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Abstract: With a view to obtaining the transient response of the system where triply eigenvalues are equal and another is 

distinct, we have considered a fourth order more critically damped nonlinear systems, and enquired into analytical approximate 

solution in this paper. We have also suggested that the results obtained by the proposed method correspond to the numerical 

solutions obtained by the fourth order Runge-Kutta method satisfactorily. 
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1. Introduction 

The KBM [1, 2] method is a broadly exercised technique 

to study nonlinear oscillatory and non-oscillatory 

differential systems with small nonlinearities. Initially, the 

method was developed by Krylov and Bogoliubov [2] for 

finding the periodic solutions of second order nonlinear 

differential systems with small nonlinearities. Later on, the 

method was improved and justified mathematically by 

Bogoliubov and Mitroposkii [1]. Popov [3] extended the 

method to damped oscillatory nonlinear systems. Due to 

physical importance of the damped oscillatory systems, 

Popov's results were rediscovered by Mendelson [4]. Then, 

this method was extended by Murty and Deekshatulu [5] for 

over–damped nonlinear systems. Sattar [6] studied the 

second order critically-damped nonlinear systems by using 

of the KBM method. Murty [7] proposed a unified KBM 

method for second order nonlinear systems which covers 

the undamped, over-damped and damped oscillatory cases. 

Next, Osiniskii [8] first developed the KBM method to 

solve third-order nonlinear differential systems imposing 

some restrictions, which made the solution over-simplified. 

Mulholland [9] removed these restrictions and found 

desired solutions of third order nonlinear systems. Bojadziv 

[10] assessed solutions of nonlinear systems by converting 

it to a three-dimensional differential system. Sattar [11] 

examined solutions of three-dimensional over-damped 

nonlinear systems. Shamsul [12] propounded an asymptotic 

method for second order over-damped and critically 

damped nonlinear systems. Shamsul [13] then extended the 

method presented in [12] to third order over-damped 

nonlinear systems under some special conditions. Akbar et 

al. [14] generalized the method and showed that their 

method was easier than the method of Murty et al. [15]. 

Later, Akbar et al. [16] extended the method presented in 

Akbar et al. [14] for fourth order damped oscillatory 

systems. Again, Akbar et al. [17] investigated a technique 

for obtaining over-damped solutions of n-th order nonlinear 

differential equations under some special conditions 

including the case of internal resonance. A method has been 

established by Akbar et al. [18] for solving the fourth order 

more critically damped systems. Soon after Rokibul et al. 

[19] expounded an analytical approximate solution of fourth 

order more critically damped systems when the unequal 

eigenvalue is integral multiple of equal eigenvalues. 

Afterwards Hakim [20] presented a method to enquire 

solutions of fourth order more critically damped nonlinear 

systems. 

In this article, we have investigated solutions of fourth 

order more critically damped nonlinear systems i.e. the three 

eigenvalues are equal and the other one is distinct, by 

developing a method which is different from the method of 

Akbar et al. [18], Rokibul et al. [19] and Hakim [20]. Finally, 

in this paper, we have suggested that the acquired 

perturbation results show good coincidence with the 

numerical results for different sets of initial conditions as 

well as different sets of eigenvalues.  
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2. The Method 

Let us consider a weakly nonlinear fourth order ordinary 

differential system 

( )
1 2 3 4 ( , , , )ivx k x k x k x k x f x x x xε+ + + + = −ɺɺɺ ɺɺ ɺ ɺ ɺɺ ɺɺɺ          (1) 

In which 
( )ivx  indicates the fourth derivative of x, over 

dots indicate the first, second and third derivatives with 

respect to t; 1 2 3 4, , ,k k k k  are characteristic parameters, ε  

is a small parameter and ( , , , )f x x x xɺ ɺɺ ɺɺɺ is the nonlinear 

function. 

When 0,ε =  the equation becomes linear and the solution of 

the linear equation of (1) is 

2
0 0 0 0( ,0) ( ) t tx t a b t c t e d eλ µ− −= + + +             (2) 

In which 0 0 0, ,a b c  and 0d are constants of integration. 

