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Abstract: In this paper, we imbed Langrage Multiplier Method (LMM) in Conjugate Gradient Method (CGM), which 
enables Conjugate Gradient Method (CGM) to be employed for solving constrained optimization problems of either equality, 
inequality constraint or both. In the past, Langrage Multiplier Method has been used extensively to solve constrained 
optimization problems. However, with some special features in CGM which makes it unique in solving unconstrained 
optimization problems, we see that this features we be advantageous to solve constrained optimization problems if we can add 
or subtract one or two things into the CGM. This, then call for the Numerical Experiments with the Lagrange Multiplier 
Conjugate Gradient Method (ILMCGM) that is aimed at taking care of any constrained optimization problems, either with 
equality or inequality constraint The authors of this paper desire that, with the construction of the Algorithm, one will 
circumvent the difficulties undergone using only LMM to solve constrained optimization problems and its application will 
further improve the result of the Conjugate Gradient Method in solving this class of optimization problem. We applied the new 
algorithm to some constrained optimization problems of two, three and four variables in which some of the problems are 
pertain to quadratic functions. Some of these functions are subject to linear, nonlinear, equality and inequality constraints.  

Keywords: Lagrange Multiplier Method, Constrained Optimization Problem, Conjugate Gradient Method,  
Numerical Experiments of the Lagrange Multiplier Conjugate Gradient Method 

 

1. Introduction 
The general optimization problem to be considered is of 

the form described by [1] and [2] as: 
 Optimize: 

( )f x                                        (1.1) 

Subject to: 

( ) 10 1,2, ,ih x i m= = …                       (1.2) 

( ) 20 1,2, ,jg x j m≥ = …                       (1.3) 

where nx R∈ , ( )ih x , an equality vector equations of 

dimension 1m , and ( )jg x  is an inequality vector of 

dimension 	�� , such that the sum of the constraints 

1 2( )m m m= + . The functions ( ) ( ), ( )i jf x h x andg x  are 

differentiable functions. Methods for solving this model have 

been developed, tested and successfully applied to many 
important problems of scientific and economic interest. 
However, in spite of the proliferation of the methods, there is 
no universal method for solving all optimization problems 
which calls for application of ILMCGA to solve constrained 
optimization problems. 

1.1. Conjugate Gradient Method 

In 1952, Hestenes and Stiefel developed a Conjugate 
Gradient Method (CGM) algorithm for solving algebraic 
equations which was successfully applied to nonlinear 
equations with results reported by Fletcher and Reeves in 
1964. 

The CGM algorithm for iteratively locating the minimum 
*x  of ( )f x  in ℋ is described as follows: 
Step 1: Guess the first element	��	ϵ ℋ and compute the 

remaining members of the sequence with the aid of the 
formulae in the steps 2 through 6. 

Step 2: Compute the descent direction 
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0 0p g= −                                 (1.4) 

Step 3: Set 

1i i i ix x pα+ = +  ; where	�� 	=	 〈
�,
�〉ℋ〈��,���〉ℋ	       (1.5) 

Step 4: Compute 

1i i i ig g Gpα+ = +                          (1.6) 

Step 5: Set 

1 1i i i ip g pβ+ += − + ;	�� = 〈
���,	
���〉ℋ〈
�,	
�〉ℋ               (1.7) 

Step 6: If 0ig =  for some i, then, terminate the sequence; 
else set 1i i= +  and go to step 3. 

In the iterative steps 2 through 6 above, 	��	 denotes the 
descent direction at	��ℎ	step of the algorithm,	��, is the step 
length of the descent sequence 	����	 and 	��	 denotes the 
gradient of	�at	�� . Steps 3, 4 and 5 of the algorithm reveal the 
crucial role of the linear operator G in determining the step 
length of the descent sequence and also in generating a 
conjugate direction of search.  

