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Abstract: Mathematical modeling of real-life problems usually results in functional equations, such as ordinary or partial 

differential equations, integral and integral-differential equations etc. The theory of integral equation is one of the major 

topics of applied mathematics. In this paper a new Homotopy Perturbation Method (HPM) is introduced to obtain exact 

solutions of the systems of integral equations-differential and is provided examples for the accuracy of this method. This 

paper presents an introduction to new method of HPM, then introduces the system of integral - differential linear equations 

and also introduces applications and literature. In second section we will introduce categorizations of averaging integral - 

differential and several methods to solve this kind of achievement. The third section introduces a new method of HPM. 

Fourth section determines quarter of integral - differential equations by using HPM. Therefore, we provide Conclusion and 

some examples that illustrate the effectiveness and convenience of the proposed method. 
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1. Introduction 

The homotopy analysis method (HAM) was proposed by 

Liao. In this method, the solution is considered as the 

summation of an infinite series, which usually converges 

rapidly to the exact solution. The HAM is based on 

homotopy, a fundamental concept in topology and 

differential geometry. Briefly speaking, by means of the 

HAM, one constructs a continuous mapping of an initial 

guess approximation to the exact solution of considered 

equations. An auxiliary linear operator is chosen to construct 

such kind of continuous mapping, and an auxiliary 

parameter is used to ensure the convergence of solution 

series. The method enjoys great freedom in choosing initial 

approximations and auxiliary linear operators. The 

approximations obtained by the HAM are uniformly valid 

not only for small parameters, but also for very large 

parameters. Until recently, the application of the homotopy 

analysis method in nonlinear problems has been devoted by 

scientists and engineers. 

2. Systems of Differential Equations 

Newton's second law of motion for point particles is one 

of the first deferential equations to ever be written. Even this 

early example of a deferential equation consists not of a 

single equation but of a system of three equations on three 

unknowns. The unknown functions are the particle three 

coordinates in space as function of time. One important 

difficulty to solve a deferential system is that the equations 

in a system are usually coupled. One cannot solve for one 

unknown function without knowing the other unknowns. In 

this Chapter we study how to solve the system in the 

particular case that the equations can be uncoupled. We call 

such systems diagonalizable. Explicit formulas for the 

solutions can be written in this case. Later we generalize this 

idea to systems that cannot be uncoupled. 

2.1. Linear Differential Systems 

We introduce a linear deferential system with variable 

coefficients. We present an initial value problem for such 

systems and we state that initial value problems always have 

a unique solution. The proof is based on a generalization of 

the Picard-Lindel of iteration used in Section 1.6. We then 

introduce the concepts of fundamental solution, general 

solution, fundamental matrix, and Wronskian of solutions to 

a linear system. 
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3. Nonlinear Differential and Integral 

Equations 

Within recent years interest in nonlinear equations has 

grown enormously. They are extremely important as basic 

equations in many areas of mathematical physics, and they 

have received renewed attention because of progress in their 

solution by machines. This volume undertakes a definition 

of the field, indicating advances that have been made up 

through 1960. The author's position is that while the advent 

of machines has resulted in much new knowledge, one 

should not disregard analytical methods, since the solution 

of nonlinear equations possesses singularities which only the 

analytical method (as based upon the work of Poincare, 

Liapounoff, Pain eve and Goursatl can discover. 

After a general survey of the problem presented by 

nonlinear equations, the author discusses the differential 

equation of the first order, following this by chapters on the 

Riccati equation (as a bridge between linear and nonlinear 

equations) and existence theorems, with special reference to 

Cauchy's method. Second order equations are introduced via 

Volterra's problem and the problem of pursuit, and 

succeeding chapters cover elliptic integrals and functions 

and theta functions; differential equations of the second 

order; and second order differential equations of the 

polynomial class, with special reference to Painleve 

transcendent. The technique of continuous analytical 

continuation is shown, while phenomena of the phase plane 

are studied as an introduction to nonlinear mechanics. 

Nonlinear 111echanics is then discussed, with various 

classical equations like Van der Pol's equations, Emden's 

equation, and the Duffing problem. The remaining chapters 

are concerned with nonlinear integral equations, problems 

from the calculus of variations, and numerical integration of 

nonlinear equations. Throughout the book the results of 

distinguished analysis of the past and modern machine 

computations are both taken into account. Despite the 

thoroughness of its coverage this is a very fine introduction 

to this important area of mathematics, and it can easily be 

followed by the mathematically sophisticated reader who 

knows very little about nonlinear equations for example: 
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4. Method for Ordinary Differential 

Equations 

This part will introduce the reader to the terminology and 

notation of differential equations. Students will also be 

reminded of some of the elementary solution methods they 

are assumed to have encountered in an undergraduate course 

on the subject. At the conclusion of this review one should 

have an idea of what it means to ‘solve’ a differential 

equation and some confidence that they could construct a 

solution to some simple and special types of differential 

equations for example: 
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5. The Concept of the Integral Equation 

Integral-differential equations appear in many scientific 

applications, especially when we convert initial value 

problems or boundary value problems to integral equations. 

The integral-differential equations contain both integral and 

differential operators. The derivatives of the unknown 

functions may appear to any order. In classifying 

integral-differential equations, we will follow the same 

category used before. Integral equations occur in a variety of 

applications, often being obtained from a differential 

equation. The reason for doing this is that it may make 

solution of the problem easier or, sometimes, enable us to 

prove fundamental results on the existence and uniqueness 

of the solution. 

6. Fredholm Integral Equations 

For Fredholm integral equations, the limits of integration 

are fixed. Moreover, the unknown function u(x) may appear 

only inside integral equation. 
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According to the similarity of the methods for solving 

problems of linear ordinary differential equations, a finite 

difference approximation to the derivatives to replace 

solutions, as well as replacing the integral with a base of 

numerical integration with appropriate accuracy. 
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7. Conclusion 

In this paper, the divided differences method is applied to 

solve the linear Fredholm integral equation of the second 

kind. In this method, the cosecants of divided differences are 

given by solving a system of equations. In the comparison, 

the proposed method is better than the Adomian's 

decomposition method to approximate the exact solution. 

The advantage of the proposed method over other methods 

is that the integral equation is solved by having support 

points of the solution of integral equation. The proposed 

method is a powerful procedure for solving linear integral 

equations. The examples analyzed illustrate the ability and 

reliability of the method presented in this paper and reveals 

that this one is very simple and effective. The obtained 

solutions, in comparison with exact solutions admit a 

remarkable accuracy. Results indicate that the convergence 

rate is very fast, and lower approximations can achieve high 

accuracy 
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Homotpy the following build: 
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