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Abstract: In this paper, literal analytical solution in power series forms which is one of the semi-analytical solution, are 

developed for the regularized Burdet equations to estimate the motion of an artificial satellite under the influence of J2-Earth’s 

gravitational field. Also  a numerical solution of the regularized Burdet equations is applied using eighth order 

Dormand-Prince Rung-Kutta method. Comparison between the power series solution and the numerical solution applied to 

high eccentric frozen satellite orbit is also given and showed excellent agreement. 
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1. Introduction 

It is well known that the solutions of the Classical 

Newtonian Equations of motion are unstable and these 

equations are not suitable for long-term integrations. Many 

transformations have emerged in the literature in the recent 

past to stabilize the equations of motion either to reduce the 

accumulation of local numerical errors or allowing of using 

a larger integration step size, in the transformed space, or 

both ([9] , [1] and [6]). One of such transformation, known 

as the Sperling/Burdet Equations, is due to [17] and [3] who 

regularized the non-linear Kepler motion and reduced it to 

linear differential equations of a harmonic oscillator of 

constant frequency. Reference [5] outlined the differential 

equations and the initial value problem together with the 

transformation to rectangular coordinates and classical 

elements. The Burdet’s variables can be adopted for the 

computation of elliptic, parabolic and hyperbolic motion 

([13]). References [12] , [1] and [6] applied this method 

numerically to predict a satellite motion.  

In spite of their advantages in many cases, analytical 

methods do not always provide high-accuracy solutions to 

orbital problems, as required. Both analytical and 

semi-analytical methods use an analytical transformation to 

produce mean, slowly varying differential equations  ([2] , 

[14] , [15] and [16]). However, analytical solutions, though 

difficult to obtain for complex force models and limited to 

relatively simple models, represent a manifold of solutions 

for a large domain of initial conditions and parameters and 

find indispensable application to mission planning and 

qualitative analysis. Otherwise power series solution (which 

of course assumed to be convergent) can serve as the 

analytical representation of its solution. Moreover, it is 

worth noting that the power series is one of the most 

powerful methods of mathematical analysis when the 

problems are to be studied on computers. In fact, most 

computers often use series in the calculations of the majority 

of the elementary functions. 

For the numerical solution, We have the Dormand–Prince 

method, which is an explicit method for solving ordinary 

differential equations ([4]). The method is a member of the 

Runge–Kutta family of ODE solvers and its eighth order 

uses 12 function evaluations with err = O(h
8
) where h is the 

step size ([8] and [10]) .  

In this paper, we construct a recurrent power series 

solution for the Sperling-Burdet  perturbed differential 

equations of motion depending on Taylor series expansion to 

get the classical elements of the satellite at any time. We 

apply the eighth order Dormand-Prince method to these 

equations to get the numerical solution and compare this 

solution with the power series solution.    

2. Formulation of the Problem 

Generally, the equations of motion of an artificial satellite 

are given generally as  
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the resultant of all non-conservative perturbing forces, and V 

is the perturbed  time-independent  potential, which can be 
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where R ⊕  is the Earth's equatorial radius, Ji is the 

non-dimensional coefficient of the Earth's potential and Li is 

the Legendre polynomial of order i ([11]).  

In our case the only force acting on an artificial satellite 

is that due to the Earth's oblateness, so we have  
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Eq. (1) are the basic classical equations of motion of 

artificial satellites and the corresponding  perturbed 

equations of motion with the independent variable (true 

anomaly) in terms of the Burdet’s parameters ([5] and [12]) 

are  
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 is used to denote the scalar product of 

two vectors a
�

 and b
�

. Denoting differentiation with 

respect to the new time f (true anomaly) by a prime ('), since 

the independent variable is changed from time (t) to new 

time (f) according to   

2r

p

dt

df µ
= , 

([3] and [12]).  

After transform Eqs (3) into ten first order differential 

equations, we get 
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where  

i i ig uxξ= = ,           iig ξ ′=+3 ,     i = 1, 2, 3;  

ug =7 ,  

ug ′=8 ,  

∗= pg9 ,  

and  tg =10 .  

and we have from Eq. (2.2) 
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3. Recurrent Power Series Solution 

In this section, recurrent power series solution of Eqs.(3) 

will be constructed  as follow. 
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3.1. Auxiliary dependent variables 

Let us define the following auxiliary dependent functions, 

which transform the system of differential equations of 

motion in a new system of differential equations where all 

denominators have been removed, as well as all the powers 

of ig . 

