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Abstract: The World agriculture depends on water availability; thus, a successful water management system would assure 

food for the World. For several decades, the scientific community has developed methods to support water management. 

These models include the estimates of the main water loss in the system, i.e. the evapotranspiration (ET). In turn, the satellite 

technology encouraged the development of new models to monitor large regions. In this work, we present a modified ET 

estimation adapting the F parameter introduced by Venturini et al., in 2008. Additionally, a new simple index to estimate 

water stress (WS) for different types of surfaces, is also presented. The relative evaporation represented by F is derived from 

the soil moisture condition following the formulation of Barton and computed from the surface reflectance in the shortwave 

infrared bands (SWIR). The new ET and WS equations are applicable, with different satellite datasets, to any remote region 

since they are based on universal relationships. The preliminary results show errors of about 11% in ET. In general, the new 

WS index would have values of approximately 0.8 for a dry surface and 0.4 for a wet surface. 
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1. Introduction 

The evapotranspiration (ET) is the most significant water 

withdrawal in the water balance. Therefore, in recent years, 

the scientific community has given special attention to the 

ET impact on global circulation models and has devoted 

efforts to estimate how much water is globally evaporating 

[1]. Even today, a precise ET calculation is a real challenge 

for water resources practitioners. Moreover, the need to 

monitor large regions has motivated the development of new 

methods for calculating ET from remote sensing data. Thus, 

diverse ET models have been developed and widely applied 

with varying results [e.g. 2-8]. The importance of ET in the 

global water balance was remarked by the satellite mission 

Aquarius/SAC-D, a cooperation program between the 

NASA and Argentina. This mission seeks to determine how 

the ocean responds to the combined effects of evaporation, 

precipitation, ice melt and river runoff, in order to analyze 

their impact on the global water distribution as well as the 

global freshwater availability (http://aquarius.nasa.gov/). 

The world agriculture depends on the availability of water, 

being the water management one of the main components of 

the success or failure of modern agriculture. Thus, indices to 

determine water stress (WS) of vegetation have been widely 

used to assist farmers in maximizing production. Many of 

them have been developed using remotely sensed data, 

allowing the WS estimation in large regions to be made 

[9-13]. For instance, Moran et al., [9] published a definition 

of WS in terms of latent heat fluxes, which can be expressed 

as WS=1-(ET/Epot), where Epot is the potential 

evapotranspiration and the ratio ET/Epot is the relative 

evaporation. This formulation emphasizes the importance of 

an accurate ET calculation, not only for water management 

systems and risks but also for the agriculture and related 

food industries.  

Even though there is a large set of ET models, we 

focussed on Venturini et al.’s method [8] because it presents 

interesting advantages. The authors presented a new 

formulation to derive ET maps from remotely sensed data 

without applying auxiliary or site-specific relationships. The 

method was based on Granger’s complementary relationship 

and Priestley–Taylor equation to eliminate the wind function 
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and the resistance parameters, by including the relative 

evaporation concept (F). The method was applied in 

different environments with errors of about 15% from the 

mean ET and proved to be better than similar ET models 

[14]. 

In this paper, we propose a simple methodology that 

relates the F concept to the surface moisture availability 

concept defined by Barton [15]. This new calculation 

exploits the water absorption properties of the SWIR region. 

The SWIR energy is absorbed by water; therefore, these 

bands are sensitive to the surface moisture content variations 

[16] and had been related to the concept of relative humidity 

of a surface. This new F concept is used in Venturini et al.’s 

method to compute ET and to derive a new WS index. 

2. Methodologies  

In this session, Venturini et al.’s method is briefly 

presented before the rationale behind the F parameter, and 

the new WS index is introduced. 

2.1. Venturini et al.’s Method 

Venturini et al., modified the Priestley–Taylor (P-T) 

model [17] using Granger’s complementary relationship [18] 

and the relative evaporation, defined as the ratio between ET 

and Epot. The relative evaporation proposed by Granger and 

Gray [3] was used for defining a coefficient F, assuming that 

the wind function affects ET and Epot in a similar way. The 

authors also assumed that saturation and actual vapor 

pressures can be calculated from the saturation vapor 

pressure curve (SVP) with temperature data. Thus, 

F=ET/Epot can be expressed as  

                (1) 

where es is the surface actual water vapor pressure, e
*

s is the 

surface saturation water vapor pressure, ea is the air actual 

water vapor pressure, Ts is the surface temperature and Tu is 

the temperature of the surface if it is brought to saturation 

without changing the actual surface vapor pressure, which is 

analogous to the dew point temperature (Td) definition [8]. 

