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Abstract: In most of the literature in time series modeling, generalized autoregressive conditional heterosceasticity 

(GARCH) models has been used as a traditional model to forecast both the economic and financial time series data. Though 

literature has shown that it is not suitable for non-linear time series. For this reason, this model was augmented with 

bilinear model in order to make it more relevant in forecasting both economic and financial time series data. After the 

augmentation, the new model called Bilinear-GARCH (BL-GARCH) shows a better performance based on performance 

measures indices, models variances and out-of–samples forecast performances. In term of these three criteria the new 

models outperformed the traditional or classical GARCH model. To drive home this point, these two models were 

illustrated with Botswana inflation rates data. We observed that the new model (BL-GARCH) outperformed the classical 

GARCH model.  

Keywords: GARCH Models, BL-GARCH Models, Forecasting, Inflation Rates and Non-Linear 

1. Introduction 

Recent developments in financial econometrics require 

the use of model that will bring to the investor(s) high 

returns on their investments. In this context inflation rates 

play a very important role as these are major determinants 

in financial markets. The Generalization of ARCH model 

known as GARCH was introduced by Bollerslev (1986), 

which various researchers has extended. Deficiency of 

GARCH model was noted by many researchers like Hinich 

(1998), Liew, et.al.(2003), Lim et.al.(2005),Claudio and 

Jean (2011) and so many other researchers, they all 

concluded that GARCH model cannot capture non-linear 

aspect of the series adequately hence the need to find a 

more suitable model. An augmented GARCH model is an 

hybrid of the GARCH model formed by combining bilinear 

model with GARCH model (BL-GARCH). It allows us to 

capture asymmetries in the conditional mean and variance 

of financial and economic time series by means of 

interactions between past shocks and volatilities. The 

bilinear-GARCH models take into account variations 

between the independent variables as well as co-variations 

between the variables. This is very important in the study 

of financial market data where the covariance between 

independent variables may play a significant role in 

determining market volatility.  

The remaining part of this paper is organized as follows: 

Section 2 covers the specification of GARCH models, 

estimation of the parameters of Bilinear-GARCH model 

(BL-GARCH), Section performance adequacy 

measurement 3, empirical illustration, identification of non-

linearity status of the series, estimation of classical 

GARCH and BL-GARCH models Section 4 Forecast 

performance and section 5: conclusion 

2. Specification of Generalized 

Autoregressive Conditional 

Heteroscedasticity Model 

The Generalized Autoregressive Conditional 

Heteroscedasticity Model (GARCH) was proposed by 

Bollerslev (1986). The specification of GARCH ( ,p q ) is 

as follows: 

let ( )ty  be the time series of an inflation rate return, 

then 
t t ty σ ε=

 and 
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Where 0 0, 0iα α> ≥  and innovation sequence { }
i

ε ∞
=−∞

is independent and identically distributed ( )iid  with 

( )0E ε =0 and ( )2
0E ε =1. The model described in equation 

(1) is used to parameterize financial time series and in 

particular foreign exchange. 

To derive the variance of ty  from the conventional 

expression given as: 

( ) ( )( )22( )t t tVar y E y E y= −                   (2) 

( ) ( ) ( ) ( ) ( )2 2
0 1

1 1

p q

t i j t j t j t

i j

E y E y E Z E Zα α β β− −
= =

= + + − +∑ ∑

( ) ( )2
0

1

p

t i j

i

E yα α β
=

+ +∑
 

reduces to 

( )
( )

2 0

1

 

1

t p

i j

i

E y
α

α β
=

=

− +∑         (3) 

Using (2) and (3) gives (4)  
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2.1. Bilinear- GARCH Model (BL-GARCH) 

The mean and variance of augmented GARCH model 

are given as follows: 

1
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2.2. Model Evaluation Statistics Indices  

( ) ( ) ( )2 2 2
0

1

1

p q

t h i t i j t j

i j i

y y h y hα α β+ − −
= =

= + +∑ ∑ɶ        (8) 