However, when 0,ε ≠  following Shamsul [21], the solution of 

the equation (1) is sought in the form 

2

1

( , ) ( )

( , , , , )

t tx t a b t c t e d e

u a b c d t

λ µε
ε

− −= + + +
+ +⋯

           (3) 

where , ,a b c  and d  are slowly varying functions of time t 

and satisfy the following first order differential equations: 

1

1

1

1

( ) ( , , , , )

( ) ( , , , , )

( ) ( , , , , )

( ) ( , , , , )

a t A a b c d t

b t B a b c d t

c t C a b c d t

d t D a b c d t

ε
ε
ε
ε

= +

= +
= +

= +

ɺ ⋯

ɺ
⋯

ɺ ⋯

ɺ
⋯

                 (4) 

In this calculation, we have merely considered first few 

terms in the series expansion of (3) and (4) and we have 

calculated the functions iu  and , , ,i i i iA B C D  for 

1, 2, ,i n= ⋯⋯  such that , ,a b c  and d appearing in (3) 

and (4) satisfy the given differential equation (1).  

With a view to ascertaining these unknown functions, the 

KBM method usually suggests that the correction terms, iu  

for 1, 2, ,i n= ⋯⋯  should exclude terms (sometimes 

referred to as secular terms) that enlarge them. The solution 

may be, in theory, accurate for any order of approximation. 

But due to the rapid rise in algebraic intricacy for the 

derivation of the formulae, the solution is generally limited 

to a lower order, especially the first order (Murty [7]). 

Now differentiating the equation (3) four times with 

respect to t, substituting the value of x and the derivatives 
( ), , , ivx x x xɺ ɺɺ ɺɺɺ  in the equation (1), using the relations 

presented in (4) and finally equating the coefficients of ε , 

we obtain 

( )

2
1 1

12

2 2
21 1 1

2 2

3 3

1 1

0

3 6

6

( , , , , )

t

t

A B
e C

t tt

C C C
t t e

tt t

D u
t t t

f a b c d t

λ

µ

µ λ

λ µ λ µ

−

−

∂ ∂∂  + − + + + ∂ ∂∂  

 ∂ ∂ ∂ + + +  ∂∂ ∂  

∂ ∂ ∂     + − + + +     ∂ ∂ ∂     

= −

         (5) 

where 
( )0

0 0 0 0( , , , , ) ( , , , )f a b c d t f x x x x= ɺ ɺɺ ɺɺɺ  

and 2
0 ( ) t tx a bt c t e d eλ µ− −= + + +   

Now we expand 
)0(f  in the Taylor’s series of the form 

(0) 2 0 ( )
0

, 0

2 1 ( )
1

, 0

2 2 ( )
2

, 0

2 3 ( )
3

, 0

( ) ( )

( ) ( )

( ) ( )

( ) ( )

i j t

i j

i j t

i j

i j t

i j

i j t

i j

f a b t c t F d e

a bt c t F d e

a bt c t F d e

a bt c t F d e

λ µ

λ µ

λ µ

λ µ

∞
− +

=

∞
− +

=

∞
− +

=

∞
− +

=

= + +

+ + +

+ + +

+ + + +

∑

∑

∑

∑ ⋯

      (6) 

Thus we can write 

{

2
1 1

12

2 2
21 1 1

2 2

3 3

1

2 0
1

( ) 2 1
0

, 0

( )
1

, 0

3 6

6

( )

( ) ( )

( ) (

t

t

i j t

i j

i j t

i j

A B
e C

t tt

B C C
t t

tt t

e D
t t

u a bt c t
t

F d e a bt c t

F d e a b

λ

µ

λ µ

λ µ

µ λ

λ µ λ

µ

−

−

∞
− +

=

∞
− +

=

∂ ∂∂ + − + + ∂ ∂∂ 

 ∂ ∂ ∂ + + +   ∂∂ ∂   

∂ ∂   + + − + +   ∂ ∂   

∂ + = − + + ∂ 

+ + +

+ +

∑

∑ 2 2

( ) 2 3
2

, 0

( )
3

, 0

)

