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Abstract: Tuberculosis is an airborne disease caused by the bacterium called mycobacterium tuberculosis. We have 

compartmentalized the population based on the exposed level to the disease and described the flow using a flowchart. 

Mathematical model is developed to describe the population dynamics of the compartments. The migration of people from 

infected class to exposed class, due to failure of continuing the medicine for any reason, is called here as Malt – drug resistance 

tuberculosis. The equilibrium points identified are disease free, endemic and epidemic. Equilibrium point analysis is made and 

has been included. Formula for reproduction number is derived. Numerical simulation study of the Mathematical model is 

conducted using ode45 function of MATLAB software. It is shown that the propagation of the disease is more in the more 

populated areas and less in the less populated areas. 

Keywords: Tuberculosis, Mathematical Modeling, Equilibrium Points, Basic Reproduction Number, Stability Analysis, 

Numerical Simulation 

 

1. Introduction 

The word Mycobacterium is composed from the 

combination of two words viz., Myco and Bacterium. Myco 

means fungi and bacterium means unicellular micro 

organism. The meaning of Bacteria is a group of unicellular 

micro organisms. Bacteria are plural while bacterium is 

singular [1]. So far 137 mycobacterium species have been 

identified. The ‘Mycobacterium tuberculosis complex’ is one 

of 137 ‘mycobacterium species’ which causes tuberculosis 

disease in human beings and animals. There are eight very 

closely related but different species in ‘Mycobacterium 

tuberculosis complex’ and they include Mycobacterium 

tuberculosis, Mycobacterium bovis, Mycobacterium 

africanum, Mycobacterium microti, Mycobacterium caprae, 

Mycobacterium pinnipedii, Mycobacterium Canetti and 

Mycobacterium mungi [2]. The bacteria called 

‘Mycobacterium bovis’ causes tuberculosis disease in 

animals. Similarly, the bacteria called ‘Mycobacterium 

tuberculosis’ is a major cause for tuberculosis disease that 

affects human beings. 

Tuberculosis is a bacterial air born infection disease and is 

caused by the Mycobacterium tuberculosis. The tuberculosis 

disease most commonly attacks the lungs of human beings. 

The type of tuberculosis that attacks human lungs is known 

as ‘pulmonary active tuberculosis’. Also, this variety of 

tuberculosis has the potential to spread to other organs such 

as bone and brain in the human body. Further, the 

tuberculosis can also affect the blood circulatory system, 

joints, central nervous system causing meningitis and even 

the skin. Whenever a person is infected with tuberculosis 

bacteria, the person first goes through a latent or 

noninfectious period. During the latent period the human 

body’s immune system fights against the tuberculosis 

bacteria and at this stage Mycobacterium tuberculosis 

bacteria can not spread to the other human being [3]. The 

tuberculosis disease is characterized by the symptoms 

including cough for two up to three weeks or more, 

unexplained weight loss, fever, night sweats, loss of appetite, 

blood in the sputum or coughed up mucus etc [4]. 

The Mycobacterium tuberculosis bacterium is carried in 

airborne particles, called droplet nuclei, having a size of 1 – 

5 microns in diameter. Infectious droplet nuclei are 

generated from the persons who have been suffering with 

pulmonary or laryngeal tuberculosis disease when they 

cough, sneeze, shout, sing and even when they just talk [5]. 

Depending on the environmental and climatically 

conditions, these tiny particles can remain suspended in the 
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air for several hours. Transmission occurs when a person 

inhales droplet nuclei containing Mycobacterium 

tuberculosis. The droplet nuclei traverse through the mouth 

or nasal passages, upper respiratory track and then reach 

alveoli in the lungs. The transmission speed of the droplets 

depends on source patient, environment, exposure time and 

susceptible person. Repeated and close contacts with 

tuberculosis infected patient have been proved to be key 

and risky factors. An infected person who has not been 

treated for active tuberculosis disease will infect about 10 -

15 other persons per year [4]. 

The outbreak of infectious diseases causes mortality of 

millions of people. It also causes expenditure of enormous 

amount of money on health care and disease control 

activities. Many infectious diseases are directly resulted 

from poor hygienic conditions and repeated and close 

contact between infected and susceptible persons. Among 

the infectious diseases, Tuberculosis is proved to be the 

second largest killer disease. Tuberculosis contributes the 

adult mortality and it is one of serious health problems in 

today era. The deaths occurred worldwide during the years 

2011, 2012 and 2013 are respectively 1.4, 1.3 and 1.5 

millions [5 – 7]. 

Over 95% of deaths occurred due to the tuberculosis 

disease take place in the 22 low and middle income countries 

mostly located in Sub Sahara Africa and in South East Asia 

continents. Sub-Sahara Africa carries the greatest proportion 

of new tuberculosis infected humans with over 260 cases per 

100,000 people as per the records of 2011 [8]. Therefore, it is 

important that adequate attention is to be paid for preventing 

the spread of such diseases using effective control measures. 

Latent Tuberculosis can be diagnosed with a skin test called a 

Mantoux test. The test requires injecting PPD substance into 

the human body under the skin and examines after 48 -72 

hours. This test is able to identify most of the people infected 

with tuberculosis bacilli within 6 – 8weeks after initial 

exposure. Active tuberculosis can be diagnosed by examining 

symptoms, x-rays, sputum and other samples collected from 

susceptible humans [9]. 

