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Abstract: We introduce the concept “strongly equivalent” for integral algebraic equations (IAEs). This definition and its 

corresponding theorems construct powerful tools for the classifying and analyzing of IAEs (especially numerical analysis). The 

related theorems with short proofs provide powerful techniques for the complete convergence analysis of discretised 

collocation methods on discontinuous piecewise polynomial spaces. 
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1. Introduction 

Sometimes another solution for a problem may help us to 

progress more and to dig deeper in science. Integral algebraic 

equations (IAEs) are mixed system of the first kind and the 

second kind Volterra integral equations. They are classified 

by index definition. Recently, their numerical solution using 

collocation methods on piecewise polynomial spaces has 

attracted more attention to the researchers. However, there 

are many questions, unsolved on this subject. The 

convergence analysis of continuous or discontinuous 

collocation method for a very restrictive cases like 

Hessenberg type or low index IAEs has been done more 

recently (see for example [7,10] for IAEs of index 1, [10] for 

IAEs of index 2, [11] for IAEs of index 3 and [12,13] for 

Hessenberg type IAEs of arbitrary index). 

Convergence analysis for IAEs of index 1, using 

continuous collocation methods on piecewise polynomial 

spaces has not been provided yet. However, a direct complete 

analysis of linear IAEs of index 1 using discontinuous 

collocation methods on piecewise polynomial spaces has 

been done by H. Liang and H. Brunner [10]. The aim of this 

paper is to get another proof for the convergence analysis for 

IAEs of index 1 by separating the problem to simple cases. 

The lemmas and theorems introduced here can help us to 

obtain convergence analysis of higher index IAEs and more 

complex methods like continuous collocation methods. 

Consider integral algebraic operator of the form 

0
[ , , ]( ) ( ) ( ) ( , , ( )) ( ),

t

A K f y A t y t K t s y s ds f tΓ = + −∫       (1) 

on : [0, ],t T∈ =I  where ( , )
r r

A
×∈ C ℝI is a singular matrix 

with constant rank for all ,t ∈ I  ( , ),
r

f ∈ C ℝI  ( , ),
r

y ∈ C ℝI  

and ( , )
r r

K ∈ ×C ℝ ℝD  with : {( , ) : 0 }.t s s t T= ≤ ≤ ≤D  We 

study Integral Algebraic Equations (IAEs) of the form 

[ , , ]( ) 0A K f yΓ ≡                            (2) 

where y is the unknown vector. If ( , , ) ( , ) ,K t s y k t s y=  where 

( , ),
r

k ∈ C ℝD  then, the system (1) is a linear IAE. 

The notion of the index is used to classify IAEs. There are 

different notions of index for classification of IAEs. Gear 

introduced differential index for IAEs [4]. The left index for 
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system (1) is another notion that was introduced by Russian 

mathematicians [2, 3]. Lamm [9] introduced “v-smoothing” 

for the first kind Volterra integral equations which is 

equivalent with differential index. The tractable index is 

defined by [1, 6, 10, 11]. In this paper we use “rank-degree” 

index [12, 13]. 

Here, we will introduce the concept “Strongly equivalent”, 

IAEs. We will establish theorems on the numerical and 

analytical solutions of the strongly equivalent IAEs, which 

reduce the convergence analysis of IAEs. This is done by 

decomposing the problem to the simple classes. For IAEs of 

index 1, we divide the system into two famous class of IAEs: 

A system of the first kind Volterra integral equations and a 

system of IAEs which was investigated in [7]. 

The next sections are organized as follows: 

In section 2, we recall “rank-degree” index and the 

conditions under which the system (1) -(2) has unique 

solution. In section 3, we introduce the concept of “strongly 

equivalent” for IAEs and we show that the strongly 

equivalent systems have same solutions. In section 4, we 

recall discretised collocation methods on discontinuous 

piecewise polynomial spaces and we show that the 

approximate solutions of a stated methods for strongly 

equivalent IAEs are of the same order. In section 5, we divide 

IAEs of index 1, with regard to the “strongly equivalent” 

concept, to two categories. Then, theorems about the 

existence of a unique numerical solution are stated. In section 

6, a global convergence analysis of the discretised 

discontinuous collocation methods (DDCM) solutions is 

investigated. In section 7, we study the nonlinear systems of 

IAEs. 