Therefore, Epot= ET/F (see equation 1) combined with 

Granger´s complementary equation renders ET as a function 

of the wet environment evapotranspiration (Ew), as follows, 

                 (2) 

where γ is the psychrometric constant, ∆ is the slope of the 

SVP curve, and Ew is the wet environment 

evapotranspiration. 

The Priestley and Taylor equation [17] was used to 

compute Ew. Consequently, by combining the 

Priestley–Taylor expression with equations (2) and (1), the 

following model (hereinafter named as ETV-V) was derived 

            (3) 

where α is a P-T parameter, assumed to be equal to 1.26 for 

saturated surfaces, Rn is the net radiation, and G is the soil 

heat flux. 

The new variable introduced in this formulation, Tu, is 

necessary to determine es and then F (see equation 1). The 

authors determined Tu from the SVP curve using Ts and Td 

(see Figure 1); however, they recognize that the Tu 

calculation did not follow the physics of the problem [19]. A 

full discussion regarding the definition and calculation of Tu 

can be found in [8] and [19].  

Once Tu is estimated, es can be computed, and then F and 

ET can be calculated.  

 

Figure 1. SVP curve Tu, Ts, es, e*s relationship in de Ts context. 

2.2. The New Method to Estimate es 

The es estimation could be enhanced by using a surface 

variable, such as the surface moisture content. The new es 

calculation involves the surface water availability proposed 

by Barton [15], as follows: 

                      (4) 

where σ is an indicator of the near surface moisture 

availability [15]. 

Barton analyzed the ground evaporation data in terms of σ 

that is directly related to the soil moisture (SM) content. 

Hence, the author empirically related σ to the bare SM data 

for the Deniliquin (Australia) region that are calculated with 

data from active microwave sensors. The author proposed 

the following relationship: 

   SM <

 

37.5             (5) 

   SM >37.5              (6) 
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where SM is the soil moisture content (in percentage). 

Deniliquin is a semi-arid region where the bare soil 

surface saturates with moisture contents higher than 37.5%. 

The soil is clayey with a patchy vegetation pattern 

dominated by mesophytic species forming a relatively dense 

sward. In this region, the mean annual rainfall and 

evaporation amount to 40 cm and 161 cm respectively and 

the mean temperature varies from 40 ºC in July and 24 ºC in 

January. Therefore, equations (5) and (6) were derived from 

site-specific relationships and were difficult to extrapolate to 

other areas. Barton derived σ for bare soil surfaces and it is 

not evident how it varies for mixed soil-vegetation.  

Nevertheless, Barton stated that this parameterization is 

convenient because it can be simply incorporated in an ET 

model and that the formulation would not need the 

determination of either the surface temperature or the nature 

of the surface. 

From the remote sensing point of view, the SWIR energy 

is absorbed by water; therefore, these bands are sensitive to 

the surface moisture content variations [16]. Many authors 

combined the NIR and SWIR reflectance to study changes in 

foliar water content [20-27, 16, 28-29]. Fensholt and 

Sandholt  in 2003 [24] explained that even though  the 

atmosphere, the leaf/surface internal structure and the dry 

matter content might affect the vegetation SWIR reflectance, 

their effects are negligible compared with water absorption. 

Simulations of the leaf reflectance of SWIR bands showed 

that over 50% of the changes in reflectance of the SWIR 

region are due to the absorption caused by the water content 

in the vegetation [30]. 

The strong water absorption occurring at wavelengths > 

1.0 µm makes the mix surface moisture the main cause for 

the SWIR variation. Thus, the SWIR reflectances of the soil 

and vegetation are negatively related to the moisture [26,  

31]. Consequently, considering the surface as a 

vegetation-soil complex and assuming that the decrease of 

the reflectance in the SWIR is essentially due to the water 

content of the surface, we approximate σ as: 

                        (7) 

where Rsat is the SWIR reflectance of a saturated surface 

and Ri is the SWIR reflectance of any i
th

-pixel. 