Tuberculosis is a very preventable disease. Providing 

adequate ventilation, opening of windows, improving 

conditions in the crowded places, infected people cover 

their mouth and nose when coughing or sneezing decreases 

the spread of tuberculosis. Identifying infected people in the 

early stages and treating them with proper medication is 

one of the most effective ways that helps to prevent 

tuberculosis from spreading. Some of the effective 

medications include the drugs Isoniazid (INH or H), 

Rifampin (RMP or R), Ethambutol (EMP or E) and 

Pyrazinamide (PZA or Z).The Isoniazid (INH) and 

Rifampin (RMP) are first line drugs which have been given 

to the people who are infected with latent tuberculosis and 

who live in the risky areas or country side. If tuberculosis 

patients do not complete course of the treatment or do not 

take their medications as often as required, then a 

dangerous form of drug – resistant tuberculosis called Multi 

– Drug Resistant Tuberculosis (MDR-TB) occurs in the 

patient [9]. The purposes of the current study include (i) 

analysis of the spread of tuberculosis disease using 

mathematical model, (ii) evaluate the conditions at which 

disease will occur or die out using the basic reproduction 

number concept and (iii) multi-drug resistance stages of 

tuberculosis. 

2. Modeling and Formulations of 

Tuberculosis Disease 

Modeling of epidemics and diseases plays a very important 

role in developing prevention and controlling strategies. 

Mathematical models have been developed for the epidemics 

including Ebola, Brest cancer and Malaria [10 – 13]. Here in 

the present study we develop, analyze and make simulation 

study for Tuberculosis disease as an extension of the model 

given in [1]. 

The compartmental description and human flow directions 

of the model are illustrated in Figure 1. The model maintains 

the basic structure of the  ����  type models together with 

satisfying the following properties: (i) the recovered 

compartment  �  is in the present study renamed as treatment 

compartment �containing treated individuals. The patients of 

the treatment compartment  � are given medical treatment for 

the tuberculosis disease. But, after the treatment the 

individuals again may get exposed to tuberculosis disease 

and may enter the exposed compartment  � , (ii) Mass action 

incidence rather than standard is assumed. That is, crowded 

or denser areas of populations are considered in this study, 

(iii) Treatment confers only partial immunity. That is, the 

tuberculosis disease cannot be cured completely with the 

medicines available as on today, (iv) Treated individuals are 

re infected at a rate � and with this rate people migrate from 

treated compartment � to the exposed compartment   � and 

(v) Failure of treatment due to multi-drug resistance (MDR) 

of tuberculosis is considered. Thus, few people are expected 

to migrate from infected compartment � to the exposed 

compartment  � . Based on these assumptions the 

compartmental structure and flow directions of the model can 

be described using a directed flow chart as illustrated as 

follows: 

 

Figure 1. Flow chart of the compartmental model. 
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The total human population  �	
�� under study at any 

time  �  is divided into four compartments. These four 

compartments are denoted by and they represent 

respectively �
��  for susceptible,  �
�� for exposed but not 

infected, �
�� for infected and  �
�� for treated but 

temporarily recovered people from the disease. Moreover, the 

total population is distributed into the four compartments and 

hence the sum of the populations of the four compartments is 

always the same as the total population. So that  �	
�� = �
�� +  �
�� +  �
�� +  �
�� and all the variables of the 

relation are nonnegative. Also, all compartments contain and 

represent human beings. The concentration of small particles 

of Mycobacterium tuberculosis called tubercle bacilli in the 

air at any time  � is represented by  �
��. 

Susceptible human population  �
�� We assume that the 

susceptible people are recruited from the total population at 

a constant rate �. Recruitment may occur as a result of new 

births and immigration from other regions. These 

susceptible individuals assumed to acquire Myco 

tuberculosis infection due to contact with the pathogen 

population at a rate �. Here � =  
��/��  +  �. The exposed 

people are assumed to pollute the air at the rate  � . The 

pathogen concentration of Myco tuberculosis in air is 

assumed to yield 50% and chance of catching the infection 

for a susceptible person is   � . Finally, the susceptible 

population decreases by natural death at a rate of µ. Thus, 

the rate of change of susceptible human population can be 

modeled by  ��/�� = � − 
��/��µ�. 

Exposed human population the latently infected 

individuals are considered as not infectious because they do 

not to show any tuberculosis disease symptoms initially. The 

latently infected humans are not capable of transmitting 

bacteria to other susceptible humans. The population of the 

exposed individual is increased due to the reasons including 

newly infected individuals, exogenous re-infection or 

reactivation and failure of treatment. Exposed human 

population decreased by the progression of exposed 

individuals to active tuberculosis at a rate � and natural death 

at a rate  µ. The rate of change of exposed compartment can 

be constructed as   ��/�� = �
��/�� + 
��/�� + ��� −
� + µ���. 
Infected human population among all the exposed 

