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Abstract: Waterflooding is a primary enhanced oil recovery involving the injection of water into an oil-gas rich reservoir to 

increase production capacity. Waterflooding is one of the most used enhanced oil recovery technique due to the fact that water 

is readily available and cheap to maintain. However, with the efficacy of implementing waterflooding recovery technique, only 

about 35% of the original oil in place (OOIP) is produced. This research is aimed at investigating the effect of placement 

pattern for non-conventional or smart wells. Comparison is made with respect to previous study where which conventional 

wells are used. Three cases were investigated on the basis of recovery and complexities in field development. It was observed 

from this study that conventional wells are not a good candidate for oil well productivity as compared to non-conventional 

(smart) wells. Conventional wells also pose a limitation to the economic value of the reservoir due to poor well contact. The 

first, second and third case recorded an NPV of $7.5 trillion, $7.59 trillion and $8.81 trillion respectively. Implementing smart 

wells also curtailed an early water breakthrough by about 70%. An average gain of 99.7% was also recorded for all cases as 

against previous study. These results indicated the efficiency of implementing smart wells over conventional wells. 
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1. Introduction 

Global demand for fossil fuel-based energy has become 

increasingly prevalent. As a result, oil recovery from ageing 

reservoirs has become a thing of focus to reservoir 

engineering researchers [1]. As more sophisticated 

technology are being created, the need to utilize fossil fuel 

becomes imminent. In reality, the natural state of recovering 

oil depletes overtime due to decreasing reservoir pressure or 

poor sweep efficiency. This necessitates the implementation 

of enhanced oil recovery strategy [2]. It is known that 

assessment of unconventional reservoirs is targeted on 

properties like lithology, oil-gas possibility, stress anisotropy 

which affects the petroleum accumulation [3]. Enhanced oil 

recovery involves the practice of implementing mechanical 

aiders to improve the efficiency of an oil reservoir thereby 

increasing its recovery [4]. These enhanced based techniques 

are mostly employed on existing reservoirs that have 

depleted reservoir pressure. These enhanced oil recovery 

techniques include waterflooding, steam flooding, polymer 

flooding etc. 

Well placement settings have shown to be a primary 

determinant in the recovery of oil and gas from reservoirs 

due to the fact that they are conditions to which oil industries 

use in obtaining oil to water ratio, and also the economic 

impact [5]. Oil reservoirs are heterogenous in nature. That is, 

they exhibit geological uncertainties which predominantly 

affects optimal well location. For these reason, reservoir 

engineers are faced with constitutive mechanism of 

improving reservoir simulation and subsequent optimization 

for efficient recovery. 

2. Literature Review 

Some authors have described several approaches to well 

placement settings. In Grema et al [2], the author evaluated 

the performance of a smart well in a five-spot pattern via the 

principle of optimal control theory. The optimal control 
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theory generally constitutes forward and backward 

integration of adjoint processes. However, this approach has 

a limitation in observing reservoir uncertainties. Gradient 

based method has also being applied to well setting 

optimization [6-9]. Non gradient based approach on the other 

hand were also implemented for oil well placement 

optimization [10], where an imperialist competitive 

algorithm constituting of particle swarm optimization (PSO) 

and genetic algorithm (GA) was used. In Sun and Xu [11], 

the authors applied a reduced order optimal control strategy 

using proper orthogonal decomposition to obtain an optimal 

well controls to maximize the net present value of a 

waterflooded reservoir, where the state variables and 

objective function are directly connected by a partial 

differential equation. However, all these approaches are in 

one way or the other computationally time consuming or 

complicated to realize. Another well placement problem was 

recorded by Centilmen et al [12] were they used a stationary 

and case specific inputs to investigate the optimum multi-

well locations. Recently, well placement settings were 

investigated using deep learning algorithm [13-17]. In 

Marvin et al [18], the authors used a nonlinear autoregressive 

with exogeneous input (NARx) to predict the recovery of oil 

from a waterflooded reservoir consisting of eight injection 

and one production well while in Min et al [19], the authors 

implemented a productivity potential to investigate the 

optimal well placement using artificial neural networks. 

Other enhanced oil recovery such as the use of ultrasound to 

investigate the permeability effects of rocks on 

unconventional wells was studied by Bou-Hamdam and 

Abbas [20]. This is because the permeability of hydrocarbon 

reservoirs is low with a range of about 1 to 500mD [21]. 

