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Abstract: This paper discusses the use of quasi-Newton method algorithm employed in solving unconstrained optimization 
problems. The method is aimed at circumventing the computational rigours undergone using the Newton’s method. The Quasi 
–Newton method algorithm was tested on some benced mark problems with the results compared with the Conjugate Gradient 
Method. The results gotten using the Quasi-Newton Method compared favourably with results of existing CGM algorithm. 
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1. Introduction 

The general optimization problem to be considered is of 
the form by [10] and [11] as 

Optimize:  f(x)                        (objective function)     (1.1) 

Subject to: ℎ���� = 0,   
 = 1, … , 
�    (equality constraint) (1.2) 

����� ≥ 0, � = 1, … , 
�        (inequality constraint) (1.3) 

� ≥ 0                            (non negativity conditions) (1.4) 

where x is a vector of n variables ( ��, ��, … , ���, h(x) is a 
vector of equations of dimension 
�, and g(x) is a vector of 
inequalities of dimension 
� , and the total number of 
constraints m = �
� +  
��. If ℎ���� = ����� = 0 then the 
problem becomes an unconstrained optimization problem 
otherwise, it is a constrained problem. Methods for solving 
this model have been developed, tested and successfully 
applied to many important problems of scientific and 
economic interest. However, in spite of the proliferation of 
the methods, there is no universal method for solving all 
optimization problems which calls for application of quasi-
Newton method in solving (1.1) through (1.4). 

2. The Conjugate Gradient Method 

Algorithm 

The gradient method uses the iterative scheme 

���� = �� − �∇����                       (2.1) 

to generate a sequence ��������  of vectors which converges 
to the minimum of ����. The parameter � appearing in (2.1) 
denotes the step length of the descent sequence. In particular, 
if � is a functional on a Hilbert space ℋ such that in ℋ, � 
admits a taylor series expansion 

���� = � + 〈", �〉$ + 〈�, %�〉$           (2.2) 

where % is an & × & symmetric, positive definite operator 
and ( is a Hilbert space, ", � ∈ (. 

The Conjugate Gradient Method (CGM) described by 
Hestenes and Stiefel [5,pp 409-436] is an iterative method 
that can solve (2.2) by simply generating a sequence ���� of 
approximation of the solution �  from an arbitrary initial 
approximation � . The guessed �  is sequentially improved 
upon untill a desired accuracy is attained. The CGM 
algorithm for iteratively locating the minimum �∗ of ���� in (  is described in [9] as follows: 
a: Guess the first element �  + ℋ   

b.  Compute  , =  −�      (2.3a) 

c. Set ���� = ��  + ��,� ;  .ℎ/0/  �� = 〈12,12〉ℋ〈32,432〉ℋ    (2.3b) 

d. Compute ����  =  �� +  ��%,�     (2.3c) 

e. Set  ,��� =  −���� + 5�,�   .ℎ/0/ 5� = 〈1267,1267〉ℋ 〈12,12〉ℋ   (2.3d) 

f. if �� = 0 for some i, then, terminate the sequence: else set i 
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= i +1 and go over to step b.  
In the iterative steps a – f above, ,�  denotes the descent 

direction at the ith step of the algorithm, α9 denotes the step 
length of the descent sequence �x9�   and ��  denotes the 
gradient of f at ��. Steps c, d and e of the algorithm reveal the 
crucial role of the linear operator A in determining the step 
length of the descent sequence and also in generating a 
conjugate direction of search. Applicability of the algorithm 
thus rests heavily on explicit knowledge of A. 

3. Quasi Newton Method 

Nonlinear problems in finite dimensions are generally 
solved by iteration. According to [2], for the minimization 
problem, and [1], for systems of equations, introduced new 
methods which although iterative in nature, were quite unlike 
any others in use at the time. These papers together with very 
important modification and classification of Davidon’s work 
by [4] have sparked a large amount of research in the late 
sixties and early seventies. 

This work has led to a new class of algorithm which has 
been called by the names quasi-Newton or modification 
methods. The methods have proved themselves in dealing 
with systems of n equations in n unknowns, and the 
unconstrained minimization of functionals. [3]  

The basic idea behind any quasi-Newton method is to 
eliminate computation of the Hessian in every iteration and 
the methods are based on Newton’s method to find the 
stationary point of a function, where the gradient is zero or 
near zero. The Hessian is updated by analyzing successive 
gradient vectors instead. Detailed overviews of quasi-Newton 
methods are presented in [8] and [7] 

The BFGS method named after Broyden, Fletcher, 
Goldfarb and Shanno who discovered it in 1970. It is 
numerically stable and has a very effective “self-correcting 
properties” accounts for its superior performance in practice 
[8]. If the matrix (; incorrectly estimates the curvature in the 
objective function, and if this bad estimate slows down the 
iteration, then the Hessian approximation will tend to correct 
itself within a few steps. 