Rsat is easily obtainable from the relation between Ri and 

SM, where ground data are available. Otherwise, it can be 

calculated from the mean Ri of the pixels identified as water 

in an image. In any case, the values of Ri close to zero would 

be associated to saturated pixels and can be considered as 

Rsat. This point is further explained in session 4. 

If Rsat is known, it is possible to obtain σ and apply 

equation (4) to estimate es (es=σe*s). Introducing es in 

equation (1),  

                     (8) 

Thus, ET is estimated from equation (3) with the new F 

that incorporates the physically consistent Tu estimation. 

2.3. New Water Stress Index WSIF 

ET is commonly used to index the vegetation stress, as 

well as to estimate the volume of water needed for 

irrigation. We used the new ET model in a water stress 

index, following Moran et al.’s concepts [9]. 

Moran et al. discussed the validity of the CWSI theory 

for partially vegetated areas. They derived an index based 

on the interpretation of the trapezoidal shaped IV-(Ts-Ta) 

plot, where Ta is the air temperature.  

The WDI ponders two important assumptions associated 

to the relationship between IV and the difference Ts-Ta. The 

authors assume that the difference Ts-Ta is linearly related 

to the percentage of vegetated area and to the canopy and 

soil temperatures. Another important statement made by 

Moran et al. is that, given a certain net energy (Rn), the 

temperatures of the foliage and soil are linearly related to 

the transpiration and evaporation respectively. Therefore, 

the variations in Ts-Ta would be associated to ET and (for a 

partially vegetated area) WDI is: 

                 (9) 

where (ET/Epot) is the relative evaporation.  

Thus, it is possible to rewrite Moran et al.’s formulation 

replacing ET/Epot by F (see equation 1), as follows: 

     (10) 

Knowing that es = σe
*

s, with σ determined from the SWIR 

reflectance (see equation 4), WSIF can be re-written as 

follows, 

Alpha 

WSI� =
(��
∗
��)

(��
∗
��)

=
(��
∗

��

∗)

(��
∗
��)

             (11) 

The new index tends to zero when σ tends to 1, i.e. for a 

saturated area, es tends to the saturation vapor pressure (e*s) 

[see Figure 1 and equation (11)]; therefore, WSIF would tend 

to zero indicating the non-stress condition. On the contrary, 

when σ tends to zero, es=σ*e
*

s tends to ea [see Figure 1 and 

equation (11)] and WSIF would be close to 1, reflecting a full 

stress condition. 

3. Study Area and Data 

3.1. Study Area 

The Southern Great Plain (SGP) region extends over the 

State of Oklahoma and southern part of Kansas, running 

from longitude 95.5º W to 99.5º W and from latitude 34.5º N 

to 38.5º N. It is a flat terrain, with heterogeneous land cover 

and a wide variety of weather throughout the year. Winters 

are very cold and summers are very hot and humid. The 

prairies support abundant wildlife.  
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This region has a relatively extensive and well distributed 

coverage of ground Energy Fluxes and Bowen stations, 

maintained by the Atmospheric Radiation Measurement 

(ARM) program (http://www.arm.gov). The stations are 

widely distributed over the whole domain (Figure 2). The 

sites are named according to the instruments located in each 

facility and numbered sequentially as each new center is 

opened; for example, “E5” refers to the extended facility site 

number 5. Extended facility instruments include an Energy 

Balance Bowen Ratio system (EBBR), which produces 30 

minute estimates of the vertical fluxes of sensible and latent 

heat at the local surface.  

In this work, we used data from the following stations: 

station E8 and E22, located in a grazed rangeland region; E4, 

located in an ungrazed rangeland area; E13, located in a 

region with pasture and wheat; E7, E9, E15, E20 and E27, 

located in pastures; E18 and E19 located in an ungrazed 

pasture area; E12, located in a native prairie; E10 located in 

an alfalfa region; E16 located in a wheat region; and E2 

located in a grass region. 

 

Figure 2. Southern Great Plains Region and ground station locations. 

3.2. Data and Image 

The Energy Balance Bowen Ratio (EBBR) system 

computes 30-min estimates of the sensible and latent heat 

vertical fluxes at the local scale. The fluxes from the EBBR 

stations are calculated with observations of Rn, G, and the 

vertical gradients of temperature and relative humidity (RH). 