Doctoral Thesis of [3] threw light on the theoretical 
applicability of the CGM, which was extended to optimal 
control problems by [4], [5] and [6].Applicability of the 
CGM algorithm thus depends solely on the explicit 
knowledge of the linear operator, G. Generally, for 
optimization problems, G is readily determined and such 
enjoys the beauty of the CGM as a computational scheme 
since the CGM exhibits quadratic convergence and requires 
only a little more computation per iteration.  

1.2. Lagrange Multipliers Method 

In mathematical optimization, the method of Lagrange 
multipliers (named after Joseph Louis Lagrange) provides a 
strategy for finding the maximum/minimum of a function 
subject to constraints. The Lagrange multiplier method was 
basically introduced to solve optimization problems with 
equality constraints of the form (1.1) and (1.2). In solving 
this, a new variable, λ, called the Lagrange multiplier 
introduced to append the constraint (1.2) into the objective 
function (1.1) to give a new function: 

( ) ( )
1

, ( )
j

m

j jL X f X h Xλ λ
=

= +∑              (1.8) 

the equivalent matrix form of (1.4) is of the form:  

( ) ( ), ( )TL X f X h Xλ λ= +                (1.9) 

(1.8) and (1.9) are referred to as Lagrangian functions where 
λ is an �	 × 1	vector of Lagrange multipliers. 

In finding the minimum of the function f(x), generally we 
can set the partial derivatives of (1.8) or (1.9) to zero such as: 

( )* *, 0, 1,2, ,
i

L
X i n

x
λ∂ = = …

∂
            (1.10) 

( )* *, 0, 1,2, ,
j

L
X j mλ

λ
∂ = = …
∂              (1.11) 

where * *,X λ  in (1.10) and (1.11 are the minimum solution 
and the set of associated Lagrange multipliers of (1.8) or 
(1.9). Also, (1.10) and (1.11) are referred to as Kuhn-Tucker 
necessary conditions for a local minimum of (1.8) or (1.9) 
while the second derivatives of the function f(x) given as: 

( )
2

* *
2

, 0, 1, 2, ,
i

L
X i n

x
λ∂ = = …

∂
             (1.12) 

( )
2

* *
2

, 0, 1,2, ,
j

L
X j mλ

λ
∂ = = …
∂

           (1.13) 

are referred to as sufficient conditions for a local minimum of 
(1.8) or (1.9). 

1.3. Lagrange Multipliers Method Algorithm 

In order to maximize or minimize the function (1.1) 
subject to the constraint (1.2), the following procedures are 
taken: 

Step 1: first create the Lagrange Function. 

( ) ( )
1

, ( )
j

m

j jL X f X h Xλ λ
=

= +∑             (1.14) 

Step 2: Compute the partial derivatives with respect 
to	�	and the Lagrange multiplier	�	of the function (1.14) 

Step 3: Set each of the partial derivatives of (1.14) equal to 
zero to get: 

0
L

X

∂ =
∂

                            (1.15) 

0
L

λ
∂ =
∂

                           (1.16) 

using (1.14) proceed to solve for X  in term of 	�.	 Now 
substitute the solutions for X so that (1.15) is in terms 
of	�	only. Then, solve for λ and use this value to find the 
optimal values X . 

2. Imbedded Lagrange Multiplier 
Conjugate Gradient Method 
(ILMCGM) Algorithm 

Haven investigated the two methods; we now draw out the 
following steps which will be used to solve some constrained 
optimization problems. The steps are as follows: 

Step 1: Equate the constraint to zero (in case of equation is 
of the form: AX b=  ) 

Step 2: Append the new equation in step1 (i.e. 0)AX b− =  
into the performance index using Lagrange Multiplier 	� to 
form Lagrangian or Augmented Lagrangian function  
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[i.e. ( ) ( )L (, )x f x AX bλ λ= + −  ] 

Step 3: Guess the initial elements 0 0,x λ >  

Step 4: Compute the initial gradient, 0 ,g  as well as the 

initial descent direction, 0 0p g= −  
Step 5: Compute the Hessian Matrix, H , in step 2  
Step 6: Set  

1 , , 1,2, ,
T

i i
i i i i i T

i i

g g
x x p where i n

p Hp
α α+ = + = = …  

Step 7: Update the gradient using:  

1 , 1,2, ,i i i ig g Hp i nα+ = + = …  

Step 8: Update the descent direction using: 

 1 1
1 , , 1,2, ,

T
i i

i i i i i T
i i

g g
p g p where i n

g g
β β + +

+ = − + = = …  

Step 9: If 0ig =  stop, else, set 1i i= +  and return to  
step 6. 

