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Abstract: In this study, we consider a heat transmission problem which has derivative with respect to the time in boundary 

condition. Applying the seperation of variables method, we get a Sturm-Liouville equation with discontinuous coefficient and 

a spectral parameter dependent boundary condition. For this spectral problem, the operator theoretic formula is given, the 

resolvent operator constructed and the expansion formula with respect to the eigenfunctions obtained. Using the expansion 

formula, the solution of the heat problem expressed. 
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1. Introduction 

In this paper, we consider the following heat transmission 

problem: 

2

2
( ) ( ) ,    0,   0, (1)

v v
x q x v x t

t x
ρ ∂ ∂= − > >

∂ ∂
 

0 1

0

0, 0, (2)
x

v v
v t

x t
β β

=

∂ ∂ − + + = > ∂ ∂ 
 

0
( ,0) ( ),          0, (3)v x x x= Φ >  

where 

0
(0,0) .     (4)v ϑ=  

In keeping with the physics of the problem, we assume 

that the boundary condition at ,x = ∞  the solution ( , )v x t  

remains bounded: 

lim ( , ) .
x

v x t
→∞

< ∞  

( )q x is a real-valued function integrable on [ )0,+∞  

satisfying the following condition: 

0

( ) .x q x dx

∞

< ∞∫
 

0 1
, 0β β <  are real numbers, ( )xρ is the following 

piecewise-constant function which has discontinuity at point 

[ )0, .a ∈ +∞   

2 , 0 ,
( )

1 , .

x a
x

x a

αρ
 ≤ <

=  ≥

 

with 0 1.α≤ ≠   

We assume that 
0 ( )xΦ is sufficiently smooth continuous 

function which has first and second continuous derivatives 

for 0.x > Suppose that, 2

0
( ) ( )x O x−′′Φ =  as ,x → ∞ 0.x >  

1

0
( ) ( )x O x−Φ =  as .x → ∞  

Problem (1) (4)− was researched for the case of  

0
( ) 1, ( ) 0, 0x q xρ β= = = ,

1
1β = by Cohen [1].  

A semi-infinite right cylindrical solid with cross section 

of arbitrary shape and size and with plane terminal face at 

0x =  has its lateral surface insulated against the heat 

conduction and has an initial temperature distribution 

depending on only the longitudinal coordinate .x  

A liquid of arbitrary initial temperature is kept well stirred 

to insure at each instant a uniform temperature throughout it, 

at time 0t = the plane terminal face of the solid is placed in 

contact with the liquid. For simplicity it is assumed that the 

liquid is not accessible to a transfer of heat from its 

surrounding medium. The problem is to determine the 

temperature of the liquid and the distribution of temperature 

in the solid at any time 0.t >  
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When the seperation of variables method is used for 

problem (1),(2) a spectral problem is obtained which 

involves eigenvalue in boundary condition. Generally, with 

these type of boundary conditions are encountered when the 

boundary conditions of the main problem contain partial 

derivative with respect to the time. 

Applying the method of seperation of variables to 

problem (1),(2) we get the spectral problem below: 

2( ) ( ) ,y q x y x yλ ρ′′− + =              (5) 

( )2

0 1(0) (0) 0,y yβ β λ′ − + =         (6) 

where 

lim ( ) .
x

y x
→∞

< ∞  

The spectral analysis of (5) was investigated for finite 

interval in [2] and for infinite interval in [3]. Expansion 

formula for Sturm-Liouville problem is given in [4-9] and 

etc. Direct scattering problem of (5),(6) for the case 

0
0β = and

1
1β = was examined in [10]. The inverse 

problem of scattering theory with discontinuous coefficient 

for (5) was studied in [12-14]. 