( ) ( )

( )

i j t

i j

i j t

i j

t c t

F d e a bt c t

F d e

λ µ

λ µ

∞
− +

=

∞
− +

=

+

+ + +

+ 


∑

∑ ⋯

             (7) 

We impose the condition that 1u  cannot contain the 

fundamental terms of 
(0) ,f  therefore equation (7) can be 
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separated for unknowns functions 1u  and 1 1 1 1, , ,A B C D in 

the following way (see also Murty et al.[15]; Sattar [6]; 

Shamsul and Sattar [8]; Shamsul [13]; Shamsul [22] for 

details).  

2
( )1

12
, 0

( )t i j t

i j

C
e c F d e

t t

λ λ µµ λ
∞

− − +

=

∂∂ + − = − ∂ ∂ 
∑     (8) 

2
1 1

2

( )
1

, 0

6

( )

t

i j t

i j

B C
e

t tt

b F d e

λ

λ µ

µ λ−

∞
− +

=

 ∂ ∂∂ + − + =    ∂ ∂∂   

− ∑
             (9) 

2
1 1

12

3
( )

1 0

, 0

3 6

( )

t

t i j t

i j

A B
e C

t tt

e D F d e
t

λ

µ λ µ

µ λ

λ µ

−

∞
− − +

=

 ∂ ∂∂ + − + + +   ∂ ∂∂  

∂ + − = − ∂ 
∑

          (10) 

3
( )

1 2

, 0

2 2

( )

( )

i j t

i j

u F d e
t t

a bt ct

λ µλ µ
∞

− +

=

∂ ∂   + + = −   ∂ ∂   

+ + −

∑

⋯

           (11) 

Solving the equation (8), we get the value  

( )

( )( )

( 1)
1

1 2
, 0

( )

( 1) ( 1)

i j t

i j

c F d e
C

i j i j

λ µ

λ µ λ µ

− − +∞

=

=
+ − − +

∑               (12) 

Substituting the value of 1C  from (12) into equation (9), 

we obtain 

( )

( )( )

2
1

2

1

, 0

( )
1

, 0

6

( )

( 1) ( 1)

( )

t

i j t

i j

i j t

i j

B
e

t t

c F d e

i j i j

b F d e

λ

λ µ

λ µ

µ λ

λ µ λ µ

−

− +∞

=

∞
− +

=

∂∂ + − = − ∂ ∂ 

− + + −

−

∑

∑

              (13) 

Now solving equation (13), we obtain 

( )

( ) ( )
( )

( ) ( )

( 1)
1

1 3 2
, 0

( 1)
1

2
, 0

( )
6

( 1) ( 1)

( )

( 1) ( 1)

i j t

i j

i j t

i j

c F d e
B

i j i j

b F d e

i j i j

λ µ

λ µ

λ µ λ µ

λ µ λ µ

− − +∞

=

− − +∞

=

=
− + + −

+
− + + −

∑

∑
         (14) 

Now using the value of 1C  from (12) and 1B from (14) 

into equation (10), we obtain 

( )

( )

( )

( )

( )

32
1

12

1 1

2
, 0 , 0

0

, 0

( , ) ( , )
12 3

( 1)( 1)

( , )

t t

i j t i j t

i j i j

i j t

i j

A
e e D

t tt

c F a d e b F a d e

i ji j

F a d e

λ µ

λ µ λ µ

λ µ

µ λ λ µ

λ µλ µ

− −

− + − +∞ ∞

= =

∞
− +

=

∂∂ ∂   + − + + − = −   ∂ ∂∂   

−
− +− +

−

∑ ∑

∑

  (15) 

Now we have only one equation (15) for obtaining the 

unknown functions 
1A  and

1D , for finding the value of 
1A  

and
1D  equating the coefficient of te λ− and te µ−  from the 

equation (15). 

