwide. HIV infection is 
effecting about 0.6% of the world’s population. In 2005, HIV 
infected about 90 million people in African continent and 
resulted with a minimum estimation of 18 million orphans. It 
is estimated that the unusual sexual intercourse alone 

accounts for about 80% of reported cases of HIV infection 
[1]. HIV infection transforms from an infected person to 
victim through blood transfusion. This transfusion can be 
controlled by screening of blood products. Infected blood 
products are required to be avoided from transfusion so as to 
control the spread of the disease. 

The impact of migration of population on the distribution 
and spread of HIV/AIDS disease has to be analyzed 
properly and must be understood clearly. Migration and 
immigration of the people from one country to another 
country due to different reasons play a crucial role in the 
evolution and spread of HIV/AIDS epidemic [2-4]. 
Economical conditions, war situations and political unrest 
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are some of the reasons for migration of people. However, it 
shows that internal and cross border migration of male 
workers are at greater risk of HIV infection. These workers 
are more likely to spread the disease on returning back to 
home [5]. 

Vertical transmission of HIV/AIDS is also known as 
Mother to Child transmission (MTCT). It occurs when the 
virus spreads from an HIV positive woman to her baby. The 
transmission of the disease from mother to child may occur at 
different stages viz., in uterus or at the time of birth or after 
the birth. The risk of transmission in developing countries is 
around 90%. It is estimated that 220,000 children with 
exposed to the disease are born each year. Of these about 
88,000 are infected without prevention of mother to child 
transmission and only 2% or 4,400 are infected with 
prevention of mother to child transmission [6]. It is therefore 
important to consider and study the effect of vertical 
transmission in the spread of HIV/AIDS disease. 

The study of HIV transmission and the dynamics of the 
disease have been of a great interest to both applied 
mathematicians and Biologists. Mathematical modeling has 
proved to be an important tool in analyzing the spread and 
control of HIV disease [7-8]. The results of modeling and 
analysis help to improve understanding of the major 
contributing factors to the pandemic. Mathematical models 
have been studied and important inferences have been drawn 
in case of epidemics like Ebola, Breast cancer, Malaria, 
Tuberculosis and Influenza [9-14]. 

Several researchers have developed HIV/AIDS models so as 
to understand and explain the dynamics and the spread of the 
disease and succeeded to a large extent. Modeling and 
Analysis of the spread of AIDS epidemic with immigration of 
HIV infectives is studied in [1, 15]. A theoretical framework 
describing the transmission of HIV/AIDS with screening of 
unaware infective persons is presented in [16-17]. The joint 
effect of both medical screening and variable inflow of aware 
and unaware infective immigrants on the disease transmission 
has been studied by [5]. The spread of the disease due vertical 
transmission has also been studied by [18]. 

In this paper, we proposed an improvement of the model 
[5] that developed a Non-linear mathematical model and 
studied the effect of screening on the spread of HIV infection 
in a population with variable inflow of infective immigrants. 
The model [5] forms the motivation for the present study. 
Here we have investigated the combined effect of unaware 
infective immigrants, vertical transmission and aware 
infective immigrants, on the dynamics of HIV/AIDS. The 
results are presented graphically and discussed qualitatively 
in the following sections. 

2. Mathematical Model 

The combined effects of screening and variable inflow of 
infective immigrants on the spread of HIV/AIDS in a 
population of varying size are studied in [5]. The flow 
diagram of the model and the non linear deterministic model 
of the problem are given as follows. 

 

Figure 1. Flow diagram of the model [5]. 

The Non linear ordinary differential equations of model [5] 
are given as follows: 
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2.1. Compartmentalization of the People of the Present 

Model 

In this section we have provided compartmentalization of 
the people. That is, the total population is divided into 
compartments. We have also described the flow of the people 
among these compartments. Notations and the description of 
the model parameters are also included. Flow diagram 
containing the compartments and flow directions is given for 
better understanding of the model. A system of non linear 
ordinary differential equations is constructed that describes 
the model. Mathematical analysis of the model is conducted 
and the observations are included. 