The instruments and measurement applications are well 

established and have been used for validation purposes in 

many studies [32-33, 8, 34]. Further information about the 

ARM EBBR data and methodology is available at 

http://www.arm.gov 

The imageries used in this work were registered by the 

MODIS sensor. MODIS is one of the instruments on board 

EOS-Terra and EOS-Aqua satellites 

[http://modis.gsfc.nasa.gov/, 35-36]. 

Daytime MODIS-Aqua images for nine days during 

spring and summer, with at least 80% of the study area free 

of clouds, were selected. Table 1 summarizes the image 

information, including date, day of the year, satellite 

overpass time and image quality. MYD02, MYD07 and 

MYD11 were the three products needed for this application.  

The MYD02 has corrected radiance, reflectance and 

geolocations for 36 bands at 1x1 km. The MODIS 

Atmospheric profile (MOD07) offers several parameters. 

Air temperature (Ta) and Td profiles were used in the current 

study. The spatial resolution of this daily product is 5×5 km
2
 

at 20 vertical atmospheric pressure levels [37]. This product 

was already used in a similar work by Bisht et al.’s [38] and 

Venturini et al.’s [8, 19]. Bisht et al.’s analyzed the 

agreement between MOD07 and Ta and observed Ta in the 

SGP, concluding that MOD07 is a good surrogate of field 

observations of Ta. The MYD11 product supplies Ts images 

on a daily basis [39, 40, 19].  

Table 1. Date, day of the year, overpass time and image quality of the nine 

study days 

Date 
Day of the 

year (DOY) 

Overpass time 

(UTC) 

Image quality 

(% clouds) 

April 6th 2011 96 19:30 15 

May 4th 2011 124 19:55 1 

May 26th 2011 146 19:20 2 

May 29th 2011 149 19:50 1 

June 5th 2011 156 19:55 14 

April 10th 2010 100 19:40 5 

June 4th 2010 155 19:45 18 

4. Results 

4.1. Preprocessing 

The MODIS images were georeferenced from the latitude 

and longitude provided in each product. Ta and Td images 

corresponded to the vertical pressure level of 950 hPa, the 

profile closer to the surface in MYD07. It is worth 

mentioning that Ta and Td are assumed to be homogenous 

over the area of 5 km
2
 [37], while Ts from the MYD11 

product is provided in pixels of 1 km
2
. The study area was 

pulled out of each image and projected on a grid of 445 

columns by 445 rows, with a resolution of approximately 1 

km per pixel. 

The images of the SWIR band at 2130 nm (R7) were used 

to approximate σ. R7 was previously corrected for 

atmospheric effects following the dark object method [41].  

e
*

s and ea were estimated with Buck´s equation [42], using 

the Ts and Td images respectively. Finally, ET and WSIF 

were computed for the SGP region. 



40 Girolimetto Daniela and Venturini Virginia:  Evapotranspiration and Water Stress Estimation from TIR and SWIR Bands  

 

4.2. Analysis of σ 

The Rsat parameter must be estimated to obtain σ from 

equation (4). In this work, Rsat was attained from R7 and 

SM ground data, in gravimetric percentage.  

EBBR-SM data at 5 cm were selected because they were 

the nearest to the surface. Figure 3 shows the relationship 

between SM data and the R7 of the pixel where the EBRR 

station is located. These data indicate that R7 turns out to be 

asymptotic at 0.06 for SM values greater than 25%, 

suggesting the saturation condition of the surface for this 

region.  

 

Figure 3. Ri versus soil moisture (gravimetric %) plot where Rsat limit is 

indicated. 

This value is consistent with the regional water 

reflectance (RWR) in the SWIR band (Table 2) obtained as 

RWR=(∑Rd
water

)/n, where Rd
water

 is the mean reflectance of 

the pixels identified as water (NDVI <0) in the SWIR band 

on a given day, and n is the total of the days analyzed.  

Table 2. Water reflectance in the SWIR band for each day analyzed and 

RWR. 

Date Rd
water 

April 6th 2011 0.049 

May 4th 2011 0.044 

May 26th 2011 0.082 

May 29th 2011 0.034 

June 5th 2011 0.095 

April 10th 2010 0.052 

June 4th 2010 0.065 

RWR=(∑Rd
water)/n 0.059 

Table 3. Regional Minimum, Mean and Standard deviation of σ. 