individuals, the tuberculosis disease will not develop in to the 

active tuberculosis disease as soon as the individuals are 

infected. Only about 10% of infected people become sick 

with tuberculosis after two or more years later and they will 

be then confirmed infected [1, 14]. The population of 

infected compartment increases at the rate � due to the fast 

progress of the infection and development of the symptoms 

of tuberculosis disease. This infected population decreases at 

a rate � because infected people recover temporarily from the 

disease after treatment. However, only a fraction  � of the 

medically treated infectious individuals are successful and 

migrate to the treated compartment. Unsuccessfully treated 

infected individuals re-enter the exposed compartment at 

rate � =  1 – �. Further, it is assumed that the natural death 

rate of infected individuals is µ and disease induced death 

rate is   � . The rate of change of people in infected 

compartment can be constructed as   ��/�� = ��� − 
� +

µ + ����. 
Treated human population treated individuals are assumed 

to recover from the illness only but not from tuberculosis 

disease. Tuberculosis infected individuals do not completely 

clear the bacteria from their body even after the treatment is 

successful. Instead they undergo a long latency period which 

could last many years or even a lifetime. The tuberculosis 

bacterium remains in the human body in a sleeping state [15]. 

Treated population increases at a rate of �  since the infected 

individuals temporarily recover from the disease by 

treatment. The treated population is decreased by exogenous 

re-infection or reactivation at the rate  � and by natural death 

at the rate of   µ . The rate of change of population in the 

treated compartment can be constructed as  ��/�� =  ��� −  �
�/��  +  µ��!. 

Pathogen population in the polluted air In the high dense 

population areas like in the bus stations, inside buses, inside 

airplanes, in the camps, in the markets, in the schools, in the 

hospitals, in the homes, the environmental air may pollute 

with small particle of mycobacterium tuberculosis called 

tubercle bacilli. Infected individuals contribute to its 

enhancement through excretion of tuberculosis in to air at the 

rate ". This small tuberculosis particle in the polluted air dies 

naturally at the rate   µ# . The rate of change of Pathogen 

population in the polluted air compartment can be 

constructed as  
�� ��⁄ � =  %"� − µ#�&. 

Thus, the system of non linear differential equations 

describing the dynamics of mycobacterium tuberculosis 

disease transmission model is given by 
�� ��⁄ �  =  Λ − �
� �⁄ � +  (��                             (1) 
�� ��⁄ � = 
� ⁄ ��
� + �� + ��� − 
� +  (��    (2) 
�� ��⁄ �  =  �� − 
� +  ( + ���                           (3) 
�� ��⁄ �  =  ��� − 
( + � �⁄ ��                           (4) 
�� ��⁄ �  =  �"� − (#��                                        (5) 

The variables and parameters used in the model equations 

(1) to (5) are described and interpreted in Table 1 and Table 2 

respectively. 

Invariant Region of the Model Variables Now on 

differentiating the total population variable  �	
�� = �
�� +�
�� + �
�� + �
�� with respect to time �  we get   �	)  = � ′
�� + �′
�� + �′
�� + � ′
�� . The fore going expression 

takes the form as  �	 ′
�� =  
Λ − (�	 − ���  up on using 

the system of equations (1). However, the death rate of 

human beings due to the tuberculosis disease is very small 

and even closer to zero. Hence, without loss of generality we 

can choose this death rate to a very small positive quantity 

i.e.  d ≈ 0 . Therefore, the time differentiation of total 

population variable reduces to the expression   �	)
�� ≤�Λ − (�	�. On integrating this inequality using Birkhoff and 

Role’s theorems we obtain the solution as   �	
�� ≤ 
� (⁄ � − �
� (⁄ � − �#�./01!. Here we have made use the 

condition that the initial human population size at � = 0 is 

given by �#, that is �	
0� =  �#. It can be observed that as  � → ∞ the human population size  �	
�� approaches the 
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value  
� (⁄ � . Therefore, the feasible solution of human 

population for the model (1) is restricted to the region Ω	 =  
�, �, �, �� ∈ ℝ7 8 , �	
�� ≤ 
� (⁄ �!.  

Similarly, from (1e) of the system of equations (1) the total 

Concentration of Mycobacterium tuberculosis in the 

environment denoted by  �9 reduces to  
��: ��⁄ �  = �"� − (#�� ≤ �"�	 − (#�� , due to the reason  �
�� ≤�	
�� ≤ 
� (⁄ � . In view of these observations we can 

rewrite (1e) as  
��: ��⁄ �  =  "
� (⁄ � − (#�: which is a 

first order ordinary linear differential equation having the 

particular solution  N< 
t� ≤ %αΛ µµ#⁄ & − >%αΛ µµ#⁄ & −�#?e/µAB . Here we have assumed that the initial pathogen 

population is given by  �:
0� =  �# . Further it can be 

observed that as � → ∞ the pathogen population size  �:
�� satisfies the relation   0 ≤ �:
�� ≤ 
"Λ ((#⁄ � . 

Therefore, the feasible region of the pathogen population can 

be represented by the set  Ω: =  �: ∈ ℝ7 ∶  �: ≤
"Λ ((#⁄ �!. 

Combining the feasible regions of both human  Ω	 and 

pathogen populations  Ω: we obtain the feasible region of 

whole population  Ω of the model (1) 

as   Ω =  
�, �, �, �, ��∈ ℝ7 D : 
�, �, �, �, �� ≥ 0, �	 ≤
Λ (⁄ � GH� �: ≤ 
"Λ ((#⁄ �!.  