The mathematical modeling of the spread of HIV / AIDS 
disease among the population requires the whole human 
population to be divided in to four classes. The whole of the 
human population at any time ' is a variable and is denoted 
by (�'!. The four classes are as follows: (i) susceptible class 
the population size of this class at any time ' is denoted 
by S�t!. The susceptible human has not yet infected by the 
disease but likely to get infected in future. (ii) Unaware 

infective class the population size of this class at any time ' is 
denoted by I��t!. The unaware infective humans have already 
infected by the disease but they do not know that they were 
already infected. (iii) Aware infective class the population 
size of this class at any time ' is denoted by I"�t!. The aware 
infective humans have already infected by the disease and 
they know that they were already infected and (iv) AIDS 

class the population size of this class at any time ' is denoted 
by A �t!. The AIDS class people are already AIDS patients. 
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2.2. Flow of the People Among the Compartments 

People will join the susceptible compartment S�t! by natural 
birth. Some of these people will vacate this compartment due to 
natural deaths and some others will go to  I��t! compartment 
after getting infected. The remaining people will stay in the S�t! 
compartment itself. People of S�t! compartment are likely to get 
infected by the people of  I��t! and  I"�t!compartments only. 
But the people of AIDS compartment A �t!, being physically 
too weak to participate in sexual activities, cannot transfer 
infection to susceptible people. 

In the present study the authors considered that the transfer 
of HIV from infected people to susceptible people is only by 
sexual intercourse. Transferring HIV by any other means like 
sharing needles; blood transfusion etc. is omitted and not 
considered.  

In to  I��t!  compartment some people will enter from 
S�t! after getting infected, some others will enter by 
immigrations from other places and some more will enter by 
vertical transmission. From  I��t! compartment some people 
will go to  I"�t! after becoming aware of the infection, some 
will go to A �t!  after conformation of full-fledged AIDS 
disease, some people will die with natural reasons, and others 
will stay back in I��t! compartment itself.  

In to  I"�t!  compartment some people will enter from 
 I� �t !after getting aware of the infection and some others 
will enter by immigrations from other places. From  I"�t! 
compartment some people will go to A �t! after conformation 
of full-fledged AIDS disease, some people will die with 
natural reasons, and others will stay back in  I"�t! 
compartment itself.  

In to A �t! compartment people will enter from both  I� �t ! 
and  I"�t!  compartments after conformation of full-fledged 
aids disease. From A �t! compartment people will leave when 
they die naturally or die due to AIDS disease. 

2.3. Description of the Model Parameters 

We assume that the people are recruited into susceptible 
class at a constant rate of  �� . This recruitment into the 
susceptible class is due to natural births. The people of 
susceptible class are likely to become infected through sexual 
contact with the people of �� �'!  and �" �'! classes. Thus, 
people from � �'!  will go to ���'!  with a rate of -�.� �� �
." �"!�� (⁄ !0 . Here the parameters  .�  and  ."  are the 
probabilities per one contact with which the disease transmits 
to susceptible people by unaware and aware infective humans 
respectively. Note that in this model we consider .� � ." .That 
is, the probability of transferring the disease to susceptible 
population by unaware infected person is more than by aware 
infected person. People of � �'!  after getting infected will 
initially go to ���'! but not to �"�'!. This is because, all the 
infected people are assumed to be initially unaware of the 
infection. Further, the people of ��'!compartment are assumed 
to die naturally with a rate of �. 

People will enter into ���'! compartment from ��'! with a 
rate of -�.� �� � ." �"!�� (⁄ !0, some others will enter due to 
immigrations from other places at a rate of  �� and some 
others will enter due to vertical transmission at a rate of 

�1 � 1! 2 �� . It is assumed that the sexual contact between 
susceptible and unaware infected persons lead to the birth of 
infected children with a rate of 2. Of these newly born but 
infected children a fraction 1  dies during the birth due to 
infection and the remaining complementary fraction �1 �  1! 
will enter into  ��  class. From ���'!  compartment some 
people will go to �"�'! after becoming aware of the disease at 
a rate of � and some others will go to &�'! compartment after 
confirmation of full AIDS disease at a rate of  �. People of 
���'!compartment are assumed to die with natural reasons 
and leave the compartment at a rate of .  

People will enter into �"�'! compartment from���'! after 
becoming aware of the disease with a rate of � and some 
others will enter due to immigrations from other places at a 
rate of  �" . People will go to &�'!  compartment after 
confirmation of full AIDS disease at a rate of ". People of 
�"�'!compartment are assumed to die with natural reasons 
and leave the compartment at a rate of �.  