Apart from the EOR techniques that seeks to influence 

production efficiency of hydrocarbons, techniques like 

Extended Reach Drilling (ERD) have been observed as one 

of the advanced methods used. This is done by keeping the 

wells in the reservoir a distant away from a specific surface 

location [22]. 

In this work, the main goal is to investigate the production 

performance of three smart well patterns in terms of 

performance index (oil and water production rate, net present 

value). These results obtained were compared with the 

previous work of Grema et al [2], whom in their work 

implemented a non ICV reservoir wells. Smart wells (or 

intelligent wells) are basically defined as wells incorporated 

with inflow control valves or for short ICVs. ICVs have great 

impact in determining the efficiency of oil well contact 

during oil and gas recovery. 

3. Methodology 

Reservoirs are made of complex interconnected pores that 

contain oil and gas. Due to their heterogeneity, it is suitable 

to describe their models by a non-linear partial differential 

equation within the region of time and space [2]. Reservoir 

simulators are used to describe the discrete reservoir systems 

by employing conservation of mass and momentum, and 

these models are designed to constitute three phases of water, 

oil and gas. 

3.1. Reservoir Dynamics 

The dynamics of a typical oil reservoir is governed by the 

principle of Darcy. Reservoirs for multiphase flow systems 

are described via finite difference representation and is given 

by the equation [23]; 

g�u,	x� ,x,θ� = 0	                       (1) 

Where g  is the nonlinear vector function, �  is the state 

vector consisting of oil and gas. u  is the input vector 

otherwise known as the control vector, θ  is the model 

parameter vector. x  typically denotes a reservoir model 

having phase saturation or pressure. u  is described by the 

well flowrates, bottom hole pressure, tubing head pressure, 

choke setting. θ  describes reservoir parameters like the 

porosity, permeability etc. generally, reservoir state models 

are represented in a discretized form due to the fact that they 

are inherently complex to solve analytically. The reservoir 

model is given in its discretized form as [24]: 

V�xk�·xk+1 = T�xk�·xk	                           (2) 

Where k  represent the time index for a given initial 

condition [24]; 

��= ���	                                      (3) 

The discrete form of the reservoir is entirely made up of 

interconnecting layer of blocks known as ‘grid blocks’, 

where the properties of the reservoir is constant in the grid 

space. 

A well source vector for a given reservoir model is 

represented by incorporating a well equation of the form 

[24]: 

V�xk�·xk+1 = T�xk�·xk+q
k
, x�0�=x0	                   (4) 

Were x0  is a vector describing the initial reservoir 

conditions. The source vector is represented by the pressure 

difference between the well and grid block. Thus, it is 

convenient to represent the entire reservoir model with wells 

as such [24]: 

q
k

j
 = αk

j
·wj· �p

bhp, k

j
- p

k

j 	                          (5) 

Were p
bhp, k

j
 is the bottom hole pressure of the well having 

an index j of the grid blocks containing the well. w is a well 

constant that exhibits the geometric factor. αk is the control 
valve and it ranges as a multiplication factor of 0 to 1. 
Reservoir models are non-linear because of the inherent 
features of embedded relative permeability and monumental 
state vectors. For this reason, their simulation time might be 
prolonged. 

Generally, the reservoir output vector y is represented by 

an input function u and x based on the equation [23]: 

y
k+1

= h�uk+1,xk+1�	                         (6) 



 Applied Engineering 2022; 6(2): 50-56 52 
 

3.2. Reservoir Model Formation 

In this work, we adapted the same model configuration 

with Grema et al [2], except that in our case, inflow control 

valves were incorporated in the reservoir model. The model 

used in this work is a rectangular reservoir structure 

modelled using MATLAB reservoir simulation toolbox 

(MRST). The reservoir dimension was given to be 2500ft x 

2500ft x 150ft for x, y z -axis while a 5 x 5 x 3 cells were 

used respectively. Each dimension is divided into 5 cells, 

making a total of 75 cells for all 3 layers in the geometry. 