2. Index Definition and the Existence of 

Unique Solutions 

Definition 2.1 The matrix ( )A t− is called semi-inverse 

matrix for ( )A t if it satisfies 

( ) ( ) ( ) ( ),A t A t A t A t− =  

which can be rewritten as 

( ) ( ) 0,V t A t =  

with 

( ) ( ) ( )V t A t A t
−= −I                               (3) 

where I  is an identity matrix. 

The following conditions are necessary and sufficient for 

the existence of a semi-inverse matrix ( )A t
−

 with elements in 

([0,1], )
p r r×

C ℝ  [3]: 

1. The elements of ( )A t  belong to ([0,1], ).
p r r×

C ℝ  

2. ( ) , [0,1].rankA t const t= ∀ ∈  

The IAEs are classified using index notion. From many 

definitions of index (i. e. [1, 2, 3, 4]), we use the following 

one. 

Definition 2.2 [12, 13] Suppose ( , )
r r

A
×∈ C ℝI and 

( , ).
r r

K
×∈ C ℝD  Let 

0 0, ,A A K k≡ ≡  

( )( ( ) ( )) ,
i i i

d
y A t A t y y

dt

−Λ = − +I  

1 1
( ( ) ( )) ( , ), , 0, , 1.

i i i i i i i i
A A A t A t K t t K K i ν−

+ +≡ + − = Λ = … −I  

Then, we say that the “rank degree” index of ( , )A K  isν  

if 

1
( ) ( , ) for 1, , ,

r r

iA t i ν×∈ = …C ℝI  

( ) , for 0, , ,irankA t const t i ν= ∀ ∈ = …I  

det 0, for 0, , 1, det 0.iA i Aνν= = … − ≠  

Moreover, we say that the “rank-degree” index of linear 

system (2) is ν  ( rind ν= ) if in addition to the above 

hypotheses, we have 

0 1, , 0, , 1,i i iF f F F i ν+≡ ≡ Λ = … −  

1
( , ), 1, , ,

r

iF i ν∈ = …C ℝI  

where I  is an identity operator. 

Theorem 2.1 [12, 13] Suppose the following conditions are 

satisfied for (2): 

1. 1,rind ν= ≥  

2. 0 ( ) ( , ),
r r

A t
×∈ C ℝI  0 ( ) ( , ),

r
F t ∈ C ℝI 0 ( , ),

r r
K

×∈ C ℝD  

1
( ) ( , ),

r r

iA t
×∈ C ℝI

1
( ) ( , ),

r

iF t ∈ C ℝI
1
( , ),

r r

iK
×∈ C ℝD  for 

1, , ,i ν= ⋯  

3. 1
(0) (0) (0) (0)i iA A F Fν ν

− = for 0, 1,i ν= −⋯ (consistency 

conditions) 

4. ( )( ) deg det ( ) ( ) ' ,i i i i i irank A A A A A A cλ− − −− = − + − + =I I I I  

Then the system (2) has a unique solution on .I  

The condition 2 of the Theorem 2.1 will not be used in the 

next sections, since the definition of index includes this 

condition. 

3. Strongly Equivalent 

In this section, we introduce the concept of “strongly 

equivalent” systems. 

Definition 3.1 Two systems [ , , ]( ) 0A K f yΓ ≡ and 

ɶ � ɶ[ , , ]( ) 0A K f yΓ ≡  are called strongly equivalent if there exist 

pointwise nonsingular matrix functions ( , )
r r

E
×∈ C ℝI and 

( , )
r r

F
×∈ C ℝI  such that 



14 Gholamreza Karamali et al.:  A Convergence Analysis of Discontinuous Collocation Method for IAEs of  

Index 1 Using the Concept “Strongly Equivalent” 

ɶ

�

ɶ

( ) ( ) ( ) ( ),

( , , ( )) ( ) ( , , ( ) ( )),

( ) ( ) ( )

A t E t A t F t

K t s y s E t K t s F s y s

f t E t f t

=

=

=

        (4) 

If this is the case, we write ɶ � ɶ[ , , ] ~ [ , , ].A K f A K f  Moreover, 

if ( , )
r r

E
ν ×∈ C ℝI  and ( , )

r r
F

ν ×∈ C ℝI  we can write “strongly 

ν -equivalent” instead of “strongly equivalent”. 