NOTE: ( )f x  and ( , )L x λ  are the performance index and 

Lagrangian function respectively which are differentiable. 

3. Computational Procedure of the 
ILMCGA Algorithm 

Considering (1.1) and (1.2), there exists a Lagrange 
Multiplier 	�	 which imbed (1.2) into (1.1) to give a 
Lagrangian function such as: 

( ) ( )
1

, ( )
n

i i
i

L X f X h Xλ λ
=

= +∑                     (3.1) 

Let the initial guess be: 

1(0)

2(0)

0

(0)

.

.

.

n

x

x

x

x

 
 
 
 

=  
 
 
 
 
 

                                      (3.2) 

1(0)

2(0)

0

(0)

.

.

.

n

λ
λ

λ

λ

 
 
 
 

=  
 
 
 
 
 

                                      (3.3) 

Putting (3.2) and (3.3) in (1.1) and (3.1) respectively gives 
the initial functions values i.e. 	�(��) and 0 0( , )L x λ . 

Computing the gradient of (3.1) with respect 
to	(�#, ��, … , �%)	&	we have: 

( ) ( )

( ) ( )

( ) ( )

11 1 1

12 2 2

1

, ( )

, ( )

.

.

.

, ( )

n

i i
i

n

i i
i

n

i i
in n n

L X f X h X
x x x

L X f X h X
x x x

L X f X h X
x x x

λ λ

λ λ

λ λ

=

=

=

∂ ∂ ∂ = + ∂ ∂ ∂ 
 ∂ ∂ ∂= + 

∂ ∂ ∂ 
 
 
 
 
 
 ∂ ∂ ∂= + ∂ ∂ ∂ 

∑

∑

∑

    (3.4) 

Putting (3.2) and (3.3) for 	�	and 	�	respectively in (3.4) 
gives us the initial gradient as: 

0 0
1

0 0
2

0

0 0

( , )

( , )

.

.

.

( , )
n

L x
x

L x
x

g

L x
x

λ

λ

λ

∂ 
 ∂ 
 ∂
 ∂ 
 =
 
 
 
 

∂ 
 ∂ 

                            (3.5) 

Multiplying (3.5) by negative gives the decent direction as: 

0 0
1

0 0
2

0 0

0 0

( , )

( , )

.

.

.

( , )
n

L x
x

L x
x

p g

L x
x

λ

λ

λ

∂ − ∂ 
 ∂− ∂ 
 = − =
 
 
 
 

∂ − ∂ 

                        (3.6) 

Computing the Hessian Matrix of (3.1) using (3.4) gives: 

( )

( )

( )

( )

( )

( )

( )

( )

( )

22 2
0 00 0 0 0

2
1121

2 22
0 0 0 00 0

2
221 2

2 2 2
0 0 0 0 0 0

1 2

,, ,
. . .

, ,,
. . .

. . .

. . .

. . .

, , ,
. . .

 ∂∂ ∂
 

∂∂∂ 
 ∂ ∂∂
 
 ∂∂ ∂
 =  
 
 
 
 ∂ ∂ ∂ 
 ∂ ∂ ∂ 

n

n

m m mn

L xL x L x

xxx

L x L xL x

xx x

H

L x L x L x

x x x

λλ λ

λ λλ

λ λ λ

    (3.7) 
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On transposing (3.5) and (3.6) respectively, we have: 

( ) ( ) ( )0 0 0 0 0 0 0
1 2

, , ,
T

T

n

g L x L x L x
x x x

λ λ λ
 ∂ ∂ ∂= … ∂ ∂ ∂ 

  (3.8) 

and  

( ) ( ) ( )0 0 0 0 0 0 0
1 2

, , ,
T

T

n

p L x L x L x
x x x

λ λ λ
 ∂ ∂ ∂= − − …− ∂ ∂ ∂ 

 (3.9) 

 Multiplying (3.5) and (3.8) gives us a scalar,	'	.i.e. 