Heterogeneous permeability values with a 30% homogeneous 

porosity were generated and applied to all layers. For this 

model, the fluid phase was assumed to be multiphase and 

incompressible containing both oil and water. The viscosity 

used was 10 centipoise and 1 centipoise for oil and water 

respectively, while the density used was 700 kg/m3 and 1000 

kg/m3 for oil and water respectively. The reservoir was 

simulated with an initial reservoir pressure of 4500 bars and 

an iteration schedule of 2000 days. The generated 

permeability is calculated based on the equation: 

k�x� = k
�x� ϑ�x�                           (7) 

ϑ is the coefficient of modification while �
  is the mean 

value of permeability distribution. 

The performance index used to investigate the optimum 

well setting is the Net Present Value (NPV), which is given 

by the equation [25]: 

J=∑ ∆tk

�1+b�
tk

365

�∑ �P0q
o,1
n -Pwpq

wp,i
n 	 -∑ (PwlqwI,j

nNI
j=1 )

Np

i=1
�T

n=1  (8) 

Np  stands for the Number of production wells, NI  is the 

Number of injection wells, b is the Discount factor, ∆tk is the 

Time step size, tk is the evolution time, T is the time unit. The 
water injection rates are commonly used as the decision 
variables. (8) can be written in a matrix form as [11]: 

max J=∑ ∆tn

�1+b�
tn

365

�Po
Tq

o
�n�-PwP

T q
w
�n�+PwI

T q
w
�n��T

n=1 	 (9) 

Po
T, PwI

T , PwP
T  are well control vectors. 

In this problem, three cases of well placement were used as 

adapted from Grema et al [2] as well as the rock permeability 

(Table 1). The first case involves arrangement of one smart 

injection and production well in a horizontal pattern installed 

with three inflow control valves (ICVs) named icv1-icv3 and 

pcv1-pcv3 respectively. The second case has one injection and 

production well placed in a quarter five spot pattern with each 

well having three ICVs. The third case is a five-spot 

arrangement of one smart production well at the center of the 

reservoir model and four smart injection wells at the corner of 

the reservoir model. For the third case, each well has three 

ICVs making a total of 15 ICVs (Figure 1-3). The summary of 

these configuration is given in table 3. The idea behind this 

configuration was to determine the effect of well placement on 

oil recovery as well as the net present value. 

The oil reservoir depth used was 8000ft and a rock 

compressibility factor of 4×10-6psia at a reservoir pressure of 

4.5×107bar was also used. 

Table 1. Rock permeability (adopted from Grema et al [2]). 

 Layer 1 Layer 2 Layer 3 

x-direction 200mD 1000mD 200mD 

y-direction 150mD 800mD 150mD 

z-direction 20mD 100mD 20mD 

Table 2. Fluid properties. 

Saturation Krw Kro Pcow 

0.15 0.0 0.9 4.0 

0.45 0.2 0.3 0.8 

0.68 0.4 0.1 0.2 

 

Figure 1. Case 1 model with a total of 6 ICVs. 

 

Figure 2. Case 2 model with a total of 6 ICVs. 

 

Figure 3. Case 3 model with a total of 15 ICVs. 
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Table 3. Summary of reservoir configuration for each case. 

Cases Well properties/pattern 

Case 1 Horizontal well arrangement with 1 producer and 1 injector. 6 total ICVs 

Case 2 Quarter five spot well arrangement with 1 producer and 1 injector. 6 total ICVs 

Case 3 Five spot well arrangement with 1 producer and 4 injectors. 15 total ICVs 

 

4. Discussion of Results 

The oil and water production rates were recorded for each 

well placement case. The smart injectors are rate controlled 

with an initial water injection rate of 0.127m3/day, while the 

smart producers are bottom hole pressure (BHP) controlled 

with an initial reservoir pressure of 2 x 107 bar. 

4.1. Case One 

For case 1, an NPV value of $7.5 trillion was recorded. 

The efficacy of the ICVs could be observed with a very large 

value difference when compared with the work of Grema et 

al [2]. In this work, an NPV gain of 99.7% was obtained as 

against that of Grema et al [2] in which an NPV value of 19 

billion dollar was recorded. This result indicates the 

effectiveness of incorporating smart ICVs to oil well for 

greater economic realization. Likewise, the maximum oil 

production rate was shown to be 316,353m3/day (Figure 4). 

The water production rate on the other hand was achieved at 

maximum at a rate of 3.4348m3/day (Figure 5). With the 

amount of water being produced, it is noteworthy to confirm 

that the installed ICVs were able to curtal an early water 

breakthrough thereby increasing the productivity of the oil 

well. Table 4 gives a summary of the results of case 1 as 

compared to that of Grema et al [2]. 