This paper is organised as follows: In Section 1, we give 

the integral representation for a second order differential 

equation with a discontinuous coefficient and the spectral 

properties of boundary value problem. In Section 2, the 

operator theoretic formulation of problem (5),(6) in the 

Hilbert space is defined. In Section 3, the resolvent operator 

is constructed. In Section 4, the expansion formula with 

respect to the eigenfunctions is obtained and finally in 

Section 5, we get formula for the solution of the heat 

transmission problem (1)-(4) using the expansion formula 

with respect to the eigenfunctions. 

It is known from [14] that for all λ from the closed upper 

half-plane, (5) has a unique Jost solution ( , )f x λ  which 

can be represented in the form below:  

0

( )

( , ) ( , ) ( , ) ,i t

x

f x f x K x t e dtλ

µ

λ λ
+

∞

= + ∫          (7) 

where ( )( ) ( ) 1 ( )x x x a xµ ρ ρ+ = + − and the kernel  

( , )K x t  satisfies the inequality,  

( )

( , ) ( ) ,      0 .
xx

K x t dt c t q t dt c const

µ+

∞ ∞

≤ < =∫ ∫      (8) 

For real 0,λ ≠  the functions ( , )f x λ  and ( , )f x λ  

form the fundamental system of solutions of equation (5)  

and  the Wronskian of this system is equal to 

2 :iλ

{ }( , ), ( , ) ( , ) ( , ) ( , ) ( , ) 2 .W f x f x f x f x f x f x iλ λ λ λ λ λ λ′= − =

Let be ( , )xω λ  the solution of (5) satisfying the initial data 

2

0 1
(0, ) 1,  (0, ) .ω λ ω λ β β λ′= = +  

We define 

 ( )2

0 1( ) : (0, ) (0, ).f fϕ λ λ β β λ λ′= − +  

Using the form (7) for the solution of (5),(6) it can be 

proved that ( )ϕ λ  may have only a finite number of zeros in 

the half plane Im 0.λ > Moreover, all these zeros are simple 

and lie on the imaginary axis. These propositions are proved 

by the same method that was used in [7] (Lemma 3.1.6).  

( Also see [11] , Lemma 3 and [13], Lemma 2.) 

Let us denote differentiation with respect to λ with a dot 

and let 
j

iλ λ= ( )0jλ > be the zeros of ( )ϕ λ  in the half 

plane Im 0.λ > For ,
j

iλ λ= 1,2,..., ,j n=  we get 

2 2
2

1

0

( ) ( , ) (0, )

1
( ) (0, ).

2

j j j

j j

j

m x f x i dx f i

i f i
i

ρ λ β λ

ϕ λ λ
λ

∞
− = +

= −

∫

&

 

(9) 

The numbers 
2

j
m

−
 are called the normalizing numbers of 

problem (5),(6). (see [13], formula (1.14)) 

2. The Operator Theoretic Formulation 

In the Hilbert Space 
2,

(0, )H Lρ ρ= ∞ ×  an inner 

product is defined by 

1 1 2 2

10

1
, : ( ) ( ) ( )F G F x G x x dx F Gρ

β

∞

= −∫
 

where 

1 1

2 2

( ) ( )
,    .

F x G x
F G H

F G
ρ

   
= = ∈   
   

 

For convenience, we put 

[ ]0 0 (0) (0),R y y yβ ′= −  

[ ]0 1
(0).R y yβ′ =  

Let us define operator (see [1].)  

( ) 1

1

( )
: .

(0)

l F
L F

F

 
=   ′ 

 

with domain 

[ ] [ )1 1

1 2, 2 1 1

|  ( ),  ( )  AC 0, 0, ,  
( ) :

( ) (0, ),  (0).

F H F x F x are b
D L

l F L F F

ρ

ρ β

 ′∈ ⊂ ∞ =  
∈ ∞ =  

 

(AC: absolutely continuous) 

where 
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{ }1 1 1

1
( ) ( ) .