Thus, the determination of the first order improved 

solution of the equation (1) is completed. It should be noted 

that the solution for higher order systems can also carried out 

in the same manner as has been carried out in this study. 

3. Example 

As an example of the above procedure, consider a fourth 

order weakly nonlinear system governed by the ordinary 

differential equation 

( ) 3
1 2 3 4

ivx k x k x k x k x xε+ + + + = −ɺɺɺ ɺɺ ɺ                (16) 

Here 3( , , , )f x x x x x=ɺ ɺɺ ɺɺɺ  

Therefore, 

( )0 2 0 3 3 2 1

2 ( 2 ) 2 2 (2 )

2 3 3

( ) 3( )

3( )

( )

t

t t

t

f a bt c t d e a bt c t

d e a bt c t d e

a bt c t e

µ

λ µ λ µ

λ

−

− + − +

−

= + + + + +

+ + +

+ + +

 

Thus for equation (16), the equations (8) to (11) 

respectively become  

2
2 ( 2 )1

2
3

t tC
e c d e

t t

λ λ µµ λ− − +∂∂ + − = − ∂ ∂ 
           (17) 

2
1 1

2

2 ( 2 )

6

3

t

t

B C
e

t tt

b d e

λ

λ µ

µ λ−

− +

 ∂ ∂∂ + − + =    ∂ ∂∂   

−

            (18) 

{ }

2
1 1

12

3

1

2 ( 2 ) 3 3

3 6

3

t

t

t t

A B
e C

t tt

e D
t

a d e d e

λ

µ

λ µ µ

µ λ

λ µ

−

−

− + −

 ∂ ∂∂ + − + +   ∂ ∂∂  

∂ + + − = − ∂ 

+

               (19) 
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{

}
{

}

3
3 2

1

2 2 2 3 3

2 2 4 2 5 3 6 3

2 2 2

3 2 4 (2 )

3

3( ) ( 6 )

3( ) 3

3 6 3( 2 )

6 3

t

t

u a a bt
t t

a b a c t b ab c t

b c a c t bc t c t e

a d ab d t b d a c d t

bc d t c d t e

λ

λ µ

λ µ

−

− +

∂ ∂   + + = − +   ∂ ∂   

+ + + +

+ + + +

− + + +

+ +

          (20) 

The solution of the equation (17) is  

2 2 2
1 (3 / 4) tC Q Rc d e µ−=                         (21) 

Consider 1/ ,P λ= 1/ ,Q µ= 1/ ( )R λ µ= + and 1/ (3 )S λ µ= −  

Substituting the value of 1C  from the equation (21) into 

the equation (18), we obtain 

3 2 2 2 2 2
1 (9 / 4) (9 / 4)t tB Q R c d e Q Rb d eµ µ− −= +       (22) 

To separate the equation (19) for determining unknown 

functions 
1A  and 

1
D , we equate the coefficient of te λ− and 

te µ− ,  we obtain   

2
1

2
0

t A
e

t t

λ µ λ− ∂∂ + − = ∂ ∂ 
                                    (23) 

3
2 2

1

( 2 ) 2 ( 2 )

2 2 ( 2 ) 2

( 2 ) 3 3

(27 / 2)

(27 / 2)

(9 / 2) 3

t

t t

t

t t

e D Q c d
t

e Qb d e

Q c d e a d

e d e

µ

λ µ λ µ

λ µ

λ µ µ

λ µ−

− + − +

− +

− + −

∂ + − = − ∂ 

−

+ −

−

            (24) 

The particular solutions of (23) and (24) respectively become 

1 0A =                                                                       (25) 

5 2 ( )
1

4 2 ( ) 3 2 ( )

3 3 2

(9 / 4) (9 /16)

(3 / 8)

(3 )

t

t t

t

D Q c d e

Q b d e Q a d e

d e

λ µ

λ µ λ µ

µµ λ

− +

− + − +

− −

= +

+

+ −

           (26) 