Recall that the variables �	 = 
� + � + � + �� and �: =� represent the population sizes of humans and pathogens 

respectively. Further, it can be verified that  Ω  is positively 

invariable set induced by the system of equations (1). Hence 

the system (1) is biologically meaningful and mathematically 

well-posed with in the domain given by the region Ω . Thus, 

it is feasible to consider the dynamics and flow of human and 

pathogen populations as described by the model (1) with in 

the region  Ω. 

Table 1. Description of parameters used in the model equations (1) to (5). 

Variables Description �
�� Human population size of susceptible compartment at time �  �
�� Human population size of exposed compartment at time �  �
�� Human population size of infected compartment at any time � �
�� Human population size of treated compartment at any time � �
�� 
Mycobacterium tuberculosis concentration in the 

environment at any time � �	
�� 
Total human population size at any time � �	
�� = �
�� +�
�� + �
�� + �
�� 

Table 2. Notations and description of the model parameters used in (1) to (5). 

Parameter Description �l 
Recruitment rate by birth and immigration of humans into 

susceptible compartment � 
Progression rate of humans from exposed compartment to 

infected compartment � Exposure rate of susceptible human to polluted air � Rate of infected individual is treated 

� 

Concentration amount of mycobacterium tuberculosis in the 

air that yields more than 50% chance of infecting 

susceptible individual � Part of the area occupied by humans in a square meter µ Per-capita natural death rate for humans in any compartment " 
Contribution by each infected individual to the population 

size of Mycobacterium tuberculosis in the air  �  Success rate of treatment  �  Failure rate of treatment 

3. Stability Analysis of the Model 

In this section, we (i) identify the existence of equilibrium 

points viz. disease free equilibrium point, endemic 

equilibrium point and epidemic equilibrium point (ii) analyze 

local stability of disease free equilibrium point and (iii) 

construct the formula for reproduction number. 

3.1. Existence of Equilibrium Points 

The equilibrium points are obtained by setting the right-

hand sides of the system equation of model (1) to zero. That 

means  
�� ��⁄ �  = 
�� ��⁄ �  =  
�� ��⁄ �  = 
�� ��⁄ � =
�� ��⁄ � = 0. The foregoing condition is a requirement for 

existence of equilibrium points. 

3.2. The Disease Free Equilibrium Point 

Disease-free equilibrium point denoted by I# is a steady-

state solution when there is no tuberculosis disease. The 

human populations of exposed, infected and treatment 

compartments can be considered as tuberculosis infected. 

Also in absence of infection the exposed, infected, treatment 

compartments of human population and pathogen 

compartment of bacterium population are empty. That 

is  �∗
�� = �∗
�� = �∗
�� =   �∗
�� = 0 . Here the variables  �∗
��, �∗
�� and �∗
��   respectively represent the human 

population sizes of exposed, infected and treatment 

compartments when there is no disease. Also �∗
�� represents 

total human population size when there is no disease. 

Similarly, �∗
�� represents the pathogen population in the air 

when there is no disease. But the equation (1a) at equilibrium 

point reduces to  �� − 
��∗ �⁄ � − µ�∗� = 0  and up on 

substituting the value  � = ��� 
� + ��⁄ �  we obtain  �∗ = 
Λ (⁄ � . Therefore the mycobacterium tuberculosis disease 

free equilibrium point is given by  I# = 
�∗, �∗, �∗ , �∗, �∗� = 
Λ (⁄ �, 0, 0, 0, 0!. 

3.3. Reproduction Number 

The basic reproduction number denoted by �# is defined as 

the average number of secondary infections caused by an 

infectious individual during his or her entire period of 

infectiousness. It is an important parameter in epidemiology 

as it sets the threshold in the study of a disease both for 

predicting its outbreak as well as evaluating its control 

strategies. Persistent and die out of the disease in a 

community is depend on the size of the reproduction 

number �#. Now, the basic reproduction number  �# will be 

found by using the method of next generation matrix [16]. 

Suppose there are  H and K compartments containing 

populations with disease and non-disease respectively. 

Let I ∈ ℝL and M ∈ ℝN be the total sub-population sizes of 

these compartments. The compartmental model can then be 

expressed as   IO) =  �PO
I, M� − QO
I, M��, ∀ S = 1, … , H  
and  MU) = >VU
I, M�?, ∀W = 1, … , K . Here the upper prime 

denotes differentiation with respect to time � . Note that the 

decomposition of the dynamics into P and X and the 

designation of compartments as infected or uninfected may 

not be unique. But, different decompositions are possible 
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correspond to different epidemiological diseases and 

interpretations of models. 

Let us now consider the following notations and their 

representations: (i)  PO
I�  denotes the rate of appearance of 

new infection cases in  S1Y compartment, (ii)  QO7  denotes the 

transfer rate of individuals into  S1Y compartment by all means 

(iii) QO/ denotes the transfer rate of individuals out from S1Y compartment by all means and (iv) we also denote QO = QO/ − QO7 . Further, it is assumed that each of the three 

functions  PO
I�,  QO7 and QO/ is continuously differentiable for 

at least two times with respect to their arguments.  

Let us now define two matrices Z and [ by  Z =>%\ \IU⁄ & PO
I#�? and  [ = >%\ \IU⁄ & QO
I#�?  respectively. 