Theorem 3.1 Let ɶ � ɶ[ , , ] ~ [ , , ].A K f A K f  Then, x  is a solution 

of [ , , ]( ) 0A K f xΓ ≡  iff 1
F x

−  is a solution of , ,[ ]( ) 0.A K f yΓ ≡ɶ ɶ ɶ  

This means if one of the strongly equivalent systems has a 

unique solution, another, has also a unique solution. 

Proof. Let [ , , ]( ) 0.A K f xΓ ≡  Multiplying this equation by 

E  and using 
1

,x FF x
−≡  we obtain 

1
[ , , ]( ) 0.EA EK Ef FF x

−Γ ≡  

Hence, for : [0, ],t T∈ =I   

1 1
0( ) ( ) ( ) ( ) ( ) ( ) ( , , ( ) ( ) ( )) ( ) ( ) 0,tE t A t F t F t x t E t K t s F s F s x s ds E t f t

− −+ − =∫����� �����
 

and thus ɶ � ɶ 1
[ , , ]( ) 0,A K f F x

−Γ ≡  (It should not be confused with 

the substitution rule in calculus). Conversely, suppose 

ɶ � ɶ 1
[ , , ]( ) 0.A K f F x

−Γ ≡  We can multiply this equation by 1
E

−  to 

obtain [ , , ]( ) 0,A K f xΓ ≡  which proves the theorem. 

This theorem is not true for strongly equivalent time 

variant DAEs, therefore, Kunkel and Mehrmann [8] has 

defined globally equivalent concept. 

4. Discretised Collocation Methods on 

Piecewise Polynomial Space 

Let 0 1: { : 0 ... },h n Nt t t t T= = < < < =I be a given (not 

necessarily uniform) partition of ,I  and set 1: ( , ],n n nt tσ +=  

1: [ , ],n n nt tσ +=  with 1n n nh t t+= −  for 0,..., 1n N= −  and 

diameter of this partition be { : 0 }.nh max h n N= ≤ ≤  

Definition 4.1 [1] For a given mesh ,hI  the piecewise 

polynomial space, with 0,µ >  1 ,d µ− ≤ ≤  is given by 

( )
( ) : { ( ) : | ( 0,1,..., 1)}.

n

d d

h v C v n Nµ σ µπ= ∈ ∈ = −S I I        (5) 

Here, µπ denotes the space of (real) polynomials of degree 

not exceeding µ  (also, 
1
( )C

−
I  is the space of absolutely 

continuous functions). 

In this paper, we only consider 1d = − which the 

corresponding spaces is called discontinuous space. By 

defining 1| ( ) ,
n

r

n h mu u σ π −= ∈  the dense output of approximate 

solution ( 1)

1 ( )h m hu
−
−∈S I  can be obtained by 

,

1

( ) ( ) , (0,1],

m

n n n j n j

j

u t sh L s U s

=

+ = ∈∑          (6) 

where the polynomials 

1

( ) : , 1, , ,

m

k
j

j kk

k j

v c
L v j m

c c=
≠

−
= = …

−∏  

denote the Lagrange fundamental polynomials with respect 

to the distinct collocation parameters 1 20 1.mc c c< < < … < ≤  

The unknowns , ,: ( ),n i n iU u t=  can be obtained by applying 

discretised discontinuous collocation methods (DDCM). 

Implementing DDCM to the IAE (2), we obtain ,n iU  by 

solving following system (see [1, 12]): 

, , , , , , ,

1

( ) ( , , ) ( )

m

n i n i n i ij n i n j n j n i

j

A t U F h a K t t U f t

=

+ + =∑      (7) 

for 1, , ,i m= … where the lag term is defined by 

1

, , ,

0 1 1

( , , ( ) ),

n m m

n i j n i l l j l j

l j j

F h b K t t sh L s U

−

= = =

= +∑∑ ∑  

and , .n i n it t c h= +  Here, 
1

0
( )j jb L s ds= ∫  and 

0
( )

ic

ij ja L s ds= ∫  

for 1, ,i m= … and 1, , ,j m= …  [1,12]. 