Date Min Mean Standard deviation 

April 6th 2011 0.15 0.40 0.077 

May 4th 2011 0.16 0.37 0.098 

May 26th 2011 0.20 0.55 0.178 

May 29th 2011 0.16 0.40 0.132 

June 5th 2011 0.14 0.38 0.140 

April 10th 2010 0.17 0.41 0.076 

June 4th 2010 0.17 0.44 0.112 

June 5th 2009 0.22 0.58 0.150 

August 22th 

2009 
0.18 0.59 0.171 

Then, σ was obtained for each of the days tested with Rsat 

and R7 of each pixel for each selected day.  

The regional statistics of σ (means, minimums and 

standard deviation) are shown in Table 3.  

The maximum σ value is approximately equal to 1 for all 

the days studied, which suggests that there were saturated 

pixels during the studied period. The minimum σ value 

varies from 0.14 to 0.22, indicating that there may be pixels 

with little SM. In general, the σ regional mean value is larger 

than 0.4, indicating that the region is drying; the standard 

deviations vary from 0.076 to 0.178, which is consistent 

with different degrees of dispersion around the mean. 

Barton [15] did not reported values of σ for mixed 

soil-vegetation surfaces because σ is difficult to assess in 

mixed surfaces. Thus, we had to establish a criterium for the 

saturation condition of a soil+vegetation pixel. Hence, we 

assumed that a value of SM greater than 25% represents the 

saturation limit for a mixed surface and that σ values greater 

than 0.70 would indicate a saturated surface. It is worth 

noting that these limits may vary with the soil and vegetation 

type and that the index range interpretation may vary from 

region to region. 

 

(a) 

 

(b) 

Figure 4. (a) σ versus soil moisture (SM) for day 04/05/2011 and (b) σ 

versus SM for station E19. 

The results obtained on 04/05/2011, with only 1% of 

cloud cover, were selected to exemplify the general regional 

variations. Figure 4(a) shows the areal distribution of SM 
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and σ for the day 04/05/2011, where a good general 

agreement is observed. Station E19 was selected to 

exemplify the time variation because the data were available 

in 80% of the days analyzed. Figure 4(b) displays a temporal 

variation of SM and σ for station E19. Both variables (σ and 

SM) seem to follow the same variation over time, although 

SM is a point measurement and σ is the response of a mixed 

pixel of approximately 1 km
2
. 

4.3. Validation of ET Modified from σ (ETG-V) 

The ET estimates (ETmodeled) computed from Venturini et 

al.’s original and modified equations were contrasted with 

observed ET (ETground). The validation procedure presented 

in this session was widely used in others works [4, 43, 5, 38, 

44, 8, 19].  

The regional maximum, minimum and average ET values 

are shown in Table 4; clearly, ETV-V and ETG-V methods 

yielded similar results. The mean ET ground data differs 

from the mean ET models in 13.10 Wm
-2 

and -14.69 Wm
-2

 

for ETV-V and ETG-V respectively. While ETV-V overestimates 

the ET, ETG-V underestimates the regional observed  ET 

from field measurements. However, these differences are 

comparable to those presented by other authors [43-44, 8]. 

Table 4. Overall Maximum, Minimum and Mean ETv-v, ETG-V and ETground 

for 54 sample pixels. 

ET model Max (Wm-2) Min (Wm-2) 
Mean 

(Wm-2) 

ETground 544.63 180.18 350.62 

ETV-V 478.97 196.63 363.72 

ETG-V 492.91 185.48 335.93 

The bias, the root mean square error (RMSE) and the 

correlation coefficient (r) were used to analyze the 

soundness of the new model. The bias was calculated as 

[∑(ETground-ETmodeled)]/nobs and the RMSE as 

[∑(ETground-ETmodeled)
2
/nobs]

0.5
, where nobs is the number of 

observations (54 points). The ETV-V method presented a 

RMSE of approximately 19% from the observed ET values. 

The bias was 4%. The ETG-V methodology yielded a RMSE 

of 39.92 Wm
-2

 and -14.69 Wm
-2

 for the bias, which represent 

11% and 4% from the observed mean ET respectively. The 

correlations were r =0.92 for ETG-V and r=0.74 for ETV-V.  