The square root of equation (8) shall be used as a 

forecast function of GARCH models while the equation (9) 

below shall be used as a forecast function of BL-GARCH 

( ) ( ) ( ) ( )2 2 2 2 2
0

1 1 1

p q p q

t i t i j t j ij t j

i j i i j

y h y h y h y hα α β− − +
= = = =

= + + + Τ∑ ∑ ∑∑ɶ   (9) 

We shall compare the forecast performance of equations 

(8) and (9) using the following  

2.3. Performance Adequacy Measures 

Several error indices are commonly used in model 

evaluation. These include mean absolute error (MAE), root 

mean square error (RMSE), mean absolute deviation 

(MAD), mean absolute precision error (MAPE) and THEIL 

U. These indices are valuable because they indicate error in 

the units (or squared units) of the constituent of interest, 

which aids in analysis of the results. RMSE, MAE, MAPE, 

MAD and Theil U values of 0 indicate a perfect fit. Singh 

et al. (2004) state that RMSE and MAE values less than 

half the standard deviation of the measured data may be 

considered low and that either is appropriate for model 

evaluation. 
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If the forecast error values are smaller, we say the 

forecast performance is good otherwise it is bad. If the 

results are not consistent among the first three we choose 

the MAPE to be the benchmark.   

3. Results and Discussion 

3.1. Checking the Stationarity of the Series  

Before using any series, there is need to determine the 

stationarity of such series otherwise the whole exercise will 

be a nullity and as a result of this, three important methods 

are used in this paper to determine the stationarity of the 

series. These are graph, correlogram and unit root test.  

Figure1 shows evidence of non-stationarity of the series, 

since volatile values are evident and these do not fluctuate 

around a constant mean. 

 

Figure 1. Line graph of the leveled Botswana inflation rates 

We therefore transform the non-stationary series using 

the following formula: 

1

ln *100t
t

t

y
R

y −

  =  
  

 

After the transformation of the data, the new time series 

plot is shown below. The plot indicated that the mean of 

the series is now constant and as such we assume it is 

stationary.  

 

Figure 2. Line graph of the first difference of Botswana inflation rates  

The results on the correlogram of the leveled for the 

series (as shown in table1 below) shows stronger evidence 

of non-stationarity since its autocorrelation coefficient 

function (ACF) of the residuals does not quickly decay to 

zero. it seems this series is not stationary. 

So also the examination of correlogram of the first 

difference shows that there is no persistent trend and its 

values fluctuate around a constant mean of zero. hence this 

is suggesting that the exchange rate series is stationary 

The table below shows that the result of Augmented 

Dickey-Fuller test on inflation rates series. since the 

statistic value for ADF test is greater than their 

corresponding critical values, so we do not reject the null 

hypothesis of the presence of unit root in the series and 

therefore conclude that the exchange rate is not stationary.

Table 1. Leveled Correlogram for Botswana inflation rates 

Sample: 1987M01 2012M12      

Included observations: 311     

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

 .|*******|  .|*******| 1 0.966 0.966 292.72 0.000 

 .|*******|  **|. | 2 0.917 -0.220 557.78 0.000 

 .|*******|  *|. | 3 0.864 -0.069 793.50 0.000 

 .|****** |  *|. | 4 0.802 -0.133 997.32 0.000 

 .|****** |  *|. | 5 0.732 -0.117 1167.7 0.000 

 .|***** |  .|. | 6 0.661 -0.012 1307.2 0.000 

 .|***** |  .|. | 7 0.592 -0.005 1419.3 0.000 

 .|**** |  *|. | 8 0.517 -0.113 1505.3 0.000 

 .|*** |  .|. | 9 0.446 0.023 1569.4 0.000 

 .|*** |  .|. | 10 0.377 -0.028 1615.5 0.000 

 .|** |  .|. | 11 0.311 -0.020 1646.9 0.000 
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 .|** |  .|. | 12 0.246 -0.035 1666.6 0.000 

