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Abstract: The paper focuses on the robust performance analysis on dynamic control of unmanned aerial vehicle system with 

numerical computation. The objectives of this work are to find the appropriate solution for robust stability problems for 

dynamic control of unmanned aerial vehicle (UAV) system which is critical challenge in the space technology. The background 

of the theoretical work on digital control system is very important to study the problem of dynamic control system at present. 

The idea behind the control system stability analysis on digital technology is very important candidate in space technology. 

The specific purpose on analyzing the performance of dynamic of digital control system for space technology is solved in this 

paper. The mathematical model of target system is mentioned and analyzed based on the classical control method with digital 

technology. The related work for modeling of the control system is mentioned and expressed the detailed background for the 

analysis. The simulation results confirm that the proposed system met the robust performance for digital control of UAV 

system for reality. The analysis has been carried out based on feedback control system stability for dynamic system as well. 

The simulation results for stability analysis have been carried out by using MATLAB programming languages. 
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1. Introduction 

An unmanned aircraft system is just that – a system. It must 

always be considered as such. The system comprises a number 

of sub-systems which include the aircraft (often referred to as a 

UAV or unmanned air vehicle), its payloads, the control 

station(s) (and, often, other remote stations), aircraft launch 

and recovery sub-systems where applicable, support sub-

systems, communication sub-systems, transport sub-systems, 

etc. It must also be considered as part of a local or global air 

transport/aviation environment with its rules, regulations and 

disciplines. UAS usually have the same elements as systems 

based upon manned aircraft, but with the airborne element, i.e. 

the aircraft being designed from its conception to be operated 

without an aircrew aboard. The aircrew (as a sub-system), with 

its interfaces with the aircraft controls and its habitation is 

replaced by an electronic intelligence and control subsystem. 

The other elements, i.e. launch, landing, recovery, 

communication, support, etc. have their equivalents in both 

manned and unmanned systems [1-2]. 

Unmanned aircraft must not be confused with model 

aircraft or with ‘drones’, as is often done by the media. A 

radio-controlled model aircraft is used only for sport and 

must remain within sight of the operator. The operator is 

usually limited to instructing the aircraft to climb or descend 

and to turn to the left or to the right. A drone aircraft will be 

required to fly out of sight of the operator, but has zero 

intelligence, merely being launched into a pre-programmed 

mission on a pre-programmed course and a return to base. It 

does not communicate and the results of the mission, e.g. 

photographs, are usually not obtained from it until it is 

recovered at base. A UAV, on the other hand, will have some 

greater or lesser degree of ‘automatic intelligence’. It will be 

able to communicate with its controller and to return payload 

data such as electro-optic or thermal TV images, together 
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with its primary state information – position, airspeed, 

heading and altitude. It will also transmit information as to its 

condition, which is often referred to as ‘housekeeping data’, 

covering aspects such as the amount of fuel it has, 

temperatures of components, e.g. engines or electronics. If a 

fault occurs in any of the sub-systems or components, the 

UAV may be designed automatically to take corrective action 

and/or alert its operator to the event. In the event, for 

example, that the radio communication between the operator 

and the UAV is broken, then the UAV may be programmed to 

search for the radio beam and re-establish contact or to 

switch to a different radio frequency band if the radio-link is 

duplexed. A more ‘intelligent’ UAV may have further 

program which enable it to respond in an ‘if that happens, do 

this’ manner. For some systems, attempts are being made to 

implement on-board decision-making capability using 

artificial intelligence in order to provide it with autonomy of 

operation, as distinct from automatic decision making [3-4]. 

UAVs are being used in research and development 

works in the aeronautical field. For test purposes, the use 

of UAV as small-scale replicas of projected civil or 

military designs of manned aircraft enables airborne 

testing to be carried out, under realistic conditions, more 

cheaply and with fewer hazards. Testing subsequent 

modifications can also be effected more cheaply and more 

quickly than for a larger manned aircraft, and without any 

need for changes to aircrew accommodation or operation. 