Theorem 4.1. Let hu be the unique approximate solution of 

applying DDCM to the IAE ɶ � ɶ[ , , ] ~ [ , , ].A K f A K f  Then, ɶ ,hu

the approximate solution of applying DDCM to the IAE 

ɶ � ɶ[ , , ]( ) 0,A K f yΓ ≡  is unique and 

1

, , ,( ) ( ) ( ), 0, , 1,h n i n i h n iu t F t u t n N
−= = … −ɶ           (8) 

where 1, , .i m= …  

Proof. The proof is by induction on .n  Suppose 0.n =  We 

show the system 

� ɶ
0, 0, 0, 0, 0, 0,

1

( ) ( ) ( , , ( )) ( ),

m

h hi i ij i j j i

j

A t u t h a K t t u t f t

=

+ =∑ɶ ɶ        (9) 

for 1, ,i m= … has a unique solution. Multiplying the left-

hand side of equation (9) by 1

0,( ),iE t
−  and left-hand side of 

the term ɶ 0,( )h ju t  by 1

0, 0,( ) ( ),i iF t F t
− we obtain 

ɶ

�

ɶ

1 1

0, 0, , 0, 0,

1 1

0, 0, 0, 0, 0, 0,

1

1

0, 0,

( ) ( ) ( ) ( ) ( )

( ) ( , , ( ) ( ) ( ))

( ) ( ) , 1, .

hi i n i i i

m

hij i i j j j j

j

i i

E t A t F t F t u t

h a E t K t t F t F t u t

E t f t i m

− −

− −

=

− = …

∑

	���
����
ɶ

�������

	�������
��������
ɶ

�������

	��
���

    (10) 
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Setting 0, 0,: ( ) ( ),hi i iX F t u t= ɶ the system (10) can be written 

as 

0, 0, 0, 0,

1

( ) ( , , ) ( ), 1, .

m

i i ij i j j i

j

A t X h a K t t X f t i m

=

+ = = …∑    (11) 

which has unique solution 0, 0, 0,( ) ( ) ( ),hi h i i iX u t F t u t= = ɶ by 

hypotheses of the theorem. Now, assume that (8) is true for 

.n  we will show that it is true for 1.n +  Hence we show that 

ɶ 1
1, 1, 1,( ) ( ) ( )h n i n i h n iu t F t u t−

+ + +=  is a unique solution of the 

system 

ɶ �

� ɶ

1, 1, 1, 1, 1,

1

1, , 1,

0 1

( ) ( ) ( , , ( ))

( , , ( )) ( ),

m

h hn i n i ij n i n j n j

j

n m

hj n i l j l l j n i

l j

A t u t h a K t t u t

h b K t t c h u t f t

+ + + + +
=

+ +
= =

+

= − + +

∑

∑∑

ɶ ɶ

ɶ

     (12) 

for 1, .i m= … Multiplying the left-hand side of equation (12) 

by 1,( ),n iE t +  and left-hand sides of the terms ,( )h l ju tɶ by 

1

, ,( ) ( ),l i l iF t F t
−  for 0, , 1,l n= … +  we obtain 

ɶ

�

�

1

1, 1, 1, 1, 1,

1

1, 1, 1, 1, 1, 1,

1

1, 1,

0 1

( ) ( ) ( ) ( ) ( )

( ) ( , , ( ) ( ) ( ))

( ) ( , ,

hn i n i n i n i n i

m

hij n i n i n j n j n j n j

j

n m

j n i n i l j l

l j

E t A t F t F t u t

h a E t K t t F t F t u t

h b E t K t t c h

−
+ + + + +

−
+ + + + + +

=

+ +
= =

+

∑

∑∑

	����
�����
ɶ

�������

	���������
����������
ɶ

�������

ɶ

1

, , ,

1, 1,

( ) ( ) ( ))

( ) ( ) , 1, .

hl j l j l j

n i n i

F t F t u t

E t f t i m

−

+ ++ = …

	��������
���������
ɶ

�������

	��
���

 (13) 

Setting 1, 1,: ( ) ( ),hi n i n iX F t u t+ += ɶ and using the induction 

hypothesis ɶ 1

, , ,( ) ( ) ( )h l i l i h l it F t u tu −=  for 0, ,l n= …  the system 

(13) can be written as 

1, 1, 1,

1

1, , 1,

0 1

( ) ( , , )

( , , ( )) ( ),

m

n i i ij n i n j j

j

n m

j n i l j l h l j n i

l j

A t X h a K t t X

h b K t t c h u t f t

+ + +
=

+ +
= =

+

= − + +

∑

∑∑
 (14) 

which has unique solution 1, 1, 1,( ) ( ) ( ),hi h n i n i n iX u t F t u t+ + += = ɶ

by hypotheses of the theorem. This completes the proof of 

the theorem. 