Here the number of compartments denoted by  S satisfies the 

condition S ≥  1 while the number of infected compartments 

denoted by W satisfies the condition  1 ≤ W ≤ H . Then the 

matrix  Z[/]  is referred to as the next generation matrix for 

the system of model equations (1) at the disease free 

equilibrium point. 

Also the reproduction number is defined in terms of next 

generation matrix as  �# =  ^
Z[/]�. Here ^
�� denotes the 

spectral radius or magnitude of the largest eigenvalue of the 

matrix   � . Also, (i) the matrix of the new infection terms 

denoted by  Z  and (ii) the non singular matrixof the 

remaining transfer terms denoted by  [  are both   H ×H matrices. Here  H is the number of infected compartments. 

Note that the elements of the matrix Z are non-negative. The  
S , W�  element of the matrix  Z represents the rate at which 

infected individuals transfer from  W1Y  compartment to  S1Y compartment. 

Consider that an infected individual is transferred into a 

disease free compartment ` . The (j , k) entry of the 

matrix [/] represents the average time an infected individual 

spends in compartment j during its lifetime, assuming that the 

population remains near the disease free equilibrium point 

and barring re-infection.  

 Hence, the 
S, `� entry of the product matrix  Z[/] gives 

the expected number of new infections in compartment is 

produced by the infected individual originally introduced into 

compartment ` . Using the next – generation approach and 

taking the infected compartments to be  �, �  and  � from 

system of equations (1) gives 
��/��� = ���/� +  ��/� + ��� − 
� +  µ��� , 
 �� �� ⁄ � =  ��� − 
� +  µ +  ����  
and 
�� ��⁄ �  =  �αI − μ#P�. Here the progression rate from 

exposed compartment to infected compartment and the 

failure rate of treatment are not considered as new infection 

cases. From this we define  PO and  XO  as 

ff =  g h<ij
k7<� + h<lj
k7<�00 m  , vf o g 
β + μ�E − rδI
δ + μ + d�I − βEμ#P − αI m    (6) 

Now partially differentiating the variables   � , �  and  � 

with respect to time and evaluating at the disease free 

equilibrium point reduces the Jacobian matrices to  

F = u0 0 
ϵΛ cAμ⁄ �0 0 00 0 0 y ,  V = uβ + μ −rδ 0−β δ + μ + d 00 −α μ#y   (7) 

Finding the inverse of the Jacobian matrix of [  and 

computing the product of both matrices  Z and  [/] we get 


FV/]� = g {h|}~
|7μ�/�|{ {h}~/�|{ h}jkμμA0 0 00 0 0 m                 (8) 

Here  ξ = �A c μμ#
δ + μ + d��. 
The eigenvalues of the matrix 
Z [/]� are the solutions of 

the characteristic equation G = |Z [/] − � �| = 0, where I is 

identity matrix. The solutions are found to be  λ] =  �αϵΛβ� �ξ
β + µ� − rβα�⁄ ! ,   �� =  0  and �� = 0. It is well 

known that the dominant eigenvalue is considered to be the 

basic reproduction number   �# of the model. Therefore, it 

can be seen clearly that  �]  is the largest eigenvalue. Thus, 

the reproduction number is given by 

�# =  � ��}���00A
�70�
�7 07��/����                      (9) 

3.4. Local Stability of the Disease Free Equilibrium Point 

Under the local stability of the disease free equilibrium 

point we try to explain three conditions. Condition 1 The 

disease free equilibrium point   I#  is said to be locally 

asymptotically stable if the real parts of the eigenvalues are 

all negative and unstable if the real part of the eigenvalues 

are positive. Condition 2 If   R# < 1 , then disease free 

equilibrium point  I# is locally asymptotically stable i.e. no 

tuberculosis epidemic can develop in the population and 

if  R# ≥ 1, disease free equilibrium point  I# is unstable i.e. 

tuberculosis epidemic and endemic can develop in the 

population. Condition 3 Using the Routh-Hurwitz method. 

The Routh method is used for determining the stability of 

linear continuous data system without involving root solving. 

The local stability of the disease free equilibrium point  I# =  
Λ (�⁄ , 0, 0, 0, 0! can be analyzed by computing the 

Jacobian matrix of the model equations (1) to (5). On 

differentiating each equation of the system (1) to (5) with 

respect to �, �, �, � and  � and evaluating the resultants at the 

disease free equilibrium point  S = 
Λ µ⁄ �, E = 0, I = 0, T =0 and  P = 0 we get 

�
I#� =  
���
��−( 0 0 0 −�0 −� �� 0 �0 � −� 0 00 0 �� −( 00 0 " 0 −(#���

��
              (10) 

Here in (10),  � = 
� + ( + ��, � = ��Λ ��(⁄ �  and  � =
� + (�. 

Consider the matrix (3) and let  � be the eigenvalue of the 

characteristic equation  |�
I#�  − ��| =  0 , where �  is an 5 ×  5 identity matrix. Thus, we have 

|�
I#� − ��| = ��
−( − � 0 0 0 −�0 −� − � �� 0 �0 � −� − � 0 00 0 �� −( − � 00 0 " 0 −(# − ���   (11) 
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As the first and fourth columns correspond to the total 

human populations and contain only the diagonal terms, 

these diagonal terms form two similar eigenvalues of the 

Jacobian matrix (11). Thus, setting �−
( + ��� = 0 implies 

that �] =  �8 =  
−(�. This is in accordance with Condition 

1 stating that I# is stabile. 