0 0
Tk g g=  

( ) ( ) ( )

0 0
1

0 0
2

0 0 0 0 0 0
1 2

0 0

( , )

( , )

.k , , ,

.

.

( , )

T

n

n

L x
x

L x
x

L x L x L x
x x x

L x
x

λ

λ

λ λ λ

λ

∂ 
 ∂
 
 ∂
 ∂  ∂ ∂ ∂  = … 
 ∂ ∂ ∂ 
 
 
 

∂ 
 ∂ 

 

( ) ( ) ( )
22 2

0 0 0 0 0 0
1 2

k , , ,
n

L x L x L x
x x x

λ λ λ
     ∂ ∂ ∂
 = + +…+      ∂ ∂ ∂      

 (3.10) 

Similarly, multiplying (3.9), (3.7) and (3.6) gives a scalar, 
z .i.e. 

0 0
Tz p Hp=  

( ) ( ) ( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

22 2
0 00 0 0 0

2
1121

2 22
0 0 0 00 0

2
221 2

0 0 0 0 0 0
1 2

2 2 2
0 0 0 0 0 0

1 2

,, ,
. . .

, ,,
. . .

, , , . . .

. . .

. . .

, , ,
. . .

n

T n

n

m m mn

L xL x L x

xxx

L x L xL x

xx x

z L x L x L x
x x x

L x L x L x

x x x

λλ λ

λ λλ

λ λ λ

λ λ λ

 ∂∂ ∂
 

∂∂∂ 
 ∂ ∂∂
 
 ∂∂ ∂

 ∂ ∂ ∂  = − − … −   ∂ ∂ ∂   


 ∂ ∂ ∂
 ∂ ∂ ∂ 

0 0
1

0 0
2

0 0

( , )

( , )

.

.

.

( , )
n

L x
x

L x
x

L x
x

λ

λ

λ

∂ − ∂
 
 ∂− ∂ 
 
 
 
 
 
 ∂ −  ∂ 

     (3.11) 

( )

( )

( )

( )

( )

( )

( )

( )

( )

22 2
0 00 0 0 0

2 0 0
1121 1

2 22
0 0 0 00 0

0 02
1221 2

0

2 2 2
0 0 0 0 0 0

1 2

,, ,
. . . ( , )

, ,,
( , ). . .

.. . .

.. . .

.. . .

, , ,
. . .

 ∂∂ ∂ ∂  −
∂∂∂  ∂

  ∂∂ ∂∂  −
  ∂∂∂ ∂
 

=  
 
 
 
  ∂∂ ∂ ∂  −

∂ ∂ ∂ ∂ 

n

n

n
m m mn

L xL x L x
L x

xxx x

L x L xL x
L x

xxx x

Hp

L x L x L x
xx x x

λλ λ
λ

λ λλ λ

λ λ λ

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0 0

2 2
0 0 0 0

0 0 0 02
1 12 21

2 2
0 0 0 0

0 0 0 02
21 1 22

2
0 0

0 0
1 1

( , )

, ,
, , . . .

, ,
, , . . 

.

.

.

,
,

 
 
 
 
 
 
 
 
 
 
 
 
 
 

∂ ∂   ∂ ∂− + − + +   ∂ ∂ ∂∂    

∂ ∂   ∂ ∂− + − +   ∂ ∂ ∂∂   

∂  ∂− + ∂ ∂ 

=

m

L x

L x L x
L x L x

x x xx

L x L x
L x L x

x x xx

L x
L x

x x

λ

λ λ
λ λ

λ λ
λ λ

λ
λ ( ) ( )

( ) ( )

( ) ( )

( ) ( )

2
0 0

0 0
1

2
0 0

0 0
2

2 2
0 0 0 0

0 0 0 0
2 2

,
,

,
,.