 .|** |  .|*** | 13 0.213 0.435 1681.4 0.000 

 .|* |  *|. | 14 0.190 -0.061 1693.2 0.000 

 .|* |  .|. | 15 0.174 0.048 1703.1 0.000 

 .|* |  .|. | 16 0.165 -0.017 1712.1 0.000 

 .|* |  *|. | 17 0.161 -0.087 1720.7 0.000 

 .|* |  .|. | 18 0.159 -0.031 1729.1 0.000 

 .|* |  .|. | 19 0.157 0.026 1737.3 0.000 

 .|* |  .|. | 20 0.164 0.027 1746.3 0.000 

 .|* |  .|* | 21 0.176 0.102 1756.7 0.000 

 .|* |  *|. | 22 0.189 -0.067 1768.7 0.000 

 .|** |  .|* | 23 0.207 0.120 1783.2 0.000 

 .|** |  .|* | 24 0.236 0.069 1802.0 0.000 

 .|** |  .|** | 25 0.268 0.286 1826.5 0.000 

 .|** |  .|. | 26 0.300 -0.018 1857.3 0.000 

 .|*** |  .|. | 27 0.329 -0.019 1894.5 0.000 

 .|*** |  .|. | 28 0.357 -0.017 1938.2 0.000 

 .|*** |  **|. | 29 0.374 -0.234 1986.5 0.000 

 .|*** |  *|. | 30 0.386 -0.060 2038.0 0.000 

 .|*** |  .|. | 31 0.393 -0.029 2091.8 0.000 

 .|*** |  .|. | 32 0.397 0.026 2146.7 0.000 

 .|*** |  .|* | 33 0.396 0.118 2201.5 0.000 

 .|*** |  *|. | 34 0.387 -0.147 2254.2 0.000 

 .|*** |  .|. | 35 0.369 -0.010 2302.3 0.000 

 .|*** |  .|. | 36 0.341 -0.034 2343.5 0.000 

Table 2. First difference Botswana inflation rates 

Sample: 1987M01 2012M12      

Included observations: 310     

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

 .|* |  .|* | 1 0.171 0.171 9.1256 0.003 

 .|* |  .|. | 2 0.070 0.043 10.686 0.005 

 .|* |  .|* | 3 0.133 0.118 16.235 0.001 

 .|* |  .|* | 4 0.127 0.088 21.355 0.000 

 .|. |  .|. | 5 0.028 -0.017 21.607 0.001 

 .|. |  .|. | 6 0.013 -0.012 21.658 0.001 

 .|* |  .|. | 7 0.071 0.049 23.270 0.002 

 .|. |  *|. | 8 -0.048 -0.082 24.011 0.002 

 *|. |  .|. | 9 -0.065 -0.054 25.383 0.003 

 .|. |  .|. | 10 -0.023 -0.013 25.551 0.004 

 .|. |  .|. | 11 -0.018 -0.007 25.657 0.007 

 ****|. |  ****|. | 12 -0.473 -0.472 98.168 0.000 

 *|. |  .|. | 13 -0.150 0.006 105.46 0.000 

 *|. |  *|. | 14 -0.104 -0.068 109.01 0.000 

 *|. |  .|. | 15 -0.123 -0.003 113.96 0.000 

 *|. |  .|* | 16 -0.059 0.084 115.12 0.000 

 .|. |  .|. | 17 -0.043 0.005 115.72 0.000 

 .|. |  .|. | 18 -0.038 -0.019 116.21 0.000 

 *|. |  .|. | 19 -0.116 -0.044 120.66 0.000 
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 *|. |  *|. | 20 -0.068 -0.095 122.19 0.000 

 .|. |  .|. | 21 0.003 0.002 122.19 0.000 

 .|. |  .|. | 22 -0.050 -0.056 123.04 0.000 

 *|. |  *|. | 23 -0.111 -0.084 127.21 0.000 

 .|. |  **|. | 24 -0.015 -0.263 127.29 0.000 

 .|. |  .|. | 25 0.030 0.010 127.59 0.000 

 .|* |  .|. | 26 0.073 0.037 129.41 0.000 

 .|. |  .|. | 27 0.034 -0.014 129.81 0.000 

 .|. |  .|* | 28 0.051 0.104 130.70 0.000 

 .|. |  .|. | 29 0.005 -0.037 130.71 0.000 

 .|. |  .|. | 30 0.020 0.001 130.85 0.000 

 .|. |  .|. | 31 0.048 -0.033 131.66 0.000 

 .|. |  *|. | 32 0.060 -0.060 132.93 0.000 

 .|* |  .|* | 33 0.090 0.095 135.76 0.000 

 .|* |  .|. | 34 0.103 0.041 139.52 0.000 

 .|* |  .|* | 35 0.177 0.098 150.58 0.000 

 .|. |  *|. | 36 0.063 -0.166 151.97 0.000 

Table 3. 