Since the search direction , = −(;∇<��;�, this has the 
advantage that we don’t need to solve a linear system to get 
the search direction, but only do a matrix/vector multiply. 

The BFGS update formula is as follows: 

(;�� = (; + =>=>?=>?@> − $>@>@>?$>@>?$>@>                        3.1 

By taking the inverse, the BFGS update formula for A;���
. / (;��B� � is obtained: 

(;��B� = A;�� =  A; + C��=>?D>=>=>?@> E @>@>?@>?=> − @>=>?D>�D>=>@>?=>?@>    3.2 

The BFGS, preserve positive definiteness of the Hessian 
approximations if and only if F;GH; > 0.(see theorem 1 for 
the proof) 

Theorem 1. Let A�  be a symmetric positive-definite matrix, 
and assume that A���  is obtained from A�  using the BFGS 

update formula. Then  A��� is positive definite if and only if F�GH� > 0. 
Proof. If A�  is positive definite, then it can be factored as A� = JJG  where J  is a nonsingular matrix (Cholesky 

factorization of A�). If this factorization is substituted into the 
BFGS formula for A���, then 

A��� = JKJG                                      3.3 

where A�� = L − @̂@̂?
@̂?@̂ + =N=N ?

=N?=N ,    Ĥ = JGH� ,   and    FN = JB�F�   A��� will be positive definite if and only if K is. To test if K is positive definite, we test if OGKO > 0 for all O ≠ 0. let Q� be the angle between O and Ĥ ,  Q�  the angle between  O 
and  FN ,  and  QR is the angle between Ĥ and FN. Then  

OGKO = OGO − �OG Ĥ��ĤG Ĥ + �OGFN��FNGĤ  

= ‖O‖� − ‖O‖�‖Ĥ‖�TUH�Q�‖Ĥ‖� − ‖O‖�‖FN‖�TUH�Q�‖FN‖ .  ‖Ĥ‖TUHQR  

= ‖O‖� V1 − TUH�Q� + ‖FN‖TUH�Q�‖Ĥ‖TUHQR W 

= ‖O‖� XH
&�Q� + ‖=N‖YZ@[\[‖@̂‖YZ@\] ^                3.4 

If F�GH� > 0, then FNGĤ > 0 and TUHQR > 0; hence OGKO > 0 
and K is positive definite. If  F�GH� < 0, then TUHQR < 0; in 
this case, O can be chosen so that OGKO < 0 and so K is not 
positive definite. This completes the proof. 

4. Quasi-Newton Method Algorithm 

Given a quadratic functional 

<��� = < + 〈", �〉 + ½〈�, %�〉  
for �, " in Hilbert space with % being a positive, symmetric 
linear operator. The quasi- Newton algorithm is described in 
the following steps: 
Step 1: Guess the initial element, �  
Step 2: Compute the gradient, �  
Step 3: Compute the descent direction, , = −A �  ;  A = L; ,� = −A���  
Step 4: Compute the step length, �� = 12?1232?432 
Step 5: Update the descent sequence, ���� = �� + ��,�  
Step 6: Update the gradient  ���� = ∇f�x9��� 
Step 7: Test for convergence <���� "&b ‖��‖ 
Step 8: Determine the vector updates  

H� = ���� − ��  F� = ∇<������ − ∇<���� 

Step 9: Compute the new Hessian approximate 

A��� =  A� + C��=2?D2=2=2?@2 E @2@2?@2?=2 − @2=2?D2�D2=2@2?=2?@2   
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Step 10: Compute the next descent direction ,��� = −A���∇<������ 
Step 11: Return to step 3 

In the iterative steps 2 to 10 above, ,�  denotes the descent 
direction at the 
cd step of the algorithm, �� denotes the step 
length of the descent sequence ���� , L denotes the identity  �& × &�  matrix, <  denotes the objective function, %  is the 
linear operator, H� is the difference between two consecutive 
variable values, F�  is the difference between two consecutive 
gradient values and �� denotes the gradient of < at ��.  
5. Computational Results 

The following problems were investigated using both the 
CGM and QNM algorithms. 

(P1) Quadratic example, n = 2   

min�h� <��� = 4��� − 5�� + ��� − 6��, "l �   

=  ��� + 4��� − 12�� − 40�� + 136, "l � = o 2−1p  

(P2) Quadratic example, n = 2 

min�h� <��� = ��� − 3�� + 9��� − 5��, "l � = o11p  

= 9��� + ���  − 90��  − 6�� + 234, "l � = o11p.  

(P3) Rosenbrock’s Banana Shaped Valley function, n = 2 

min�h� <��� = �1 − x��� + 100�x� − x����, at x = o−1.21 p  

= 100��t − 200����� + 100��� + ��� − 2�� + 1, "l � = o11p  

(P4) Quadratic example, n = 3 

min�h� <��� = ��� − 2�� + ��� − 4�� + ��R − 6��, "l � =
u000v  

= �R�  + ���  + ��� − 12�R − 8�� − 4�� + 56, "l � = u000v. 