The other three eigenvalues are the roots of the 

characteristic equation of the matrix formed by excluding the 

first and fourth rows and first and fourth columns of the 

Jacobian matrix (11), we obtain the resultant sub matrix as 

|�∗
I#� − `�| = �−� − � �� �� −� − � 00 " (# − ��          (12) 

Now, up on substituting the values of  �, � and  � and 

evaluating the Jacobian determinant (12) we get the 

characteristic equation as �
� + ( + ��
� + ( + � + ��
( +�� − ���
(# + �� −  "�Λ ��(⁄ � = 0 . Also, the 

characteristic equation can be expressed as G��� +  G��� + G]� + G# = 0                    (13) 

In (13), we have used the notations   G� = 1 ,  G� =�2( + (# + � + � + �� ,   G] =  �(#
2( + � + � + �� +
� + (�
( + � + �� − ���� and  G# = �(#�
� + (�
( + � +�� − ���� − �"�Λ ��(⁄ � . Due to the complexity in 

determining the signs of the remaining three eigenvalues of 

(13), we now employ the Routh – Hurwitz conditions for 

stability. The Routh – Hurwitz criteria for the polynomials of 

order three summarized that  �¢£ 3 = �G� G]� ,  �¢£ 2 =�G� G#� ,   �¢£ 1 = �¥] 0�  and  �¢£ 0 =  ��] 0�. Here  ¥] = ¦/]§¨© ªG� G]G� G#ª  and   �] = ¦/] «¬ © ªG� G#¥] 0 ª = G# . 

Therefore, if G� > 0, necessary and sufficient condition for 

third order system to be stable is that  G� > 0 ,  ¥] > 0  
and  G# > 0. Clearly from these expressions we observe that  G�  and  G�  are positive quantities. Again we have that  ¥] >0 is equivalent to  G�G] > G#G�  and this implies that G] > 0. 

Therefore   G� > 0, G� > 0  and G] > 0 and this implies 

thatI# is stabile. 

We now consider that the quantityG#  isa positive. That 

is,  G# > 0 simplifies to  ®1 −  
�"Λ��  ��((#�
� + (�
( + � + �� − ����!⁄ !¯ > 0 . 

This implies that 
1 − �#� > 0  or equivalently   �# < 1 . 

Hence, according Condition 2 the disease free equilibrium 

point  I# is stabile. Thus, we conclude that the disease free 

equilibrium point I#  is locally stable. 

3.5. Endemic and Epidemic Equilibrium Points 

Endemic and Epidemic equilibrium points,  I] is a steady 

state solution, where the disease persists in the population. 

The existence and uniqueness of endemic and epidemic 

equilibrium pointsI] is should satisfy the conditions:   I] =
�∗, �∗, �∗, �∗, �∗� ≠ 0 and  I] = 
�∗, �∗, �∗, �∗, �∗� > 0 . 

Setting right-hand side zero for the third equation of the 

system of equations (1) and rewriting for  �∗, we get �∗ = ���∗ 
� + ( + ��⁄ �.                    (14) 

Again taking the second equation of the system (1) and 

setting right-hand side zero. Finally, we evaluate for the 

exposed compartment  �∗ as �∗ =  �
�∗ + �∗� ��
� + (�⁄ �! + ����∗ 
� + (�⁄ �  (15) 

First equation from the system of equations (1) to (5) 

evaluated by setting the right-hand side zero and writing with 

respect to  �∗ as  �∗ =  Λ �
� �⁄ � + (�⁄ !                       (16) 

The fourth equation from the system of equations (1) to (5) 

also evaluated by setting the right-hand side zero and writing 

with respect to �∗ as �∗ =  ΛqδI∗ �
� �⁄ � + (�⁄ !                (17) 

Then substituting equations (16) and (17) in to equation 

(15) we get �∗ = 
² ³⁄ � + ����∗ 
� + (�⁄ �              (18) 

Here in (18), we have used the notations   ² = ���
Λ +���∗�  and  ³ = ��
� + (�
� + �(��.  
Then substituting equation (18) in to equation (14) finally 

we get �∗ =  
�Λ��� �´ − σ − θ�⁄ !               (19) 

Here in (19), we have used the notations  ´ = ��
( +��
� + ( + ��
� + �(�� , · = ������� and   ¸ =�����
� + �(��. But from the equation (5) we can evaluate  �∗ by setting the right-hand side zero as  �∗ = 
"�∗ (#⁄ �                        (20) 

Then substituting equation (19) in to equation (20) �∗ =   
"�Λ��� 
(#´ − (#· − (#¸�⁄ !           (21) 

Furthermore, we have  � = ���∗ 
� + �∗�⁄ �  and 

substituting the value of  �∗ from (21)  � takes the 

expression   � = �
�"�Λ��� ��(#´ − �(#· − �(#¸ + "�Λ���⁄ � . 