( )
l F F q x F

xρ
′′= − +

 

Problem (5),(6) is equivalent to the equation 
2Ly yλ= and the operator L with the domain ( )D L is 

self-adjoint in the Hilbert space of .Hρ   

3. The Resolvent Operator 

We suppose that 2λ  is not a spectrum point of operator 

,L then the resolvent ( )2

1
2

R L Iλ λ
−

= − exists. Now, let us 

find this expression of the operator 2 ( ).R Lλ  

Theorem 1: All numbers of the form
2
,λ Im 0λ >  

( ) 0ϕ λ ≠ belong to the resolvent set of the operator .L The 

resolvent 2Rλ  is the integral operator with the kernel 

which has the following form: 

2

0

( ) ( , ; ) ( ) ,R L G x F dλ ξ λ ξ ξ
∞

= ∫            (10) 

( , ) ( , ), ,1
( , ; )

( , ) ( , ), 0 .( )

x f x
G x

f x x

ω λ ξ λ ξ
ξ λ

λ ω ξ λ ξϕ λ
≤ ≤ ∞−=  ≤ <

 

Proof: Let ( )F D L∈  and 
1

2

( )F x
F

F

 
=  
 

 be zero in 

exterior of every finite interval [ ] [ )0, 0, .b ⊂ ∞ To construct 

the resolvent operator of ,L we need to solve the initial 

value problem 

2

1
( ) ( ) ( ) ( ),y q x y x y x F xλ ρ ρ′′− + = +          (11) 

( )2

0 1 2(0) (0) .y y Fβ β λ′ = + +          (12) 

By applying the variation of constants, we want to find 

the solution of problem (11),(12) which has a form 

1 2
( , ) ( , ) ( , ) ( , ) ( , ),y x c x x c x f xλ λ ω λ λ λ= +       (13) 

where ( , )xω λ and ( , )f x λ are solutions of homogenous 

problem for Im 0.λ >  

Hence, we get  

1 2

1 2 1

( , ) ( , ) ( , ) ( , ) 0,

( , ) ( , ) ( , ) ( , ) ( ) ( ).

c x x c x f x

c x x c x f x x F x

λ ω λ λ λ
λ ω λ λ λ ρ

′ ′

′ ′

 + =
 ′ ′+ = −

  (14)  

Since 
2,

( , ) (0, )y x L ρλ ∈ ∞ , then 
1
( , ) 0.c λ∞ =  

Using this relation and (14), we obtain  

1 1

2 2 1

0

( , )
( , ) ( ) ( ) ,

( )

( , )
( , ) (0, ) ( ) ( ) .

( )

x

x

f
c x F d

c x c F d

ξ λλ ξ ρ ξ ξ
ϕ λ

ω ξ λλ λ ξ ρ ξ ξ
ϕ λ

∞
= −



 = −


∫

∫
     (15) 

Substituting (15) into (13) , we obtain  

1 2

0

( , ) ( , ; ) ( ) ( ) (0, ) ( , ).y x G x F d c f xλ ξ λ ξ ρ ξ ξ λ λ
∞

= +∫
 

Taking the condition (12), we find 2

2 (0, )
( )

F
c λ

ϕ λ
= . 

Thus, 

2
1

0

( , ) ( , ; ) ( ) ( ) ( , ).
( )

F
y x G x F d f xλ ξ λ ξ ρ ξ ξ λ

ϕ λ

∞

= +∫
 

Theorem 1 is proved.  