(P5) Beale’s Function, n = 2 

min�h� <��� = x1.5 − ���1 − ���y� + x2.25 − ���1 −����y� + x2.625 − ���1 − ��R�y�  

= ������ − 2����� + ��� + 3���� − 3�� + 2.25,   "l � = o11p. 

<�z� = z�� + z�� + zR� "l z = �1.5,2.25,2.625�  

(P6) Powell’s Quartet function, n = 4 

min�h� <��� = ��� − 10���� + ��R − �t�� + ��� − 2�R�t +
10��� − �t�t "l � = {0000|  

= ��� + ��t + 5�R� + 5�t� + 100��� + 16�Rt + 10��t + 10�tt +20����  

= − 10�R�t − 8����R + 24����R� − 32���R� − 40��R�t +
60����t� − 40���tR,"l � = {0000|  

Table 1. Numerical Comparison of Solutions to  P1. 

Test Problem Iteration CGM Function Value CQNM Function Value CGM Gradient Norm CQNM Gradient Norm 

1 0 85 85 772 772 

 1 25.4016 11.4016 125.504222 11.2028668 

 2 0.1e-19 0 0.53642542e-28 0.71454274e-14 

 
From the table above, it can be seen that, while CGM 

converged in the expected 2nd iteration, due to the presence of 
two variables, the CQNM also converged at the 2nd iteration 
using the gradient norm of the two methods as the stopping 
criteria. Considering the gradient norms, though the CQNM 

converged with 0.7145274e-14, CGM does better with the 
value 0.53642542e-28 which is smaller than that of CQNM. 
This shows that though the CQNM does the job, CGM has an 
edge. 

Table 2. Numerical Comparison of Solutions to P2. 

Test Problem Iteration CGM Function Value CQNM Function Value CGM Gradient Norm CQNM Gradient Norm 

2 0 148 148 5200 5200 

 1 3.15941035 -68.8405896 12.6723007 3.55981751 

 2 -2.8421709e-14 0 2.4802298 0.88817842e-15 

 
From table 2, it is observed that the norm of the gradient of 

CQNM reached the optimum faster than that of the CGM. 
Here the CQNM has shown a better performance. This could 
be due to the spherical contour shape of the problem and an 

indication of the efficiency of the of the CQNM in solving 
this class of problems. This point to the fact that, the CQNM 
compares favourably with the CGM.    
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Table 3. Numerical Comparison of Solutions to P3. 

Test Problem Iteration CGM Function Value CQNM Function Value CGM Gradient Norm CQNM Gradient Norm 

3 0 24.2 24.2 7763.63 7763.63 

 1 4.74356541 108982.74 19.0212218 63702.0884 

 2 7.5721439e-29 1.19506261e21 0.30288575e-25 7.4916118e16 

 
From table 3, we see that the norm of the gradient of the 

CQNM diverged instead of converging. This proves the fact 
that a single method cannot solve all optimization problems 

hence the need for various methods. Here the CGM has 
shown a better performance. 

Table 4. Numerical Comparison of Solutions to P4. 

Test Problem Iteration CGM Function Value CQNM Function Value CGM Gradient Norm CQNM Gradient Norm 

4 0 56 56 224 224 
 0 0 -12 0 0 

 
From table 4, here, both methods converged at the first 

iteration with norm of the gradient being zero for both the 
CGM and CQNM. This shows which implies that the two 
methods do well in solving this problem. 

Table 5. Numerical Comparison of Solutions to P5. 

Test Problem Iteration CGM Function Value CQNM  Function Value CGM Gradient Norm CQNM Gradient Norm 

5 0 14.203125 14.203125 56.8125 56.8125 
 1 0 5.25 0 0 

 
From table 5, here, both methods converged at the first 

iteration with norm of the gradient being zero for both the 
CGM and CQNM. This shows which implies that the two 
methods do well in solving this problem. 

Table 6. Numerical Comparison of Solutions to P6. 

Test Problem Iteration CGM Function Value CQNM  Function Value CGM Gradient Norm CQNM Gradient Norm 

6 0 215 215 6700 6700 
 1 41.5455951 121.137296 192.064671 13.9086897 
 2 11.2793734 13.2595664 57.093599 1.66251563e13 

 
From table 6, the function values at the second iteration 

are close but the gradient of the CQNM began to diverge 
showing that the method has broken down. 

6. Conclusion 

In this paper, we apply the quasi-Newton method on a 
number of unconstrained optimization problems as shown in 
Tables 1 to 6. Considering the results gotten in each case 
compared with the results when CGM was used, it clearly 
shows that the Quasi-Newton Method does fine hence, can be 
used to solve unconstrained optimization problems. With this 
development, the authors of this paper wish to extend the 
Quasi-Newton Method  to Optimal Control Problems. 
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