People will enter into &�'! compartment from ���'!  and 
�"�'!  compartments at a rate of  � and  "  respectively. 
Further, in this study we assume that  � �  "  since the 
unaware infected people grow to AIDS much faster than the 
aware infected people. People of &�'! compartment are 
assumed to die with natural reasons at a rate of � anddie with 
AIDS disease at a rate of % and leave the compartment. 

2.4. Flow Diagram of the Model 

Here in what follows we have given the flow diagram of 
the model. The compartments of the model are represented 
by rectangular boxes. The flow directions of the people 
among the compartments are represented by directed arrows.  

 

Figure 2. Flow diagram of the present model. 

2.5. Model Assumptions 

We here in the present study develop a mathematical 
model to describe the population dynamics of HIV / AIDS 
disease based on the following assumptions: 

i. The population under study is heterogeneous and 
varying with time. 

ii. The whole human population is divided in to four 
classes. 
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iii. The HIV can only transmitted by the sexual 
intercourse with infective peoples. 

iv. The full blown AIDS class is sexually inactive. 
v. All the new infected people are assumed to be 

initially unaware of the infection 
vi. The probability of transferring the disease to 

susceptible population by unaware infected person is 
more than by aware infected person i. e. .� > ." . 

vii. The unaware infected people grow to AIDS much 
faster than the aware infected people i. e.  � >  ". 

2.6. Model Equations 

Based on the assumptions given in Section 2.5 and the 
flow diagram given in Section 2.4, the dynamics of the HIV / 
AIDS transmission is governed by a system of Non linear 
ordinary differential equations as given follows: 


�
� 
 �� � ����������� � � � ��                     (5) 


��
� 
 ����������� � � + ���� + (1 � 1)ϕ�� � (� +  � + �)��      (6) 
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� 
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#
� 
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Here in the system of equations from (5) to (8), the initial 
conditions are considered to be � (0) 
  ��, �� (0) 
 ���, �" (0) 
  �"�  and  & (0) 
  &� . Further, in what follows 
we call the system of these four equations as ‘model 
equations’. 
2.7. Mathematical Analysis of the Model 

Here we present the mathematical analysis of the model as 
described by the system (5) to (8). The total population 
size ((')  given by ( (')  
  � (') + �� (')  +  �" (')  + & (')implies using the equations (5) to (8) that6( 6'⁄  
(6� 6'⁄ ) + (6�� 6'⁄ ) + (6�" 6'⁄ ) + (6& 6'⁄ ) 
 �� + �"�" + (�� + (1 � 1)ϕ)�� � �( � %&. 

3. Positivity of Solutions 

The model equations (5) to (8) are to be epidemiologically 
meaningful and well posed, we need to prove that all the state 
variables are non-negative. This requirement is stated as a 
theorem and provided its proof as follows: 

Theorem 1: If �(0) > 0, ��(0) ≥  0, �"(0) ≥  0  and  & (0)  ≥  0 , then the solution region { �('),  �� ('),  �"('), & (') } of the system of equations (5) to 
(8)is always non negative for ' >  0. 

Proof: To show the positivity of the solution of the 
dynamical system comprising the equations (5) to (8), we 
have to consider and verify each differential equation and 
show that their solution is positive.  

First let us consider the differential equation (5) of the 
dynamical system and that can be rewritten as(6� 6'⁄ ) +-q + µ0� 
 �� where <(') 
  -(.��� + ."�") ((')⁄ 0. This is 
a first order linear ordinary differential equation and can be 

solved to obtain a particular solution 

as �(') 
 �(0)=>?(�)�?(�)>@� + A ��=B?(C)>?(�)D�@ (C>�)6E�� . 

Here the anti – derivative of <(') is represented by� ('). It is 
clear from the solution that � (')  is positive since �(0) >0, �� > 0 and the exponential function always positive and. 

Secondly let us consider the differential equation (6) and 
that can be rewritten as (6�� 6'⁄ )  + -F � (.�� (⁄ )0�� 
(."�"� (⁄ ) where F 
  � +  � + � � �� � (1 � 1)2. This is 
a first order linear ordinary differential equation and can be 
solved to obtain a solution as��(') 
 ��(0)=>H����?(�)>��?(�) +=>H����?(�)>��?(�) A (."�"� (⁄ )=HC>��?(C)>��?(�)6E�� . It is clear 

from this solution that��(') is a nonnegative quantity.  
Thirdly, let us consider the differential equation (7) and 