Novel configurations may be used to advantage for the 

UAV. These configurations may not be suitable for 

containing an aircrew. The modern battlefield has 

increasingly progressed towards the use of automated 

systems and remotely controlled devices to perform a 

variety of missions. From surveillance to weapons 

delivery and bomb damage assessment, the human 

operator is being removed from the direct danger of a 

hostile environment and placed in a position of evaluating 

data received via RF or fiber optic link. The direct and 

obvious benefits of such an arrangement are the reduced 

risk to the operator.and the reduced cost of the unmanned 

sensor platform as compared to traditional manned 

platforms. The state-of-the-art technology in unmanned 

aerial vehicle development has demonstrated the 

capability of flight out to ranges of 500 nm and 

endurances exceeding 24 hours. Combined with the ability 

to carry a variety of sensor suites, these platforms 

represent the future in airborne data acquisition for both 

military and civilian applications [5]. 

The rest of the paper is organized as follows. Section II 

presents the background theory and mathematical model of 

the robust control system. Section III mentions the analysis 

and discussions. Section IV concludes the proposed system. 

2. Background Theory and 

Mathematical Model 

The mathematical model for robust system of UAV has 

been developed in this section. There have been two portions 

to model the mathematical expressions of UAV system is 

discussed in this portion [6-8]. 

2.1. Robust Stability 

Robust stability can be investigated in the frequency 

domain, using the Nyquist stability criterion. Consider a 

Nyquist contour for the nominal open-loop system 

Gm(jω)C(jω) with the model uncertainty given by 

G(s)=Gm(s)+la(s)                           (1) 

or multiplicative uncertainty lm(s) 

G(s)=(1+lm(s))Gm(s)                       (2) 

Equation (1) and (2) gives 

la(s)=lm(s)Gm(s)                          (3) 

where Gm(s) is nominal plant and la(s) is additive uncertainty. 

Block diagram representations of additive and 

multiplicative model uncertainty are shown in Figure 1. 

Structured uncertainty relates to parametric variations in the 

plant dynamics, i.e. uncertain variations in coefficients in 

plant differential equations [9-10]. 

 

(a) Additive Mode Uncertainty 

 

(b) Multiplicative Uncertainty 

Figure 1. Additive and Multiplicative Model Uncertainty. 

Let la�(ω)  be the bound of additive uncertainty and 

therefore be the radius of a disk superimposed upon the 

nominal Nyquist contour. This means that G(jω) lies within a 

family of plants π(G(jω)∈π described by the disk, defined 

mathematically as 

π=�G:�G�jω�-Gm�jω��≤la̅�ω��                     (4) 

and therefore 

|la(jω)|≤la̅�ω�                                 (5) 

If the multiplicative uncertainty in equation (2) and (3) is 

defined as 
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lm�jω�= la�jω�
Gm�jω�C�jω�

                              (6) 

and the bound of multiplicative uncertainty 

lm̅�jω�= la̅�jω�
Gm�jω�C�jω�

                              (7) 

From equation (7) the disk radius (bound of uncertainty) is 

la̅�ω�=|Gm�jω�C�jω�|lω�ω�                     (8) 

From the Nyquist stability criterion, let N(k, G(jω)) be the 

net number of clockwise encirclements of a point (k, 0) of the 

Nyquist contour. Assume that all plants in the family π, 

expresses in equation (4) have the same number (n) of right-

hand plane (RHP) poles. 

There will be robust stability of a specific controller C(jω) 

if and only if 

N(-1,G(jω)C(jω))=-n for all G(jω)∈π                 (9) 

It is also necessary for the nominal plant Gm(jω) to be 

stable 

N(-1,Gm(jω)C(jω))=-n                         (10) 

From Figure 2 robust stability occurs when the vector 

magnitude |1+Gm�jω�C(jω)|  exceeds the disk radius 

|Gm�jω�C�jω�|lm̅(ω) 

|1+Gm�jω�C(jω)|>|Gm�jω�C�jω�|lm̅(ω)	for	all	ω    (11) 

Or 

� Gm�jω�C(jω)

1+Gm�jω�C(jω)
� lm̅�ω�<1	                         (12) 

 

Figure 2. Robust Stability. 