Null Hypothesis: INFLATION has a unit root  

Exogenous: Constant   

Lag Length: 12 (Automatic based on SIC, MAXLAG=15) 

   t-Statistic  Prob.* 

Augmented Dickey-Fuller test statistic -2.186148  0.2119 

Test critical values: 1% level  -3.452141  

 5% level  -2.871029  

 10% level  -2.571897  

*MacKinnon (1996) one-sided p-values.  

Table 4. first difference Augmented Dickey-Fuller test statistic 

Null Hypothesis: D(INFLATION) has a unit root 

Exogenous: Constant   

Lag Length: 11 (Automatic based on SIC, MAXLAG=15) 

   t-Statistic  Prob.* 

Augmented Dickey-Fuller test statistic -8.467909  0.0000 

Test critical values: 1% level  -3.452141  

 5% level  -2.871029  

 10% level  -2.571897  

*MacKinnon (1996) one-sided p-values.  

  

3.2. Estimation of Classical GARCH Model 

To generate parameter estimates for the GARCH model, 

we used E-view to analyzed differenced data for the study 

as follows:  

Based on tables 5 the estimated GARCH(1,1) model are 

obtained for the series as follows: 

  where  and  are obtainable from the fitted model: Botswana Inflation t t t ty σ ε σ ε=  

 10.995353
Botswana Inflationy t ty y ε−= +  and 2

tσ  = 0.386450 + 1.0103 97 2
1tε −

- 0.040497* 2
1tσ −
             (15) 
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Table 5. GARCH model estimates for Botswana inflation rates 

Dependent Variable: INFLATION  

Included observations: 311 after adjustments  

Convergence achieved after 291 iterations  

GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.  

DATE 0.003989 3.52E-05 113.4602 0.0000 

 Variance Equation   

C 0.386450 0.110917 3.484122 0.0005 

RESID(-1)^2 1.010397 0.281102 3.594408 0.0003 

GARCH(-1) -0.040497 0.052512 -0.771194 0.4406 

T-DIST. DOF 414.8035 18607.56 0.022292 0.9822 

R-squared -0.345878  Mean dependent var 9.540836 

Adjusted R-squared -0.363471  S.D. dependent var 2.699959 

S.E. of regression 3.152682  Akaike info criterion 4.131431 

Sum squared resid 3041.457  Schwarz criterion 4.191556 

Log likelihood -637.4375  Durbin-Watson stat 0.049754 

    

3.3. Estimation of Augmented GARCH Model  

Estimation of parameters here was done here in two 

stages as the standard deviation obtained from classical 

GARCH was used to obtain the parameters of augmented 

GARCH models. The reduced form in equation (10) was 

estimated by making use of Bilinear (1,1) the reason for the 

choice of bilinear (1,1) was due to the fact that few 

parameters make the models to be parsimonious; from 

where sets of data were generated and OLS applied and the 

following results were obtained for the series By using the 

values generated in table 6 the BL-GARCH fitted for the 

series is as follows: 

Naira: ( ) 1 1
0.000044

0.087210t t t t ty yσ ε ε− −= +  

with variance of the model 0.855926982 (16) 

Table 6. Bilinear-GARCH model for Botswana inflation rates 

Dependent Variable: t t ty σ ε− =ACMINFIT (Botswana inflation rates )   

ACMINFIT=C(1)*ZT   

GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.  