that can be expressed as (6�" 6'⁄ )  + ℎ�" 
 ���  where ℎ 
 ( " + � � �") . This is a first order linear ordinary 
differential equation and can be solved to obtain a particular 

solution as �"(') 
 �"(0)=>J� + =>J� A ��� (E)=JC6E�� . From 

this solution we see that �"(') is also nonnegative.  
Finally let us consider the differential equation (8) and that 

can be expressed as (6& 6'⁄ ) + (% + �)& 
  ��� +  "�" . 
This is a first order linear ordinary differential equation and 
can be solved to obtain a particular solution as &(') 
&(0)=>(K�@)� + =>(K�@)� A  ( ��� +  "�")=(K�@)C6E�� . From 

this solution we see that &(')is nonnegative  
Boundedness of the solution region. 

Here we note that the solution region of the system of 
model equations (5) to (8) is bounded. Summing up all the 
four equations from (5) to (8) and assuming the inequality �"�" +  (�� + (1 � 1)ϕ)�� ≤  %& we obtain (6( 6'⁄ ) ≤-�� � �(0. The latter differential inequality has a solution of 
the form  ( (') ≤ -(�� �⁄ ) � (�=>@�0 or equivalently it 
implies that  0 < N(t) ≤ (�� �⁄ ) NE ' → ∞ . Therefore the 
solutions of system are bounded 

4. Stability Analysis of the Model 

In this section we identify the equilibrium points of the 
model developed in this study and provided as a system of 
equations from (5) to (8). We also analyze their stability 
conditions and present the results. The system exhibits two 
types of equilibrium points viz., disease free equilibrium 
points and endemic equilibrium points. 

Disease free equilibrium point. 

The disease free equilibrium of the model, (5) to (8), is 
obtained by setting (6� 6'⁄ )  
 (6�� 6'⁄ ) 
 (6�" 6'⁄ ) 
(6& 6'⁄ ) 
 0. Further at the disease free equilibrium point 
there are neither infective people nor AIDS patients. That 
is�� 
  �" 
  & 
  0 . Up on substituting these, (5) implies 
that - �� � ��0 
 0 or equivalently  � 
  -�� �⁄ 0 . Thus the 
disease free equilibrium of the model is given by  �� 
 ( �� �⁄ , 0, 0,0 ).  

Reproduction number  ��. 
The reproduction number is defined as the average number 

of secondary cases produced by a typical infected individual 
during his or her entire life as infectious or infectious period 
when introduced or allowed to live in a population of 
susceptible [19]. We shall now compute the basic 
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reproduction number  ��of the present model using the next 
generation method [20]. The basic reproduction number is a 
threshold quantity used to study the spread of an infection 
disease in epidemiological modeling and it is the spectral 
radius (i. e. the dominant Eigen value) of the next generation 
matrix [19]. It is defined as�� 
 Q(RS>�). Here Q (RS>�) 
represents the spectral radius of the matrix  RS>�  and the 

matrix is given by RS>� 
  TBU UVW⁄ DRX  (V�)YTBU UVW⁄ DSX  (V�)Y>�. 
Here RX  is the rate of appearance of new infections in the 
compartment Z;  SX is the transfer of individuals in and out of 
compartment Z and  ��  is the disease free equilibrium point. 
Consequently we obtain -R�� R�"0\ 
  -]� ]"0\ 
-<(')� 00\. Here the superscript ^ denotes the transpose of 
a matrix. By linearization approach, the associated matrix R at the disease free equilibrium point  ��  is given by 

 R 
  _`a�`b� `a�`b�`a�`b� `a�`b�
c N' �� 
 d.� ."0 0 e  and df��f�"e  
 df�f"e 
 g  F ��� 6�" 6'⁄ h . 

Again by linearization, we get  S 
 _`i�`b� `i�`b�`i�`b� `i�`b�
c

jk

 d F 0�� ℎe 

and S>� 
  (Fℎ)>� dℎ 0� Fe  and finally 

RS>� 
 (Fℎ)>� d.�ℎ + ."� F."0 0 e. 
We find the Eigen values of RS>� by solving the 

characteristic equation |RS>� � m�| 
 0 as  m� 
 n�opn�qro  
and m" 
 0 . Thus, the spectral radius of RS>� is given 
by  �� 
 sNV - m� ,  m"0 
 m� . Further, the reproduction 
number  ��	 in the absence of vertical transmission modeled in 
[5] is given by ��	 
  {(.�ℎ + ."�) -F + (1 � 1)t0ℎ ⁄ }. 