Lemma 1: Let the function
1
( )F x is twice continuously 

differentiable and finite at infinity. Then as 

,λ → ∞ Im 0λ ≥  the following is valid: 

2

1

0

1

2 2

, ( , ; ) ( ) ( ) ( , )
( )

( ) 1
. (16)

F
G F G x F d f x

F x
O

ξ λ ξ ρ ξ ξ λ
ϕ λ

λ λ

∞

= +

 = − +  
 

∫
 

Proof :Using Theorem 1 and integrating by parts, we write 

1 1

0

( , ) ( , )
( , ; ) ( ) ( ) ( ) ( )

( )
x

x f
G x F d F d

ω λ ξ λξ λ ξ ρ ξ ξ ξ ρ ξ ξ
ϕ λ

∞ ∞

= −∫ ∫
 

1

0

( , ) ( , )
( ) ( )

( )

x
f x

F d
ω ξ λ λ ξ ρ ξ ξ

ϕ λ
−∫
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1 ( , )
( , ) ( ) ( , ) ( )

( )
x

x
f q f F d

ω λ ξ λ ξ ξ λ ξ ξ
ϕ λλ

∞

′′= −∫
 

{ } 12

0

1 ( , )
( , ) ( ) ( , ) ( )

( )

x
f x

q F d
λ ω ξ λ ξ ω ξ λ ξ ξ

ϕ λλ
′′+ −∫

 

{ }
1 12 2

( , ), ( , ) 1
( ) (0) ( , )

( )

W x f x
F x F f x

ω λ λ
λ

λ ϕ λ λ
′= +


1

2

0

1
( , ; ) ( ) .

( )
G x F dξ λ ξ ξ

λ ϕ λ

∞

− ∫


1 1 1
( ) ( ) ( ) ( ).F F q Fξ ξ ξ ξ′′= − +  

Therefore, 

2
1

0

( , ; ) ( ) ( ) ( , )
( )

F
G x F d f xξ λ ξ ρ ξ ξ λ

ϕ λ

∞

+ =∫
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1 1
1

2 2

0

( ) 1 (0)
( , ) ( , ; ) ( ) .

( )

F x F
f x G x F dλ ξ λ ξ ξ

λ λ ϕ λ

∞ ′
− + − 

  
∫

 

Lemma 1 is proved. 

4. The Expansion Formula 

In this section, we obtain the expansion formula by 

applying the method of Titchmarsh.  

,

,

( , ),  Im 0,
( , )

( , ),  Im 0.

x

x

G F
F x

G F

λ

λ

λ
λ λ

≥=  ≤

 

Let us 
R

Γ  denote the circle of radius R  and center is 

zero which boundary contour is positive oriented. Let us 

,R εΓ , denote boundary contour positive oriented in plane  

{ } , Im .D z z R z ε= ≤ ≥  

,R ε′Γ  denotes boundary contour negative oriented in the 

plane { } , Im .D z z R z ε= ≤ ≤ Then, we can use the 

properties of the integration as follows: 

, ,R R Rε ε′Γ Γ Γ

= +∫ ∫ ∫                      (17) 

Now, multiplying both sides of equality (16) by 
1

2 i
λ

π
 

and integrating over λ the contour 
,

,
R εΓ we obtain 

, , ,

1
1 1 ( ) 1 1

( , ) .
2 2 2

R R R

F x
F x d d O d

i i i
ε ε ε

λ λ λ λ λ
π π λ π λΓ Γ Γ

 = − +  
 

∫ ∫ ∫   (18) 

According to the equation  (17), we obtain 

, ,

1 1 1
( , ) ( , ) ( , ) .

2 2 2
R R R

F x d F x d F x d
i i i

ε ε

λ λ λ λ λ λ λ λ λ
π π π ′Γ Γ Γ

= +∫ ∫ ∫ (19) 

Now let us calculate the integral on the right hand side of 

(18),  

1
1

1 1 ( ) 1 1
( , ) ( ).

2 2 2
R R R

R

F x
F x d d O d F x

i i i
λ λ λ λ λ

π π λ π λ →∞
Γ Γ Γ

 = − + → − 
 

∫ ∫ ∫
                          

(20) 

Taking (19) into consideration, we get  

[ ]
,

1

0

1 1
lim ( , ) ( ) ( , 0) ( , 0) .