Also on substituting the values of ´ , · , ¸ and after cross-

multiplication and simplification the implicit expression for  � can be expressed as ¹�� + º� = 0                             (22) 

In (22),  ¹ = ��(#�
� + (�
� + ( + �� − ��� − ���� −"��Λ  and  º = ���((#�
� + (�
� + ( + �� − ���� −"���Λ . Clearly from equation (22) one of the solutions is  �] = 0  and this corresponds to the disease free equilibrium 

point  I#. 

3.5.1. The Epidemic Equilibrium Point 

Epidemic means widespread outbreak of an infectious 

disease. People more in number are expected to be infected at 

same time. Spread of the tuberculosis disease over a 

considerable extent of population is computed by 

using  º value. Clearly   ¹ is a positive quantity. Further, 

if   º is also a positive quantity then  ¹� +  º =  0  has 

negative solution   � = −
º ¹⁄ � . But, a negative value 
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for � is not desirable. Hence, positive value for º is also not 

desirable. So we consider that  º is a negative quantity 

i.e.  º �  0 .This consideration, after some simplifications, 

leads to the result �# ­ 1.Therefore if º �  0  or equivalently 

�# ­ 1 thereexists a positive solution for (22). The biological 

meaning of  º �  0  or equivalently �# ­ 1 is that the 

tuberculosis disease spread continues in the society. One 

infected person can transmit disease to more than one person. 

3.5.2. The Endemic Equilibrium Point 

Tuberculosis is a kind of endemic disease that constantly 

presents with a greater or lesser degree among the people of 

certain class or among the people living in a particular 

location. From quadratic equation (22) can be simplified to 

give  ¹� �  º 
  0 and this corresponds to the existence of 

an endemic equilibrium point. The critically looking at the 

quadratic equation (22) clearly shows that there is an 

endemic equilibrium point exists. The equation (22) 

represents an upper parabola and essentially it has a minim 

point when  ¹ ­  0. 

The existence of the unique endemic equilibrium point 

requires that the discriminate of quadratic equation (22) is 

zero. That is  º� �  4¹¼ 
  0. But in the present case ¼ 


 0 and hence we get  º�  
  0 .This result implies that 

 I� 
 Ζ � "���Λ�� 
 0 or 

 �
�"���Λ��
1 � 
Ζ "���Λ⁄ ���� 
 0 or  �
�"���Λ��
1 �

1 �#⁄ ��� 
 0  or  �
"���Λ �#⁄ ��
1 � �#��� 
 0 or   º]
�
1 �

�#�� 
 0 . Here  Ζ 
 
���((#�
� � (�
� � ( � �� � ����  

and º] 
 
"���Λ �#⁄ � thus  
1 � �#�� 
 0 .The solution 

is  �# 
 1. The biological meaning of  �# 
  1  is that one 

infected person during his life time can transmit disease to 

only one new person. The endemic and epidemic points can 

be summarized as (i) Endemic equilibrium point exist 

if   �#  
  1  and (ii) Epidemic equilibrium point exists 

if  �# ­ 1. 

4. Numerical Simulations 

Numerical Simulations of the model equations (1) to (5) 

were carried out using MATLAB inbuilt function ode 45 

Runge – Kutta of order four. To control the spread of 

tuberculosis disease the selecting parameters play an 

important role. Hence, we have to focus more on the 

selection of parameters values. Most of the parametric values 

used here are collected from literature and the remaining are 

all based on our assumptions. Further five hypothetical cases 

were considered with variable size of area � as 0.20, 0.90, 2, 

20 and 200 in square meters. And the initial conditions have 

been considered as S[0]= 1600; E[0]= 1500; I[0]= 150; R[0]= 

140; P[0]= 100 at initial time �# 
 0. Also the final time is 

considered as  �½ 
 10. The parametric values are considered 

based literature [17, 18] and mainly on assumptions as: Λ 


0.02 J 10¿, ( 
 0.02 , � 
 0.352 , � 
 0.99 , � 
 0.45, � 


 0.365 ,  " 
 0.2 ,  � 
 0.1 ,  (# 
  0.99  and � 
 80 . The 

results of the simulation study are presented in the following 

figures.  

 

Figure 2. Reproduction ratio �# 
  868.9041  and force of contact rate 

� 
  0.0992 at � 
  0.2 square meter. 

In Figure 2 we see that population size of susceptible 

compartment decreases with time and finally reach a positive 

lower asymptote. The population sizes of all the remaining 

compartments viz., exposed, infected, treated and pathogen 

will increase and reach their corresponding upper 

asymptotes. Since, the reproduction ratio is greater than one 

the spread of tuberculosis is very high in population. 

 

Figure 3. Reproduction ratio  �#  
  193.0898 and force of contact rate 

� 
  0.0986 at area � 
  0.9 square meter. 

In Figure 3 we observe that the population size of 

susceptible compartment increases with progression of time. 

The population sizes of exposed decreases and reaches its 

lower asymptote. The population sizes of infected, treated 

and pathogen increase and reach their upper asymptotes. Still 

the spread of tuberculosis disease occurs in the population 

because the reproduction ratio is greater than one. 
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Figure 4. Reproduction ratio  �#  
  86.8904  and force of contact rate 

 � 
  0.0978 in the area of � 
  2  square meters. 

In Figure 4 we see that, the population sizes of susceptible 

and treated compartments increase with progression of time. 