. .

. .

. .

, ,
, . . . ,

∂  ∂− ∂ ∂ 

∂  ∂−+  ∂ ∂ 

∂ ∂

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  ∂ ∂− + + −   ∂ ∂ ∂ ∂   

n n

n n

m mn n

L x
L x

x x

L x
L x

x x

L x L x
L x L x

x x x x

λ
λ

λ
λ

λ λ
λ λ

  (3.12) 

putting (3.12) into (3.11), we have: 
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( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2
0 0 0 0

0 0 0 02
1 12 21

2 2
0 0 0 0

0 0 0 02
21 1 22

0 0 0 0 0 0
1 2

2
0 0

0 0
1 1

, ,
, , . . .

, ,
, ,

, , , .

.

.

,
,

∂ ∂   ∂ ∂
− + − + +   ∂ ∂ ∂∂    

∂ ∂   ∂ ∂− + −  ∂ ∂ ∂∂    ∂ ∂ ∂= − − … − ∂ ∂ ∂ 

∂  ∂− + ∂ ∂ 

T

n

m

L x L x
L x L x

x x xx

L x L x
L x L x

x x xx

z L x L x L x
x x x

L x
L x

x x

λ λ
λ λ

λ λ
λ λ

λ λ λ

λ
λ ( ) ( )

( ) ( )

( ) ( )

( ) ( )

2
0 0

0 0
1

2
0 0

0 0
2

2 2
0 0 0 0

0 0 0 0
2 2

,
,

,
,. . .

. .

. .

. .

, ,
, . . . ,

∂  ∂− ∂ ∂ 

∂  ∂−+ +   ∂ ∂ 

∂ ∂   ∂ ∂− + + −   ∂ ∂ ∂ ∂

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

n n

n n

m mn n

L x
L x

x x

L x
L x

x x

L x L x
L x L x

x x x x

λ
λ

λ
λ

λ λ
λ λ

  (3.13) 

With matrix multiplication, (3.13) becomes: 

( =

)
**
**
**
*+

− --.� /(��, ��) 0-12(.3,43)-.1� 5− --.� /(��, ��)6 + -12(.3,43)-.�1 5− --.1 /(��, ��)6 +	. . . + -12(.3,43)-.�8 5− --.8 /(��, ��)69
− --.1 /(��, ��) 0-12(.3,43)-.	1� 5− --.� /(��, ��)6 + -12(.3,43)-.11 5− --.1 /(��, ��)6 +	. . . + -12(.3,43)-.18 5− --.8 /(��, ��)69...
− --.8 /(��, ��) 0-12(.3,43)-.	:� 5− --.� /(��, ��)6 + -12(.3,43)-.:1 5− --.1 /(��, ��)6 +	. . . + -12(.3,43)-.:8 5− --.8 /(��, ��)69;

<<
<<
<<
<=

  (3.14) 

dividing (3.10) and (3.14) .i.e.: 

�� = 	 05 >>?�2(.3,43)61@5 >>?12(.3,43)61@	…@5 >>?82(.3,43)619

)
**
**
**
+A >>?�2(.3,43)0>1B(?3,C3)>?1� 5A >>?�2(.3,43)6@>1B(?3,C3)>?�1 5A >>?12(.3,43)6@	...@>1B(?3,C3)>?�8 5A >>?82(.3,43)69

A >>?12(.3,43)0>1B(?3,C3)>?	1� 5A >>?�2(.3,43)6@>1B(?3,C3)>?11 5A >>?12(.3,43)6@	...@>1B(?3,C3)>?18 5A >>?82(.3,43)69...
A >>?82(.3,43)0>1B(?3,C3)>?	:� 5A >>?�2(.3,43)6@>1B(?3,C3)>?:1 5A >>?12(.3,43)6@	...@>1B(?3,C3)>?:8 5A >>?82(.3,43)69;

<<
<<
<<
=

                  (3.15) 