Here at this stage we point out that �� > ��′ . This shows 
that the basic reproduction number of the present model is 
greater than the one which is obtained from the model 
modeled without vertical transmission in [5]. This fact 
implies that HIV/AIDS spreads faster due to vertical 
transmission from infected mother to child. Hence the birth 
of infected newly born children by unaware infected 
immigrants has a significant contribution to propagation of 
the infection and it keeps the disease endemic in the 
population. 

In order to assess the contribution of unaware and aware 
infected population on the dynamics of HIV/AIDS, let us 
divide the reproduction number �� of the present modelinto 
the reproduction numbers of both unaware ��u  and aware  ��#infected populations independently i. e. �� 
 ��u + ��#. 

Here we further observe that ��u >  ��#. 

 ��u 
 n�r and ��# 
 n�q ro                             (9) 

We see from (9) that the contribution of vertical 
transmission-(1 � 1)ϕ0 from infected mother to child has a 
significant effect on the increment of the reproduction 
numbers of both unaware  ��u and aware  ��#  infected 
populations. Therefore the transmission of HIV infection 
increases by aware and unaware infected populations through 
vertical transmission. From the fact ��u > ��# it can be 
understood that the unaware infectives contribute more to the 
transmission than the aware infectives. We now investigate 
the local stability of the disease free equilibrium point��. 

Theorem – 1 The disease free equilibrium point  �� of the 
system of ordinary differential equations (5) to (8) is locally 
asymptotically stable if  �� < 1 and unstable if�� > 1. 

Proof Initially at t=0, � (0) > 0, �� (0)  ≥  0, �" (0)  ≥ 0this means initially there is no AIDS patient. Hence, we 
only consider the subsystem of three equations (5), (6) and 
(7). The Jacobian matrix associated with the subsystem 
equations at the disease free equilibrium point �� 
 (�� �⁄ , 0 , 0) is given by: 

v (��) 
 _�� �.� �."0 �F + .� ."0 � �ℎ c 

We can expand the characteristic equation|v(��) � m�| 
 0 
as ] (m) 
  (�� � m) (m" + wm +  x) 
 0.  Here w 
 (�F + .� � ℎ) and  x 
  (ℎF � .�ℎ �  ."�) . We note that 
the first root of characteristic equation ism� 
 ��. 

If  �� < 1yz =<{ZfN|=}'|~ -(�������) �H⁄ 0 < 1 which is 
again equivalent to x > 0  and hence (F � .� + ℎ) > 0, 
therefore w > 0 then by applying Routh – Hurwitz criteria �� 
is locally asymptotically stable. 

If �� > 1  then the characteristic equation will have 
positive Eigen value so �� is unstable.  

Endemic Equilibrium Point. 

Similarly here we also consider the subsystem equations 
(5), (6) and (7). At the endemic equilibrium point �∗ the 
disease persists or exists. It is given by �∗ 
  (�∗, ��∗, �"∗). 
We set each right hand side in subsystem equations to zero 
and express each dependent variable in terms of ��∗  at the 
equilibrium point and we obtain 

�∗ 
 -( ℎ F (.�ℎ + ."�)⁄ 0 
 ( ��⁄                        (10) 

��∗ 
 -(�� � ��∗) F⁄ 0 
  (�� F⁄ )-1 � (��∗ ��⁄ )0 
  (�� F⁄ )-1 � (1 ��⁄ )0                                      (11) 

�"∗ 
  -� ��∗ ℎ⁄ 0= (� �� ℎF⁄ )-1 � (1 ��⁄ )0            (12) 

From (11), we see that ��∗ will be positiveif �� > 1. We 
also note that �∗ 
  (�∗, ��∗, �"∗)  is a unique endemic 
equilibrium point which exists and is positive whenever �� >1, F > 0 andh > 0. We now investigate the local stability of 
the endemic equilibrium point �∗. For the investigation the 
Lemma – 1 as stated below is useful [21]. 

Lemma -1 Let s is a 3 �~ 3 real matrix. If 'z (s), 6=' (s) and 6=' (s -"0) are all negatives then all the 
Eigen values of the matrix s have negative real parts.  

Definition – 1 (The second additive compound Matrix). 