The population sizes of all the remaining compartments viz., 

exposed, infected, and pathogen will decrease. The 

reproduction ratio is greater than one and also the widespread 

of tuberculosis disease in population increases.  

 

Figure 5. Reproduction ratio  �# 
  8.6890 and force of contact rate 

� 
  0.0952  at area of  � 
 20  square meter. 

From the figure population sizes of susceptible and treated 

compartment increase with progression of time. The 

population sizes of exposed, infected and pathogen 

compartments decrease and ultimately converge to zero as 

time takes larger values. The population sizes of the infected 

and recovered compartments will increase initially and at 

later times decrease and converge to zero. But here the 

reproduction ratio is greater than one. Therefore one 

tuberculosis infected patient can transmit disease to more 

than one new uninfected. 

Figure 6 shows that the population sizes of susceptible and 

treated compartments increase with progression of time. The 

population sizes of exposed and pathogen compartments 

decrease and ultimately converges to zero as time takes larger 

values. The population size of the infected compartment will 

increase initially and at later times decrease and converge to 

zero finally. Here, the reproduction ratio is less than one. 

Therefore there is no tuberculosis disease spread in the 

population. 

 

Figure 6. Reproduction ratio  �#  
  0.8689 and force of contact rate 

 � 
  0.0944 in the area of  � 
  200  square meters. 

5. Comparison of the Models 

Here under we present the comparisons of the present 

work with our previous work [1]. 

When compare both reproduction ratios of the present and 

previous [1] study the area of size 2 square meters we get the 

clear difference and the same is shown in Figure 7. 

 

Figure 7. Comparison of   �#  of the present and earlier studies. 

Here we represent the reproduction ration of the present 

study by �#:  and that of the earlier study by �#Ä. If size of 

the area increases in square meters then the reproduction 

ratio  �#: decreases fast and coincides with reproduction 
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ratio �#Ä. If size of the area approaches to zero then the value 

of reproduction ratio  �#: become larger than reproduction 

ratio   �#Ä . Therefore reproduction ratio  �#: is faster than �#Ä to attack a suspected people in very crowded area. This 

means when one tuberculosis patient presents in a 

community and the community lives together in a very 

crowded area then the tuberculosis patient transmits disease 

to many susceptible people within a short period of time. 

Table 3. Comparison of the results of previous and present studies. 

S. No. Results of previous study [1] Results of present study 

1 The total human population is divided into four compartments. The total human population is divided into four compartments. 

2 The model has ���� structure. 
The model has ���� structure. But � compartment is replaced by a 

compartment of treated individuals � 

3 Specific area was assumed Specific area was assumed 

4 Treatment is given only to the people of infected compartment Treatment is given only to the people of infected compartment 

5 Treatment confers only partial immunity Treatment confers only partial immunity 

6 Recovery indicates recovery from the illness but not from the disease. Treated indicates recovery from the illness but not from the disease 

7 Not considered success and failure of treatment. Success and failure of treatment is considered. 

8 
We have fifth compartment which contains no human population. It 

contains environmental pathogen population. 

We have fifth compartment which contains no human population. 

It contains environmental pathogen population. 

9 
One equilibrium point was analyzed. That is disease free equilibrium 
point. 

Three equilibrium points were analyzed. Disease – free equilibrium 
point, endemic equilibrium point and epidemic equilibrium point. 

10 

Reproduction ratio is slower whose formula is �# =  "�Λ���((#
� + (�
� +  ( + �� 

Reproduction ratio is faster whose formula is �# =  "�Λ���((#
� + (�
� +  ( + �� − ��" 

11 
The more important parameter to control the spread of TB is to reduce the 

crowded areas in which the people live. 

The more important parameter to control the spread of TB is to 

reduce the crowded areas in which the people live. 

12 Nil 
Taking medications as often reduce the multi – drug resistance 
tuberculosis. 

 

6. Conclusions 

From numerical simulation we can summarize that the 

most important parameter is the area in which the people 

live. When the spatial area � is increased a little in size then 

both the reproduction ratio  �# and probability of catching 

tuberculosis due to polluted air � decrease to lower values. 

That is � is inversely proportional to both �# and �. If people 

lives together in very crowded area then the spread of 

tuberculosis disease increases. Therefore by diluting the 

crowded areas we can control the spread of tuberculosis. 

Completing the treatment and taking medications as often 

reduce the multi drug resistance (MDR) tuberculosis 

mortality and incidence rates. 

From the results of the stability analysis, we have shown 

that the disease free equilibrium point is asymptotically 

stable while the endemic and epidemic equilibrium points are 

unstable. Whether the disease becomes persistent or dies out 

depends on the magnitude of the basic reproductive 

number   �# . We found that if the basic reproduction 

ratio  �# <  1 , then each solution leads to the disease free 

equilibrium point. In other words, every infectious individual 

will cause less than one secondary infection. Hence the 

disease dies out after some time. If  �# >  1 then there exist a 

unique epidemic equilibrium point. This means that one 

infected person can transmit disease for more than one 

person and tuberculosis disease spread continuous in the 

society. If  �# =  1 then there exist a unique endemic 

equilibrium point. Meaning is that the disease remains in the 

population at a consistent level, as one infected individual 

transmits the disease to one susceptible. 
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