The solution of the equation (20) for 1u  is 

{

}
{

3 2 2
1 1 1 2 1 3 4

2 2 3 2
1 5 6 7

3 4 3 2
1 8 9 10

2 2 5 4 3
11 1 12 13

2 2 6 5
14 15 16 1 17

4 3 2 3 3
18 19 20 21 22

2
23 2

( ) ( )

( ) ( )

( 6 ) (

)( ) (

) (

)

(

t

u r a r t r a b r t r t r

ab a c r t r t r t r

b ab c r t r t r t r t

r b c a c r t r t r t

r t r t r b c r t r t

r t r t r t r t r c e

r a d r

λ−

= + + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ +

}

2
3 24 23 25

2 3 2
26 23 27 28

4 3 2
29 23 30 31 32

2 ( 2 )
33

) (

) ( 2 ) (

) (

) t

t r ab d r t r t

r b d a c d r t r t r t

r bc d r t r t r t r t

r c d e µ λ− +

+ + +

+ + + + +

+ + + + +

+

           (27) 

where 3
1 (3 / 8) ,r P S=  { }2 1 (3 / 2) ,r r P S= × −  

( )3 1 3 2 ,r r P S= × − ( )2 2
4 1 2 3 2 ,r r P PS S= × − +

{ }5 1 3 (9 / 2) ,r r S P= × − +  ( )2 2
6 1 6 9 9 ,r r S SP P= × − +

3 2 2

7 1 3

6 9 9
,

(25 / 2)

S PS P S
r r

P

 − + − = × 
+  

 

( )8 1 4 6 ,r r S P= × − + ( )2 2
9 1 12 18 18 ,r r S P S P= × − +

3 2

10 1 2 3

24 36
,

36 30

S PS
r r

P S P

 − +
= × 

 − + 
 

4 3 2 2

11 1 3 4

24 36 36
,

30 (45 / 2)

S PS P S
r r

P S P

 − + = × 
− +  

 

{ }12 1 5 (15 / 2) ,r r S P= × − +  

( )2 2
13 1 20 20 30 ,r r S P S P= × − +  

3 2 2

14 1 3

60 90 90
,

75

S PS P S
r r

P

 − + −
= × 

 + 
 

4 3 2 2

15 1 3 4

120 180 180
,

150 (225 / 2)

S PS P S
r r

P S P

 − + = × 
− +  

 

{
}

5 4 2 3
16 1

3 2 4 5

120 180 180

150 150 (315 / 4) ,

r r S PS P S

P S P S P

= × − + −

+ − +
 

{ }17 1 6 (9 / 2) ,r r S P= × − +  

( )2 2
18 1 30 45 45 ,r r S PS P= × − +  

3 2 2

19 1 3

120 180 180
,

150

S PS P S
r r

P

 − + − = × 
+  

 

4 3 2 2

20 1 3 4

360 540 240
,

240 (375 / 2)

S PS P S
r r

P S P

 − + = × 
− +  

 

{
}

5 4 2 3
21 1

3 2 4 5

720 1080 1080

900 670 (945 / 2) ,

r r S PS P S

P S P S P

= × − + −

+ − +
 

{

}

6 5 2 4
22 1

3 3 4 2

5 6

720 1080 1080

900 675 (945 / 2)

315 ,

r r S PS P S

P S P S

P S P

= × − +

− + −

+

 

3
23 (3 / 2) ,r PR= − ( )24 23 3 ,r r R P= × +  
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( )25 23 6 ,r r R P= × +  ( )2 2
26 23 12 2 ,r r R PR P= × + +  

{ }27 23 (3 / 2) 9 ,r r P R= +

{ }2 2
28 23 (3 / 2) 9 9 ,r r P PR R= × + +  

3 2

29 23 2 3

(3 / 4) (9 / 2)
,

9 60

P P R
r r

PR R

 + + = × 
+  

 

{ }30 23 2 12 ,r r P R= × + ( )2 2
31 23 3 18 72 ,r r R PR P= × + +  

3 2 2

32 23 3

3 18 72
,

240

P P R PR
r r

R

 + + = × 
+  

 