The ETG-V model would imply a significant improvement 

in ET estimates with remotely sensed data. For instance, 

Venturini et al.’s in 2008 [8] published values for the RMSE 

and the bias of about 18% and 15% from the observed mean 

ET for the same region. Kalma et al.’s [45] conducted a 

thorough analysis where results from about 30 published ET 

validation studies were summarized. These authors reported 

RMSE values of about 50Wm
−2

 and relative errors of about 

15 to 30%. Long and Singh [46] recently published RMSEs 

of 45.6 Wm
−2 

and 63.1 Wm
−2

 using Landsat TM/ETM+ and 

ASTER images respectively.  

Table 5 shows the RMSE and the bias for each analyzed 

day for ETV-V and ETG-V models. In general, the RMSEs for 

the ETG-V model are lower than 13% from the mean ET of 

each day; the biases are up to 8% from the observed mean 

ET. Only the day 04/06/2010 presented a RMSE of 18% 

with a bias of the same order. The quality of the image of day 

04/06/2010 is not very good and few stations are free of 

clouds, which may cause uncertainties in the imagery. The 

ETV-V method presents RMSE maximum values of 

approximately 30% from the observed ET mean. 

These preliminary results suggest that the ETG-V model 

correlates better with the measurements than the ETV-V 

model.  

The state of the surface moisture introduced by σ is 

consistent with the Tu and es definition; consequently, σ 

improves the results of the ETV-V model. The new ETG-V 

method yields precise ET estimates while it is simple to 

apply with remotely sensed data and easily coded for 

routinary applications without the user supervision. 

Table 5. ET (Wm-2) comparison between observations and proposed method estimates for each day analyzed and the global RMSE and bias during the study 

period. 

Date # of obs. 
ETV-V ETG-V 

RMSE Bias RMSE Bias 

April 6th 2011 6 96.52 28.74 44.34 23.07 

May 4th 2011 6 98.84 70.95 36.03 -23.83 

May 26th 2011 4 20.95 10.84 16.97 7.01 

May 29th 2011 6 70.63 3.54 39.15 -23.77 

June 5th 2011 8 55.42 24.16 36.78 -18.82 

April 10th 2010 5 44.67 42.42 29.63 -8.75 

June 4th 2010 4 51.69 -19.97 84.05 -74.97 

June 5th 2009 8 65.95 -24.67 31.53 -19.95 

August 22th 2009 7 34.24 -11.94 25.85 -2.92 

Global RMSE and 

bias 
54 65.89 -13.10 39.92 14.69 

 

4.4. WSIF Results 

Knowing that ETG-V improves the ET estimates, we then 

tested the new WSIF presented in equation (11). 

The WSIF regional average values are greater than 0.50 in 

all dates analyzed, suggesting that the region is within a 

moderately stressed period. These results are comparable 

with those found by Girolimetto and Venturini in 2013 [13], 

who estimated water stress from the NDVI-Ts plot in the 

same region and days analyzed. The WSIF standard 

deviation value varies between 0.097 and 0.234, which is 

consistent with different degrees of dispersion around the 
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mean and different regional surface moisture

Since WS is not directly measurable, 

was needed. Thus, ground values, Xobs

1-(ETobs/Epot_Samani) and 1-(ETobs/Epot_Makkink

was calculated as [Σ(Xobs-WSIF)
2
/n]

0.5

Makkink’s equations [48] were chosen

and little field data requirement. The 

1-(ETobs/Epot_Samani) and WSIF showed a 

RMSE of 0.094, which represents 19% from

of WS. Comparison between 1-(ETobs/E

showed a bias and a RMSE of -0.083 and

consistent with Colaizzi et al.’s results [10]

RMSEs are of the same order, indicating

methods are about 25-30% from the average

WSIF was also contrasted with observations

soil temperature (Tsoil), precipitation of 

(PP) and ETobs to analyze the sensitivity

capture different surface conditions.

between the WSIF and SM observations

surface) is shown in Figure 5. The relationship

correlation coefficient of 0.80 with the set

This value is consistent with those 

authors [49,24]. 

Figure 5. WSIF and SM ground observations

Figure 6. WSIF and SM and Tsoil observations

The relation between WSIF and Tsoil

yielded r=0.63. The soil temperature and

soil water content, i.e. when the water

decreases, WS and Tsoil increase. 