C(1) 0.030362 0.000722 42.02450 0.0000 

 Variance Equation   

C 0.198439 0.069874 2.839955 0.0045 

RESID(-1)^2 0.934091 0.265796 3.514319 0.0004 

GARCH(-1) 0.059534 0.077003 0.773148 0.4394 

T-DIST. DOF 2067.880 402682.1 0.005135 0.9959 

R-squared 0.346199  Mean dependent var 1.564199 

Adjusted R-squared 0.337624  S.D. dependent var 2.716843 

S.E. of regression 2.211143  Akaike info criterion 3.756116 

Sum squared resid 1491.192  Schwarz criterion 3.816383 

Log likelihood -577.1980  Durbin-Watson stat 0.058222 

    

4. Forecast Performance 

4.1. Forecast Evaluation Indices  

Botswana inflation rates were subjected to all 

performance evaluation indices cross tabulated with 

GARCH and  

Bilinear-GARCH models, it is clear from here that 

Bilinear-GARCH is far better than GARCH model as it 

produced the minimum of all this indices as seen in table (7) 

above.  

Next we looked at the variance of the two models. A 

model that gives the minimum variance is adjudged as the 

better model. For instance from the table below (8). 

Bilinear-GARCH gave the minimum variance of 4.8892 

compared to GARCH model which gave the variance of 

9.9394 as shown below: 
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Table 7. Forecast indices for the models 

model/indices GARCH BL- GARCH 

MSE 3.1272 2.1932 

MAE 2.3533 1.8188 

MAPE 22.2050 18.6544 

THEIL-U 0.1748 0.3966 

BIAS PROPORTION 0.2501 0.1156 

U-VAR PROPORTION 0.9266 0.8842 

U-COV PROPORTION 0.0232 0.0002 

Table 8. Variances of the models 

Model  GARCH BL-GARCH 

Variance 9.9394 4.8892 

Forecast performance of fitted GARCH (1,1) and BL-

GARCH (1,1) models for the inflation rates has 

investigated shows that out-of-sample forecast performance 

for classical GARCH model for the inflation rate series 

under consideration failed to produced good forecast, 

whereas the BL-GARCH performed very well as showing 

in the following tables (9) and (10) below: 

Table 9. out-of-sample forecast performance for GARCH (2012) 

Date Jan. Feb. Mar. Apr. May June July Aug Sept. Oct. Nov. Dec. 

Actual 8.8 8.2 8.0 7.5 7.7 7.3 7.3 6.6 7.1 7.1 7.4 7.4 
Forecast 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03 

Table 10. Out-of-samples forecast performance for Bilinear-GARCH (2012) 

Date Jan. Feb. Mar. Apr. May June July Aug Sept. Oct. Nov. Dec. 

Actual 8.8 8.2 8.0 7.5 7.7 7.3 7.3 6.6 7.1 7.1 7.4 7.4 

Forecast 8.83 8.35 8.02 7.68 7.89 7.78 7.48 6.71 7.13 7.13 7.42 7.42 

             

4.2. Forecast Evaluation 

Looking at table (9) and (10) which are the tables of out-

of-samples forecast performance for the two models under 

study, it is evident that the forecast performance of 

classical GARCH model is not good as it gave constant 

values which under estimated the actual values, however, 

the forecast performance of Bilinear-GARCH model gave 

result that is comparable to the actual data. This shows that 

BL-GARCH outperformed classical GARCH model and as 

such recommended for would-be researcher(s).  

5. Conclusion 

This paper compared the two models used in measuring 

the forecast performance of Botswana inflation rates. The 

models are GARCH and Bilinear-GARCH, Monthly 

inflation rates of Botswana from 1978 to 2012 were used 

for empirical illustration. We examined the stationarity of 

the model using three tests (graph, correlogram and unit 

root), all these tests indicated that the series were not 

stationary. To ensure that the series are stationary we 

transformed the data and after the transformation the series 

was stationary. GARCH (1,1) and Bilinear-GARCH (1,1) 

was fitted to the model and there after we examined the 

forecast performance for the two models, in term of 

forecast performance indices and measurement of models 

variances Bilinear-GARCH model outperformed classical 

GARCH model. We also compared the out-of-sample 

forecast performance for the two models; Bilinear-GARCH 

also gave better forecast performance as seen from tables (9) 

and (10) above. So for would be forecasters, investors and 

other policy analysts the use of Bilinear-GARCH is 

recommended as it gave an excellent forecast compared to 

classical GARCH model  
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