4 3 2 2

33 23 3 4

(3 / 2) 9 36

120 360

P P R P R
r r

PR R

 + + = × 
+ +  

 

Substituting the values of 1 1 1, ,A B C  and 1D  from the 

equations (25), (22), (21) and (26) into equation (19) and 

integrating, we obtain  

0a a=                                                                   (28) 

( )
( )

3 2 2
0 0 0 0 0

2

(9 / 8)

1 t

b b Q R Qc d b d

e µ

ε

−

= + +

−
               (29) 

( )3 2 2
0 0 0(3 / 8) 1 tc c Q R c d e µε −= + −                    (30) 

{
( )
( )

3 2 2
0 0 0

2 2 ( )
0 0 0 0

1 3 3 2
0

(9 / 4) (9 /16)

(3 / 8) 1

(2 ) (3 ) 1

t

t

d d Q R Q c d

Qb d a d e

d e

λ µ

µ

ε

µ µ λ

− +

− − −

= + +


+ −

+ − −


             (31) 

Therefore, we obtain the first approximate solution of the 

equation (16) as 

2

1

( , ) ( )

( , , , , )

t t
x t a b t c t e d e

u a b c d t

λ µε
ε

− −= + + +
+ +⋯

               (32) 

where , ,a b c  and d  are given by the equations (28) to (31) 

and 1u  is given by (27). 

4. Results and Discussion 

To make sure the efficiency of our results, we have 

compared our results to the numerical results obtained by 

fourth order Runge-Kutta method for the different set of 

initial conditions. 

First of all, ( , )x t ε  has been computed from (32) by 

considering values of 3.0,λ = 0.21µ =  in which , ,a b c  

and d  are calculated from equations (28) to (31) with the 

initial conditions 0 0.30,a = 0 0.10,b =  0 0.05c =  and 

0 0.25d =  when 0.1,ε =
 
Fig. 1 represents the 

perturbation results which are plotted by the continuous 

line and the corresponding numerical solution has been 

computed by a fourth-order Runge-Kutta method, which 

are plotted by a dotted line as follows: 

 

Fig. 1. Perturbation results are plotted by continuous line and numerical 

results are plotted by dotted line. 

Secondly, ( , )x t ε  has been computed from (32) by 

considering values of 4.0,λ = 0.65µ = in which , ,a b c  and 

d  are calculated from equations (28) to (31) with the initial 

conditions 0 0.20,a = 0 0.30,b =  0 0.20c =  and 0 0.40d =  

when 0.1.ε = Fig. 2 represents the perturbation results 

which are plotted by the continuous line and the 

corresponding numerical solution has been computed by 

a fourth-order Runge-Kutta method, which are plotted 

by a dotted line as follows: 

 

Fig. 2. Perturbation results are plotted by continuous line and numerical 

results are plotted by dotted line. 

Finally, ( , )x t ε  has been computed from (32) by 

considering values of 4.0,λ = 0.30µ =  in which , ,a b c  and 

d  are calculated from equations (28) to (31) with the initial 

conditions 0 0.30,a = 0 0.20,b =  0 0.10c =  and 0 0.40d =  

when 0.1.ε = Fig. 3 represents the perturbation results 

which are plotted by the continuous line and the 
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corresponding numerical solution has been computed by 

a fourth-order Runge-Kutta method, which are plotted 

by a dotted line as follows: 

 

Fig. 3. Perturbation results are plotted by continuous line and numerical 

results are plotted by dotted line. 

5. Conclusion 

Based upon the KBM method of fourth order more 

critically damped nonlinear systems, we have been able to 

obtain an analytical approximate solution in this study. 

Moreover, we have shown in this study that the results 

obtained by the proposed method correspond satisfactorily to 

the numerical results obtained by the fourth order Runge-

Kutta method. It is, therefore, concluded that the modified 

KBM method provides highly accurate results, which can be 

applied for different kinds of nonlinear differential systems. 
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