Corollary 4.1 Let hu  and ɶ hu  be the approximate solutions 

of applying DDCM to the linear IAEs [ , , ]( ) 0A K f yΓ ≡  and

� � � ɶ[ , , ]( ) 0,A K f yΓ ≡  which have unique solution y and ɶ,y  

respectively. Let ɶ � ɶ[ , , ] ~ [ , , ].A K f A K f  Then, there exist two 

positive constants 1c and 2c  such that 

1 2c y u y u c y u− < − < −ɶ ɶ ɶ ɶ‖ ‖‖ ‖ ‖ ‖ 

where f‖ ‖  is the max norm, , ,max {| ( ) |},i n n if t  for

0, , 1,n N= … −  1, , .i m= …  

Proof. By Theorems 3.1 and 4.1, there exists a pointwise 

nonsingular matrix function ( , )
r r

F
×∈ C ℝI  such that 

ɶ 1( ) ( ) ( )y t F t y t−=  and ɶ 1
, , ,( ) ( ) ( ).h n i n i h n iu t F t u t−≤  Therefore, 

1
y u F y u

−− ≤ −ɶ ɶ‖ ‖‖ ‖‖ ‖ 

and 

.y u F y u− ≤ −‖ ‖‖ ‖‖ ‖  

Since, det ( ) 0,F t t≠ ∀ ∈ I  and 
1 ( )
( )

det ( )

adjF t
F t

F t

− = , hence 

1
( , ).

r r
F

− ×∈ C ℝI  Thus, both functions ( )F t  and 
1
( )F t

−
 are 

bounded and there exist real numbers 1 0c >  and 2 0c >  such 

that 2F c<‖ ‖  and 
1

1

1
.F

c

− <‖ ‖  Consequently, we have 

1c y u y u− ≤ −ɶ ɶ‖ ‖‖ ‖ 

and 

2 ,y u c y u− ≤ −ɶ ɶ‖ ‖ ‖ ‖  

which prove the theorem. 

Corollary 4.1 shows that the approximate solutions of the 

stated methods for strongly equivalent systems 

[ , , ]( ) 0A K f yΓ ≡  and � � � ɶ[ , , ]( ) 0,A K f yΓ ≡  are of the same 

order, which is the key point in the numerical analysis of 

IAEs. 

5. IAEs of Index 1 

By using Theorem 3.1, the linear IAEs (2) of index 1, can 

be divided to two categories. 

Theorem 5.1. For all linear IAEs of index 1: 

(I) there exists a pointwise nonsingular matrix function k̂  

of dimension ,r r×  and a vector function ˆ ,f  such that 

[ ]ˆ ˆ[ , , ] ~ , ,A k f O k f                              (15) 

where O  is a zero matrix function, or 

(II) there exist matrix functions ijkɶ  and � ,jf  for 

, {1, 2},i j ∈  such that 
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�

�

11 12 1

21 22 2

[ , , ] ~

( )0 ( , ) ( , )
, ,

0 0 ( )( , ) ( , )

A k f

f tk t s k t s

f tk t s k t s

    
              

I ɶ ɶ

ɶ ɶ

      (16) 

where ɶ 22 ( , )k t t  is a pointwise nonsingular matrix function of 

dimension 1 1( ) ( ).r r r r− × −  

Proof. If, 0.A ≡  then, det ( , ) 0k t t ≠  on ,I  and this is the 

first kind Volterra integral equation, (case (I)). Thus, suppose 

10 .rankA r const r< = = <  Therefore, there exist nonsingular 

matrix functions 0E  and 0F  such that 

0 0

0
( ) ( ) ( ) ,

0 0
A E t A t F t= =

 
 
 

Iɶ                  (17) 

since ( ) .rankA t const=  Hence, 

ɶ ɶ
0 0

0
, .

0 0
A A F A E

− −−= =
 
 
 

I
 

Let 

11 12

0 0

21 22

( , ) ( , )
( , ) ( ) ( , ) ( ) ,

( , ) ( , )

k t s k t s
k t s E t k t s F s

k t s k t s
= =

 
  
 

ɶ ɶ
ɶ

ɶ ɶ
 

and 

�
�

�
1

0

2

( )
( ) ( ) ( )

( )

f t
f t E t f t

f t

 
= =  

 
 

 

Then, we have 

ɶ ɶ ɶ

11 21 22

0 0

0
.