A complementary sensitivity function is 

T�s�=1-S�s�= G�s�C�s�
1+G�s�C�s�                         (13) 

Equation (12) uses the magnitude of the complementary 

sensitivity function T(jω) as defined in equation (13). Thus 

|T(jω)|lm̅�ω�<1	for	all	ω                      (14) 

Robust stability can therefore be stated as: “If all plants 

G(s) in the family π have the same number of RHP poles and 

that a particular controller C(s) stabilizes the nominal plant 

Gm(s), then the system is robustly stable with the controller 

C(s) if and only if the complementary sensitivity function 

T(s) for the nominal plant Gm(s) satisfies the following bound 

�T�jω�lm̅(ω)�∞= sup
ω
�T�jω�lm̅(ω)�<1          (15) 

where the LHS of equation (15) is the infinity norm of 

T�jω�lm̅(ω). This means that robust stability imposes a bound 

on the ∞ norm of the complementary sensitivity function 

T(jω) weighted by lm̅(ω)’. 

2.2. Robust Performance 

Robust stability provides a minimum requirement in an 

environment where there is plant model (UAV) uncertainty. 

For a control system to have robust performance it should be 

capable of minimizing the error for the worst plant (i.e. the 

one giving the largest error) in the family G(jω) ϵ π. 

minc‖e(t)‖∞= minc sup
ω
|S�jω�(W(jω)|              (16) 

For the H∞-control problem, from (1), the ∞-norm of the 

weighted sensitivity function can be written 

‖SW‖∞= sup
ω
|S�jω�(W(jω)|                   (17) 

If, as part of the design process, a bound is placed upon the 

sensitivity function 

|S(jω)|<|W(jω)|-1                        (18) 

Should an H∞controller be found such that 

‖SW‖∞<1                              (19) 

then the bound in equation (18) is met. Hence, for robust 

performance 

‖SW‖∞= sup
ω
|S�jω�W�jω�|<1for	all	G�jω�∈π     (20) 

Form Figure 2 representing robust stability, the actual 

frequency response G(jω)C(jω) will always lie inside the 

region of uncertainty denoted by the disk, or 

|1+G(jω)C(jω)|≥|1+Gm�jω�C(jω)|-|Gm�jω�C(jω)|lm̅�ω�for	all	G�jω�∈π                               (21) 

Giving 

|S(jω)|= � 1

1+G(jω)C(jω)
� ≤

|Sm(jω)|
1-|Tm(jω)|lm̅�ω�

	for	all	G�jω�∈π  (22) 

where Sm(jω) is the sensitivity function for the nominal plant 

Sm(jω)=
1

1+Gm�jω�C(jω)
                            (23) 

Using equation (22), equation (20) can be expressed as 

|Sm(jω)W(jω)|
1-|Tm(jω)|lm̅�ω�

<1	for	all	ω                       (24) 
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or 

�Tm(jω)lm̅�ω��+|Sm(jω)W(jω)|<1	for	all	ω       (25) 

Robust performance then means that the closed-loop 

system will meet the performance specification given in 

equation (20) if and only if the nominal system is closed-loop 

stable (equation (15)) and that the sensitivity function Sm(jω) 

and complementary sensitivity function Tm(jω) for the 

nominal system satisfy the relationship given in equation 

(25). 

2.3. Classical Feedback Control System 

The classical feedback control system is shown in Figure 

3. 

 

Figure 3. Classical Feedback Control System. 