771 gga = ;         112 aaa = ;  

333 gga = ;          2

2

3

2
Q J Rµ ⊕= ; 

2 1, 2, 3i if g a i= = ;    
3 3 1, 2, 3i if f a i= = ; 

1131 5 fQfQt −= ;   
2 2 3 25t Q f Q f= − ; 

3333 35 fQfQt −= ; 

6 1 1 2 2 3 3b t g t g t g= + + ;  

6 1, 2, 3i iy b g i= = ; 

1, 2 , 3ii i iy t y i= − = ; 

7

1

711 /1 ggg == −
;   

1 2 11 11g g g= ; 

13 11 12g g g= ;          
9

1

914 /1 ggg == −
; 

1/2

15 9 91 /g g g−= = ;  
121516 ggg = ; 

4 1 4 2 5 3 6b t g t g t g= + + ; 
4135 bgb = ; 

141317 ggg = ;      14518 gbg = ; 

7 17 1, 2,3i iig g y i= = ;  

8 18 4, 5, 6i ig g g i= = ; 

and 

19 14 12g g g= ; 
61920 bgg = ; 

18821 ggg = ; 

Using the previous substitutions into Eqs.(4), we get the 

following first order differential set in ten unknowns 
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3.2. Power series manipulations 

Let us define the ten Taylor expansions as follows 
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where we have used small letters (h) for the unknown 

variables and capital letters (H) for the coefficients in their 

Taylor series expansion. 

Now, let us define a and b as two convergent  power 

series such that 
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Then, we have (Gradshteyn and Ryzhik, 2007) 
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• Multiplication of power series 
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Substituting Eqs .(7) and (8) into Eqs.(6), and using the 

above rules for the power series, and equating coefficients of 

equal powers of f in both sides of each of the resulting 

equations, then we get the coefficients of the following 

recurrence formulae 
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then we can compute the coefficients (capital letters) to 

get small letters which are the unknown variables (g’s). 

4. Computational Developments 

In this section, the computational developments of the 

formulation of section 3for power series will be considered. 

For the eighth order Dormand-Prince method will be applied 

on the first differential Eqs (4). 

4.1. Computation Of The Initial Values: 

Knowing the classical elements { , , , , ,a e M i ω Ω } at some 

time 
0

t (corresponding to 
0f  ), we can get the position 

vector 
0x
�

 and the velocity vector 
0x
�ɺ at the same time 

0
t ([18]), where a  is a semi major axis, e  is an 

eccentricity, M is a mean anomaly, i is an inclination, ω is 

an argument of perigee and Ω  is a longitude of the 

ascending node. 

Now  we can compute 
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Vice versa, the position and velocity are obtained from the 

g’s as the following relations 
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Finally, we get the classical elements from the position 

vector 0
x
�

 and the velocity vector 0x
�ɺ at the same time 

t ([18]). 

4.2. The accuracy check 

The accuracy of the computed values of the g's variables 

at any new time f (corresponding to the time t) could be 

checked by the two following relation 
2 2 2

1 2 3
1g g g+ + = ,  and   

1 1 2 2 3 3
0g g g g g g′ ′ ′+ + = . 

4.3. Utilization 

When the true anomaly f is sufficiently large, we may 

(as usually done for all initial value problems) divide the 

interval f  into some intervals into some intervals each of 

short length, e.g. the ( f -
0

f ) may be divided into (r-l) 

intervals : (
1 0

f f− ), (
2 1

f f− ), .................., (
q

f f− ) such 

that 
1 0

( ) ( )
h h

f f f f−− −≪ . Then solve the initial  value 

problem for the first interval to find the solution at the value 

j
f . The solution at 

j
f  could then be used as the initial 

condition for the second interval and so on. By this artifice 

one usually needs small number of the coefficients for the 

power series representation in each interval. 

4.4. The step size ∆∆∆∆f 

The step size of the new time ∆f could be computed from 

the corresponding step size ∆t of the ordinary time as 

2

µ p
∆f ∆t

r
=

. 