(3.15) is the step length. Now set 1 , 0,1, 2, ,i i i ix x p i nα+ = + = …  

4. Computational Results 
The following problems were evaluated using the 

ILMCGM algorithm thus: 
Problem 1: 

2 2 2 2
1 2 3 4

1
( ) 2 4

2
Minimizef x x x x x= + + +  

Subject to: 1 2 3 4 1x x x x+ + + =  

Problem 2: 

( ) 2 2
1 2 Minimize f x x x= +  

2 2
1 2 : ( 2) ( 3) 4Subject to x x− + − ≤ 	

2
1 24x x= 		

Problem 3: 

( ) 2 2 2
1 2 3 1 2 1 3 2 3

1 1
3 2

2 2
Minimizef x x x x x x x x x x= − − + − + 	

Subject to: 1 2 32 2x x x− + =   

Problem 4: 

( ) 2 2
1 2 1 2 1 22 2 2 3Minimizef x x x x x x x= + + + +  

Subject to: 2
1 2 1x x+ =  

Table 1. Table of result for problem 1, at 1λ = . 

No. of Iterations 1x
 2x

 3x
 4x

 
Function values Gradient Norms 

0 2 4 6 0 101 26.75817632 

1 1.197309416 1.5919228248 -0.6890882 -0.267563528 6.319642463 5.168980366 

2 0.120061882 -0.516334808 -0.304956703  0.247065426 -0.750192335 3.330241158 

3 -0.214370162 -0.812905518 -0.091077714 -0.158164124 -1.476070995 1.04720774 

4 -0.818231751 -0.519110945  0.083430343 -0.14742187 -1.696252376 0.608823127 
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Table 2. Table of result for problem 2, at 1 20, 1λ λ= =  the slack variable 1θ = . 

No. of iterations 1x
 2x

 
Function values Gradient Norms 

0 1 2 -5 2.828427125 
1 0.6 2.4 -3.5 0.565685424 
2 1.1283333333 2.500000000 5.0329388888 0.0000000001 

Table3. Table of result for problem 3, at 1λ = . 

No. of Iterations 1x
 2x

 3x
 

Function values Gradient Norms 

0 2 4 6 34 15.03329638 
1 -0.685148512 1.986138616 5.776237624 8.714851489 9.827776829 
2 -1.2084530093 10.26682388 5.99125423 42.94077035 16.7817968 
3 -0.224824648 -0.40097582 0.409314579 -1.79795779 0.129166442 

Table 4. Table of result for problem 4, at 0λ = . 

No. of iterations 1x  2x  Function values Gradient Norms 

0 2 3 47 15.000000000 
1 -0.291981844 -0.628971253 -1.227118003 0.186985068 
2 -0.500000858 -0.499999476 -1.250000000 0.000042076 

 
5. Conclusion  

Computationally, the resulting algorithm from the 
Lagrange Multiplier Method imbedded in Conjugate 
Gradient Method was tested on some constrained 
optimization problems of two, three and four variables. The 
problems are pertained to quadratic functions. Some of these 
functions are subject to linear and nonlinear constraints with 
varying Lagrange parameter,	�,	between 0 and 1. While the 
slack variable parameter, θ , is 1. 

Suppose we take the function value as the terminating 
criterion, Problem 2 and 3 with the numerical 
results	5.03293888888	and 1.79795779−  when compare with 
the analytical results which are: 5 and 1.21093750446−  
respectively, it invariably establishes the relevance of the 
new algorithm for solving constrained optimization problems. 
Problem1 and 4 decreases monotonically establishing the 
convergence of the constrained Optimization Problems. On 
using the Gradient Norm as the stopping criterion, the 
Gradient Norm of Problems 1, 2, 3 and 4 tends to zero which 
show the convergence of the problems. On using the 
Gradient Norm as the stopping criterion, the Gradient Norm 
of Problems 1, 2, 3 and 4 tends to zero which show the 
convergence of the problems. All these points to the fact that, 
the constructed ILMCGM algorithm efficiently solve the 
problems as supposed. 
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