Y(s)=G(s)U(s)+D(s)                             (26) 

B(s)=Y(s)+N(s)                                 (27) 

U(s)=C(s)(R(s)-B(s))                           (28) 

Estimating U(s) and B(s) from equation (26 to 28) gives 

Y�s�= G�s�C�s�R(s)

1+G�s�C(s)
+

D(s)

1+G�s�C(s)
-

G�s�C�s�N(s)

1+G�s�C(s)
            (29) 

Define a sensitivity function S(s) that relates Y(s) and D(s) 

when R(s)=N(s)=0 

Y

D
�s�=S�s�= 1

1+G�s�C(s)
                           (30) 

And define a complementary sensitivity function 

T�s�=1-S�s�= G�s�C(s)

1+G�s�C(s)
                         (31) 

Thus, when N(s)=0, equation (29) may be written 

Y(s)=T(s)R(s)+S(s)D(s)                    (32) 

If T(s)=1 and S(s)=0 there is perfect set-point tracking and 

disturbance rejection. This requires that G(s)C(s) is strictly 

proper *has more poles than zeros), so that 

lims→∞ G�s�C�s�=0                          (33) 

However, is N(s)≠0, then equation (29) becomes 

Y(s)=T(s)R(s)+S(s)D(s)-T(s)N(s)              (34) 

Hence, if T(s)=1, there will be both perfect set-point 

tracking and noise acceptance. Considering the problem in 

the frequency domain however, it may be possible that at low 

frequencies T(jω)�1 (good set-point tracking) and at high 

frequencies T(jω)�0 (good noise rejection). 

2.4. Proposed UAV System 

For the control system shown in Figure 4 procedure the 

Bode magnitude plots for the sensitivity function |S(jω)| and 

the complementary sensitivity function |T(jω)| when K=10. 

For a step input, let W(s)=1.s. We have to consider the Bode 

magnitude plots for |S�jω�W�jω�| when K=10, 50 and 100 

and identify the optimal value using both H2 and H∞ criteria. 

 

Figure 4. Control System of UAV. 

3. Analysis and Discussions 

According to the equation (30), 

S�s�= 1

1+G�s�C(s)
=

1

1+
K

�1+s�(1+2s)

=
2s2+3s+1

2s2+3s+�1+K�          (35) 

From equation (31), 

T�s�=1-S�s�=1-
2s2+3s+1

2s2+3s+�1+K� =
K

2s2+3s+�1+K�       (36) 

The Bode magnitude plots for |S(jω)|  and |T(jω)|  are 

shown in Figure 5 for K=10. From Figure 5 it can be seen 

that up to 1 rad/s, the system has a set-point tracking error of 

-0.8dB( |T(jω)|�  and a disturbance rejection of -

20dB(|S(jω)|). 

 

Figure 5. Bode Plot for for |S(jω)| and |T(jω)|. 
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For a specific input of a unit step, let W(s)=1 rad/s. Hence 

the weighted sensitivity function is 

S�s�W�s�= 2s2+3s+1

s{2s2+3s+(1+K)}
                      (37) 

The Bode plots for |Sm(jω)W(jω)| for K=10, 50 and 100 

are shown in Figure 6. 

From Figure 6 it can be seen that the H2-norm, or average 

value of the weighted sensitivity function reduces as K increase 

and hence, using this criteria, K=100 is the best value. Using the 

H∞-norm as defined, the maximum magnitude of the weighted 

sensitivity function occurs at the lowest frequency. The least 

upper bound therefore is 0dB, occurring at 0.01 rad/s when 

K=100, so this again is the best value. 

 

Figure 6. Bode Plot of Weighted Sensitivity Function. 

4. Conclusion 

The paper presents the robust performance analysis on 

dynamic control of UAV system with the help of Bode plot in 

MATLAB. The background theory and mathematical model 

of the dynamic control of robust system for UAV system 

have been expressed. The objectives of this work have been 

completed for getting the solution for robust stability 

problems for dynamic control of unmanned aerial vehicle 

system which is critical challenge in the space technology.. 

The specific purpose on analyzing the performance of 

dynamic of digital control system for space technology was 

solved based on the robust stability approaches. The best 

solution for choosing the appropriate gain for stability of 

digital control system has been done in this works. According 

to the simulation results, the highest gain could be achieved 

the best solution for the stability of unmanned aerial vehicle 

control system. 
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