4.5. Numerical test 

In what follows the results of a comparison between the 

power series solution and the numerical integration of the 

first differential Equations 3 will be given. We use the 

following two line elements for MOLNIYA satellite which is 

highly eccentric frozen satellite orbit, as the initial 

conditions (www.spacetrack.com) at epoch 06 May 2014. 

 

0 MOLNIYA 1-93 

1 28163U 04005A   14115.76724197  .00000117  00000-0  00000+0 0  3266 

2 28163 064.4633 083.5168 7312151 246.9027 252.2464 02.00655253 74609 

 

We calculate  the recurrent power series up to ten step 

(N=10), while  the step size is  
2

500
h

π= , for 1000 cycle of 

the satellite. The adopted physical constant are R⊕  = 1 e.r. 

(earth radii), µ = 0.0055302632857476 e.r.
3
/min

2
 , and the 

Earth’s zonal harmonic coefficient J2 equal 1.0826157×10
-3

. 

The results are illustrated graphically in the following 

figures, where the abscissa is the time. The accuracy check 

will be tabulated for every 100 cycle. 
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Fig. 1. Comparison between numerical and analytical solutions for the 

semi-major axis 

 

Fig. 2. Comparison between numerical and analytical solutions for the 

eccentricity 

 

Fig. 3. Comparison between numerical and analytical solutions for the 

mean anomaly 

 

Fig. 4. Comparison between numerical and analytical solutions for the 

inclination 

 

Fig. 5. Comparison between numerical and analytical solutions for the 

argument of perigee 

 

Fig. 6. Comparison between numerical and analytical solutions for the 

longitude of the ascending node 
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Table 1. The accuracy check 

No of Cycle Time in minute 
accuracy test for power series accuracy test for numerical integration 

1 1 2 2 3 3g g g g g g′ ′ ′+ +  2 2 2

1 2 3
g g g+ +  1 1 2 2 3 3g g g g g g′ ′ ′+ +  2 2 2

1 2 3
g g g+ +  

1 1220.75679 -5.117e-017 1.000e+000 2.682e-016 1.000e+000 

100 71575.0487 -4.946e-015 1.000e+000 4.384e-014 1.000e+000 

200 143363.018 -6.780e-015 1.000e+000 1.426e-013 1.000e+000 

300 215148.873 -4.260e-015 1.000e+000 3.069e-013 1.000e+000 

400 286932.713 -5.068e-015 1.000e+000 5.395e-013 1.000e+000 

500 358714.681 9.418e-016 1.000e+000 8.280e-013 1.000e+000 

600 430494.944 1.631e-015 1.000e+000 1.164e-012 1.000e+000 

700 502273.681 -5.379e-015 1.000e+000 1.539e-012 1.000e+000 

800 574051.064 -1.562e-014 1.000e+000 1.930e-012 1.000e+000 

900 645827.259 -2.238e-015 1.000e+000 2.335e-012 1.000e+000 

1000 718320.164 1.019e-014 1.000e+000 2.727e-012 1.000e+000 

 

5. Conclusion 

From the figures we can conclude that, from the initial up 

to 500 mean solar days, there are obviously changes in the 

two elements (Ω, M), but the other elements (a, e, i) show 

lightly change, for the numerical integration and power 

series solutions.  This expected because the only force 

affecting on the motion of artificial satellite is Earth’s 

gravitational field (J2), so the elements Ω, M behaviors are 

secular while the elements a, e, i have periodic treatment.  

But ω has very slightly change, as expect, because this 

satellite is frozen orbit (Molniya). 

Also, the table shows the accuracy check for the two 

methods of solutions which one of them is always nearly to 

zero and the other is exact one, i.e., the predictions of the 

components of position and velocity (the elements) of the 

artificial satellite is very good. 

The figures show that the comparison between the two 

methods, power series and numerical integration are 

identical. But the table of accuracy check show that the 

power series method is more accurate than the numerical 

integration. We can conclude the efficiency of   the power 

series method. 

To get more accurate prediction of the motion of the 

artificial satellite we will be taken into account the whole 

other forces affecting on the motion. 
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