2 2
R

R
F x d F x F x i F x i d

i i
εε

λ λ λ λ λ λ λ
π π

∞

→∞
Γ −∞→

= − + + − −∫ ∫
 

(21)  

On the other hand, using the residue calculus, we obtain 

[ ] [ ]
,

1 1

1
( , ) Re ( , ) Re ( , ) .

2
R

n n

i j i j
j j

F x d s F x s F x
i

ε
λ λ λ λ

λ λ λ λ λ λ λ
π = =−= =Γ

= +∑ ∑∫
   

(22) 

From (21) and (22), we obtain 

[ ] [ ]

[ ]

1

1 1

( ) Re ( , ) Re ( , )

1
( , 0) ( , 0) .

2

j

n n

i i j
j j

F x s F x s F x

F x i F x i d
i

λ λ λ λ
λ λ λ λ

λ λ λ λ
π

= =−= =

∞

−∞

= − −

+ + − −

∑ ∑

∫
       (23) 

Let ( , )xψ λ  be the solution of (5) satisfying the initial 

conditions 

(0, ) 0,  (0, ) 1.ψ λ ψ λ′= =  

It is clear that [ ]( , ), ( , ) 1W x xω λ ψ λ = .  

Then,for Im 0,λ > ( , )f x λ is written as the linear 

combination with the solutions ( , )xω λ  and ( , ),xψ λ i.e. 

1 2
( , ) ( , ) ( , ),f x c x c xλ ω λ ψ λ= +  

where  

1 (0, ),c f λ=  2 ( ).c ϕ λ= −  

Hence, 

( , ) (0, ) ( , ) ( ) ( , ).f x f x xλ λ ω λ ϕ λ ψ λ= −  

Consequently, it is clear that 

[ ]
[ ]
( , ) (0, ) ( , ) ( ) ( , ) ,    ,1

( , ; )
(0, ) ( , ) ( ) ( , ) ( , ),   0 .( )

x f x
G x

f x x x

ω λ λ ω ξ λ ϕ λ ψ ξ λ ξ
ξ λ

λ ω λ ϕ λ ψ λ ω ξ λ ξϕ λ
 − ≤ < ∞= −  − ≤ ≤

 

( , ) ( , ),    ,(0, )
( , ) ( , )

( , ) ( , ),   0 .( )

x xf
x

x x

ω λ ψ ξ λ ξλ ω λ ω ξ λ
ψ λ ω ξ λ ξϕ λ

≤ < ∞
= − −  ≤ ≤

 

1

0

1 1

0

2

2

1
( , ) (0, ) ( , ) ( , ) ( ) ( )

( )

( , ) ( , ) ( ) ( ) ( , ) ( , ) ( ) ( )

(0, ) ( , ) ( , ). (24)
( )

x

x

F x f x F d

x F d x F d

F
f x F x

λ λ ω λ ω ξ λ ξ ρ ξ ξ
ϕ λ

ψ λ ω ξ λ ξ ρ ξ ξ ω λ ψ ξ λ ξ ρ ξ ξ

λ ω λ ψ λ
ϕ λ

∞

∞

= −

− −

+ −

∫

∫ ∫  

It follows that 

[ ] 1

0

Re ( , ) (0, ) ( , ) ( , ) ( )
( )j

j

j j j
i

j

i
s F x f i x i i F d

iλ λ

λ
λ λ λ ω λ ω ξ λ ξ ξ

ϕ λ

∞

=
= − ∫

&

2
(0, ) ( , ), 1, 2,..., .

( )

j

j j

j

i F
f i x i j n

i

λ
λ ω λ

ϕ λ
+ =
&

 

Using properties of ( , )f x λ  and ( , ),xω λ  we get  

( , ) (0, ) ( , ),  1, 2,..., .
j j j

f x f x j nλ λ ω λ= =        (25) 

From (9) and (25) we obtain 
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[ ] [ ]

2 2

1 2

0

Re ( , ) Re ( , ) .