For the BHP, a maximum pressure of 3651bar was observed 

at initial until a pressure drop was attained at 711.99bar 

(Figure 6). The effect of the producer ICVs could also be 

noticed by the pressure difference, while a steady injection rate 

was maintained all through the period of production. 

Table 4. Case one result summary. 

 Grema et al [2] This work 

Oil produced 176,408.9m3/day 316,353m3/day 

Water produced 45,345.2m3/day 3.4348m3/day 

 

Figure 4. Cumulative oil production rate (case 1). 

 

Figure 5. Cumulative water production rate (case 1). 

 

Figure 6. Bottom hole pressure (BHP) for case 1. 

4.2. Case Two 

Case 2 recorded an NPV of $7.597 trillion which indicated 

a gain of 99.8% as against the work of Grema et al [2] The 

result for case two also proves that smart wells are a better 

choice for oil well productivity when compared to 

conventional wells. 

The maximum oil production rate was also recorded to be 

318,862.7m3/day as shown in table 5. 

Table 5. Case two result summary. 

 Grema et al [2] This work 

Oil produced 151,881.05m3/day 318,862.7m3/day 

Water produced 23,540m3/day 0.0964m3/day 

Figures 7, 8 and 9 shows the cumulative oil production 

rate, water production rate and bottom hole pressure 

respectively, for case two. Also, the BHP value was recorded 

at the beginning of production to be 3833.8bar dropping 

down to a pressure of 639.374bar. this also indicates a near 

perfect ICV implementation. 
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Figure 7. Cumulative oil production rate (case 2). 

 

Figure 8. Cumulative water production rate (case 2). 

 

Figure 9. Bottom hole pressure (BHP) for case 2. 

It’s obvious that an early water breakthrough was curtailed 

judging from the level of water produced and pressure 

difference during the production period. 

4.3. Case Three 

For case three, an NPV of $8.81 trillion was obtained 

incurring a gain of 99.8% over that of Grema et al [2] which 

obtained an NPV of $17 billion. A total oil production rate of 

235,979.2m3/day was also obtained during period of 

prdouction (Table 6). 

Table 6. Case three result summary. 

 Grema et al [2] This work 

Oil produced 5,936.8m3/day 235.979.2m3/day 

Water produced 245.23m3/day 42,271.2m3/day 

 

Figure 10. Cumulative oil production rate (case 3). 

 

Figure 11. Cumulative water production rate (case 3). 

 

Figure 12. Bottom hole pressure (BHP) for case 3. 

Table 7. NPV comparison for all cases. 

NPV Grema et al [2] This work Gain 

Case 1 $19.5 billion $7.59 trillion 99.7% 

Case 2 $19.0 billion $7.59 trillion 99.7% 

Case 3 $17.0 billion $8.81 trillion 99.8% 
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Figure 13. NPV for all cases. 

Figures 14, 15 and 16 shows the relative permeability 

curve, reservoir flux intensity and reservoir pressure 

respectively. 

 

Figure 14. Relative permeability curve. 

 

Figure 15. Reservoir flux intensity. 

 

Figure 16. Reservoir pressure. 

In table 7, we can see the huge difference in the NPV value 

obtained in this work against the previous work of Grema et 

al [2]. This implies that for efficient oil well productivity, 

smart wells could stand a chance of higher preference. Oil 

well contact with an appropriate mitigation of early water 

breakthrough is shown to be imminent. Case three from this 

study was shown to have a higher NPV which establishes the 

bases for number of injection wells efficacy. More injection 

wells could incur a greater amount of oil that will be 

produced. However, surplus water injection could pose a 

threat to proper sweep efficiency. 

5. Conclusion 

In this study, three different smart wells configuration were 

modelled using same reservoir geometry and fluid property. 

Comparison is made with respect to previous study where 

which conventional wells are used. At the end of this study, it 

was observed that conventional wells are not a good 

candidate for oil well productivity as compared to non-

conventional (smart) wells. Conventional wells also pose a 

limitation to the economic value of the reservoir due to poor 

well contact. Hence it is suggestive that for a reservoir to 

attain to its greatest production potential, smart wells could 

be the preferential choice. It is recommended that this study 

be extended to a more complex reservoir geometry having 

structural uncertainty and faults. 
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