Let  s 
 BNXWD  be an } ×  } real matrix. The second 
additive compound of s is the matrix denoted by  s -�0 
B�XWD and defined by (i)  s -"0 
  -N�� + N"" 0 for } 
  2 and 

(ii) s -"0 
  �N�� + N"" N"� �N��N�" N�� + N�� N�"�N�� N"� N"" + N��� for } 
 3. 

Theorem – 2 The positive endemic equilibrium point�∗ of 
the system of equations (5) to (8) is locally asymptotically 
stable if �� > 1. 
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Proof Here we also consider the subsystem of three 
equations (5) to (7). Linearization of this subsystem of three 
equations at the  

v (�∗) 
 _�z � � �(.� (⁄ )�∗ �(." (⁄ )�∗z �F + (.� (⁄ )�∗ (." (⁄ )�∗0 � �h c 

Here z 
 {-.���∗ + ."�"∗0 (⁄ }.  
We now show that the trace of the matrix v(�∗)is negative 

quantity. Note that the sum of the diagonal elements of a 
square matrix is known as trace of that matrix. It can be 
verified that the trace of the matrix ^z v(�∗) 
 (�z � � �F + (.� (⁄ )�∗ � h) 
 (�z � � � F + ℎF.� ℎ.� + �."⁄ �h)is a negative quantity since(.�ℎ) < -.�ℎ + ."�0. Hence 

we observe that ^z-v(�∗)0 < 0. 
We now show that determinant of the matrix v(�∗) is a 

negative quantity. The determinant of the matrix -v (�∗)0can 
be obtained as 6='-v (�∗)0 
 (�z � �)-ℎF � (ℎ.� (⁄ )�∗ �(." (⁄ )��∗0 � z-(ℎ.� (⁄ )�∗ + (." (⁄ )��∗0 . But, the first 
term vanishesbecause -ℎF � (ℎ.� (⁄ )�∗ � (." (⁄ )��∗0  
(ℎF){1 � (�∗ (⁄ )-(ℎ.� + �.") h F⁄ 0} 
 (ℎF)-1 �((�� ��(⁄ )0 
 0.  Therefore, 6='-v (�∗)0 
 �z d��J� �∗ +���� �∗e< 0 We now show that the determinant of the matrix v-"0(�∗)  is a negative quantity. We construct the second 
additive compound matrix v-"0(�∗)as  

v-"0(�∗) 
 ��z � � � F + (.� (⁄ )�∗ (." (⁄ )�∗ (." (⁄ )�∗� �z � � � h �(.� (⁄ )�∗0 z �F � h + (.� (⁄ )�∗� 

Now we obtain the determinant as  detTv-"0(�∗)Y 
-N + (.� (⁄ )�∗0-�c +  (.� (⁄ )z�∗0 + (." (⁄ )��∗-r � �0 . 
Here we have introduced the notations asN 
 �z � � � F , � 
 �z � � � h and � 
 �F � h + (.� (⁄ )�∗ . Thus  detTv-"0(�∗)Y 
 �(z + � + F)-(z + � + h)(F + h) +(z.� ��⁄ )0 + (z + h + F)(�." ��⁄ ) 
  �(z + � + F)(z +� + h)(F + h) � (z + � + F)(z.� ��⁄ ) +  (z + h +F)(�." ��⁄ )  and is a negative quantity. Therefore, detTv-"0(�∗)Y < 0. 

Thus, by statement of Lemma – 1, the equilibrium 
point�∗is locally asymptotically stable, when �� > 1. Hence, 
Theorem – 2is proved. 

5. Numerical Simulation 

Here for numerical simulation, we consider the scaling of 
variables and parameters in the system of equations (5) to (8) 
as follows:  E 
 � (⁄ , Z� 
  �� (⁄ , Z" 
 �" (⁄ ,  N 
 & (⁄  and � 
 �� (⁄ . Then, we get -(1 (⁄ )(6( 6'⁄ )0 
  -(�� (⁄ )  + �"Z" + (�� + (1 � 1)ϕ)Z� � � � %N0 . After some 
simplifications the system of equations in terms of the scaled 
variables takes the following form: 

6E 6'⁄ 
 � � �E � .�Z�E � ."Z"E � E� + �"Z"E + %NE    (13) 

6Z� 6'⁄ 
 .�Z�E + ."Z"E � (� +  �)Z� + � -1 + Z�0 �  (� + ��Z� + �"Z" � %N)Z�                           (14) 