The relationship between PP and WSI
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moisture distributions. 

 a validation strategy 

obs, were obtained as 

pot_Makkink). The RMSE 
0.5

. Samani [47] and 

chosen for their simplicity 

 difference between 

 bias of -0.046 and a 

from the mean value 

/Epot_Makkink) and WSIF 

and 0.120 respectively, 

[10]. In all cases, the 

indicating that errors of the 

average WS. 

observations of the SM, 

of the previous 5 days 

sensitivity of the index to 

conditions. The relationship 

observations (at 5 cm from the 

relationship presented a 

set of data available. 

 published by other 

 

observations relationship. 

 

observations relationship. 

soil at 5 cm (Figure 6) 

and WS vary with the 

water content in soil 

WSIF shown in Figure 7 

presents an r of 0.84, indicating

variations in PP. 

Figure 7. WSIF and PP observations

Finally, the relationship 

presented in Figure 8 yielded 

index has a well-defined inverse

the study area. WSIF values of

of ET of about 200 Wm
-2

, while

0.3) evapotranspire at a rate of

Figure 8. WSIF and

5. Summary and Conclusion

In this paper, we propose 

obtain the relative evaporation

Venturini et al. in 2008. This 

moisture σ parameter defined 

in turn can be obtained from

SWIR bands. SWIR energy is

these bands are basically sensitive

content of a surface, although

might affect the band response.

the reflectance are inversely

moisture; accordingly, we 

relationship between the reflectance

saturated pixel (Rsat) and the

Rsat can be estimated from the

average value of the pixels identified

case, Rsat would tend to the minimum
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indicating that WSIF is sensitive to 

 

observations relationship. 

 between WSIF and ETobs 

 a correlation of 0.71. The new 

inverse relationship with ETobs in 

of about 0.8 are related to values 

while unstressed surfaces (WSIF ∼ 

of 500-600 Wm
-2

. 

 

and ETobs relationship 

Conclusion 

 a new simple methodology to 

evaporation parameter (F) introduced by 

 new F is derived from the soil 

 by Barton [15] as es/e*s, which 

from the surface reflectance in the 

is absorbed by water; therefore, 

sensitive to variations in moisture 

although there are other factors that 

response. Physically speaking, es and 

inversely proportional to the surface 

propose to obtain σ as the 

reflectance in the SWIR of the 

the reflectance of the pixel i (Ri). 

the Ri vs SM curve or from the 

identified with NDVI < 0. In any 

minimum minimonum of R7. 
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The spatial and temporal analysis showed that the σ 

variation represents the SM data despite the different scales 

of observation and the pixel size. SM observations are valid 

for a few centimeters, the moisture being measured below 

the soil surface, and σ is the response of a mixed pixel of 

approximately 1 km
2
.  

As mentioned, σ enhanced the methodology to obtain the 

main parameter of Venturini et al.’s method. ETG-V was 

compared with ET observed values and ETV-V results. Even 

though this comparison is not exhaustive, results indicate 

that ETV-V overestimates the ETobs, while ETG-V 

underestimates the ETobs..  

The WSIF derived from σ  is based on the water vapor 

pressure gradient, combining the effects of surface moisture 

and temperature with those of the air, reflecting the stress 

caused by atmospheric conditions and surface parameters.  

In fact, considering the soil-plant-atmosphere complex 

system as a continuous, the soil face should be considered as 

a reservoir that supplies water to the system. Thus, any 

deficit that occurs in the reservoir adversely affects the 

system performance. In such a case, the physical stress 

process involves surface and atmospheric demands. 

The WSIF contrast with different WS indicators yields 

results similar to those published in other works. WSIF is 

sensitive to SM and PP, and represents the rate of ET. We 

emphasize that SM, ET and PP observations are completely 

independent from the WSIF.  

The relationship between WSIF and SM (R
2
=0.8) 

provided information about the index limits. For instance, a 

soil with 5% of moisture matches a WSIF of about 0.8 and a 

SM of 30% agrees with a WSIF of about 0.3. The WSIF 

would get close to 0 for surfaces with 25-30% of water, 

which represents a saturation point for most of the soils. 

The main advantage of ETG-V and WSIF is that they are 

based on universal relationships. Although Rsat is a local 

parameter that would depend on the soil and vegetation type, 

it can be obtained from the reflectance of SWIR bands of 

each analyzed scene. This advantage renders the ET and 

WSIF equations applicable with different satellite missions 

and any remote region. ETG-V and WSIF required little 

processing of satellite images, resulting convenient for end 

users who require quick and easy to apply methods. 
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