( , ) ( , ) ( ) (0, ) ( , ).

j ji i

j j j j j j

s F x s F x

m f x i f i F d m F f i f x i

λ λ λ λ
λ λ λ λ

λ ξ λ ξ ξ λ λ

= =−

∞

+

= − +∫

 

( , ( )) ( , ),
j j j

m F U x f x iλ−=            (26) 

where  

1

2

( , ) ( )
( ) ,  ( ) ,  1,2,..., .

(0, )

j

j j

j

f x i F x
U x m F x j n

f i F

λ
λ

   
= = =   

  

 

Now, let us calculate the integral  

[ ]1
( , 0) ( , 0) .

2
F x i F x i d

i
λ λ λ λ

π

∞

−∞

+ − −∫
 

From formula (24) and equality ( , 0) ( , 0),F x i F x iλ λ− = +  

 we get  

1

0

( , 0) ( , 0)

1 1
(0, ) (0, ) ( , ) ( , ) ( ) ( )

( )( )

F x i F x i

f f x F d

λ λ

λ λ ω λ ω ξ λ ξ ρ ξ ξ
ϕ λϕ λ

∞

+ − − =

 
− × 

 
∫

2

12 2

0

22
( , ) ( , ) ( ) ( ) ( , ).

( ) ( )

i Fi
x F d x

λλ ω λ ω ξ λ ξ ρ ξ ξ ω λ
ϕ λ ϕ λ

∞

= −∫
 

It follows that 

[ ]1
( , 0) ( , 0)

2
F x i F x i d

i
λ λ λ λ

π

∞

−∞

+ − − =∫  

2 2

2

12 2

0 0 0

22 ( , )
( , ) ( , ) ( ) ( ) .

( ) ( )

F x
x F d d

λ λ ω λω λ ω ξ λ ξ ρ ξ ξ λ
π πϕ λ ϕ λ

∞ ∞ ∞

−∫ ∫ ∫  (27) 

Taking (26), (27) into (23), we obtain the expansion 

formula according to the eigenfunctions: 

1

1

2

12

0 0

2

2

2

0

( ) ( , ( )) ( , )

2
( , ) ( , ) ( ) ( )

( )

2 ( , )
.

( )

n

j j j

j

F x m F U x f x i

d
x F d d

F x
d

λ

λ λ ω λ ω ξ λ ξ ρ ξ ξ λ
π ϕ λ

λ ω λ λ
π ϕ λ

=

∞ ∞

∞

=

+

−

∑

∫ ∫

∫

 
 

 

 

 

(28) 

2 1 1 1

1

2

1

12

0 0

2

1 2

2

0

(0) ( , (0)) (0, )

2
( , ) ( ) ( )

( )

2
.

( )

n

j j j

j

F F m F U f i

d
F d d

F
d

β β λ

β λ λ ω ξ λ ξ ρ ξ ξ λ
π ϕ λ

β λ λ
π ϕ λ

=

∞ ∞

∞

= =

+

−

∑

∫ ∫

∫

 
 

 

 

 

(29) 

5. Solution of the Problem (1)-(4) 

In this section, we obtain a formula for the solution of the 

heat transmission problem using the expansion formula with 

respect to the eigenfunctions. Making use of (28) and (29), we 

find the solution of (1) (2)− boundary value problem as the 

following:  

21

2

( )( , )

(0, )

t
F xv x t

e
Fv t

λ−  
=   

   

 

2 2
2

2
1 0

2
( , ) ( , ( )) ( , ) ( , )

( )

n
t t

j j j

j

d
v x t m e F U x f x i e xλ λ λ λλ ω λ

π ϕ λ

∞
− −

=

= + ×∑ ∫
 

2

22
1 2

00

2 ( , )
( , ) ( ) ( )

( )

te F x
F d d d
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Applying the boundary condition (3) to (30) we obtain 
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It can be shown that the right side of (30) is absolutely 

and uniformly convergent on every compact interval 
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