6Z" 6'⁄ 
 �Z� + �"Z" �  "Z" �  (� + (� + �"Z" � %N)Z"  (15) 

6N 6'⁄ 
  �Z� +  "Z" – %N �  (� + � + �"Z" � %N)N      (16) 

Here we have used � 
 ��Z� + (1 � 1)ϕZ� . To study the 
dynamical behavior of the model equations (13) to (16) 
numerically; the system of equations is integrated by using 
ode45 of Matlab. The following values for the parameters are 
selected: � 
 0.04, .� 
 0.9, ." 
 0.7, � 
 0.3,  � 
0.3,   " 
 0.02, % 
 0.9, 1 
 0.2, 2 
 0.03, �� 
 0.1 and�" 
 0.2. The initial conditions selected areE (0) 
0.65,  Z� 
 0.20,  Z" 
 0.10 and N(0) 
 0.05 for the period of 
30 years. 

From the Fig – 1 The distribution of the population with 
time is shown for all classes. It is found that susceptible 
population decreases with time due to inflow of infective 
immigrants and vertical transmission leading to an increase 
in the rate on infection. Unaware infective class decreases 
with time and then reaches its equilibrium position. The 
aware infective class increases with time due to screening. 
We also observe that the AIDS population decreases 

 

Figure 3. Variation of population in different classes for the given 

parametric values. 
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Figure 4. The effect of the unaware infective immigrants on unaware 

infective class. 

Fig-2 shows the effect of the immigration rate of unaware 
infective immigrants on unaware infective class. It is found 
unaware infective population increase initially but as time 
goes on it decreases, this simply means that the proportion of 
unaware HIV infective is becoming aware infective through 
screening and it will come to its equilibrium position. More 
over we can see that as the rate of unaware infective 
immigrants increases, the unaware infective population also 
increase. This will result in increasing on the transmission of 
HIV/AIDS. 

 

Figure 5. The effect of the vertical transmission on unaware infective class. 

Fig-3, shows the effect of the birth rate of new born 
(vertical transmission) on unaware infective class. It is found 
unaware infective population increase initially but as time 
goes on it decreases, this simply means that the proportion of 
unaware HIV infective is becoming aware infective through 
screening and it will come to its equilibrium position. More 
over we can see that as the rate of new born increases then 
unaware infective population also increase. This will result in 
increasing on the transmission of HIV/AIDS. 

Fig-4, shows the effect of the immigration rate of unaware 
infective immigrants and the birth rate of new born on 
unaware infective class. It is found unaware infective 
population increase initially but as time goes on it decreases, 
this simply means that the proportion of unaware HIV 
infective is becoming aware infective through screening and 
it will come to its equilibrium position. More over we can see 
that as the rate of unaware infective immigrants and the birth 
rate of new born increases, the unaware infective population 
also increase. This will result in increasing on the 
transmission of HIV/AIDS. 

 

Figure 6. The combined effect of the unaware infective immigrants and 

vertical transmission on unaware infective class. 

 

Figure 7. The effect of screening on unaware infective class. 

Fig-5 shows the effect of screening rate, we observe that as 
the rate of screening increases, the unaware infective 
population decreases because of the transfer of some peoples 
to aware infective class as expected, further it reduces the 
spread of the disease. 

Fig-6 shows the effect of screening rate, we observe that as 
the rate of screening increases, the aware infective population 
also increases as expected. 
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Figure 8. The effect of screening on Aware infective class. 

6. Conclusions 

In this paper, we proposed an improvement of the model 
[5], that is to show the combined effect of unaware infective 
immigrants, vertical transmission and aware infective 
immigrants on the dynamics of HIV/AIDS. A non-linear 
differential equation was formulated to represent the model. 
The stability analysis on the model shows that the disease 
free equilibrium point ( �� ) is shown to be locally 
asymptotically stable when �� <  1 and the positive endemic 
equilibrium point (�∗) is shown to be locally asymptotically 
stable when �� >  1. 

In this paper we also point out that the basic reproduction 
number ��  of the present model is greater than the basic 
reproduction number (��	 ) obtained from the model, modeled 
without vertical transmission in [5]. This fact implies that 
HIV/AIDS spreads more faster due to vertical transmission 
from infected mother to child. Results from Numerical 
simulation show that as the rate of unaware infective 
immigrants and the birth rate of new born increases, the 
unaware infective population also increase. This will result in 
increasing on the transmission of HIV/AIDS. 
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