( , ) ( , ) ( , )

( )( ( ) ( ) ( , )) ( ) ( ) ( , )

t t t t t t

E t A t AA k t t F t A AA k t t

k k k

−−

=

+ − = + −

 
 
 

I

I I ɶ

ɶ ɶ ɶ

 

On the other hand, we see that using the definition 2.2, the 

matrix function ( ) ( ) ( , )A t AA k t t
−+ −I is nonsingular on .I  

Hence ɶ 22 ( , )k t t  is also a nonsingular matrix function on .I  

Remark 5.1 It is straightforward to see that the strongly 

equivalency of the equation (16) can be replaced by the 

strongly ν -equivalency if the ν th derivatives of the matrix 

functions ,A  k  and f  with respect to their variables, are 

continuous. 

6. Global Convergence Analysis 

The global convergence of the DDCM for the cases (I) and 

(II) has been studied in [1] (Section 2.4) as system of 

dimension 1,r =  and in [7] as system of dimension 2.r =  

For system of arbitrary dimension, one can see [12] 

(Theorem 2, with 1m = ∞  ). The complete global 

convergence analysis of the method DDCM is investigated 

[10]. Another proof can be obtained as follow: 

Theorem 4.1. Let the linear system (2) be of index 1 and 
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for .m ∈ℕ  Then the approximate solution of applying the 

DDCM for sufficiently small ,h say, hu with distinct collocation 

parameters 1 , , (0,1]mc c… ∈  converges to the solution ,y  for 

1,m ≥  as 0,h →  with .,Nh const< if and only if 
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Moreover, the following error estimates holds: 
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Proof. Using Corollary 4.1, and Theorem 5.1 it is 

sufficient to prove this theorem for the cases (I) and (II) of 

the Theorem 5.1. The case (I) can be obtained by taking 

1m = ∞  in [12] (Theorem 2), for dimension 1,r =  see [1] 

(Section 2.4). For case (II), the required analysis exists only 

for dimension 2,r =  [7], and a similar proof can be provided 

for arbitrary dimension. 

Remark 6.1 The supperconvergence result of [7] can be 

expressed for the case (II), as a direct result of corollary 4.1 

(see also [10]). 

7. Nonlinear Systems 

Assume that the system (2) has a unique solution 

( , )
r

y ∈ C ℝI . This assumption is important, since many 

nonlinear integral equations are ill-posed. Suppose K has 

continuous derivative with respect to .s To generalize the 

index definitions for nonlinear systems given in [12, 13], we 

introduce following definition 

Definition 7.1 We say that the index for the nonlinear 

system (2) is ,ν  if there exists a neighborhood of the exact 

solution ,y  ( ) { ( , ) : },
r

N y y
νη η= ∈ − ≤C ℝI

ε
ε‖ ‖  0,>ε  in 

which the index of linear system 

0

( ) ( ) ( , , ( )) ( ) ( )
t

y
A t y t K t s s u s ds R tη+ =∫           (18) 

be ,ν  for all ( )N yη ∈
ε

 and for a function ( , ).
r

R
ν∈ C ℝI  

Moreover, we say that the index of ( , )A K  is ,ν  if there 

exists a neighborhood of the exact solution ,y  ( )N y
ε

in 

which the index of ( , )uA K be ,ν  for all ( ).N yη ∈
ε

 

By using the definition (2.2), if the index of the system 

(18) for one ( , )
r

R
ν∈ C ℝI beν for other ( , )

r
R

ν∈ C ℝI is also 

.ν  Thus, the definition of index is well defined. Now, we can 
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analyze the systems of nonlinear IAEs using DDCM. We use 

Peano interpolation formula 

, , ,
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where , ( )m nS t is the Peano reminder term, to obtain 
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 (20) 

from (2). Using mean value theorem, there exists ( )sθ  

between ( )y s and ( )u s such that
 

( , , ( )) ( , , ( )) ( , , ( ))( ( ) ( )).h u hK t s u s K t s y s K t s s u s y sθ− = −
  

Subtracting system (20) from (7) we obtain 
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          (21) 

where, .he u y= −  Note that, if we apply the DDCM to the 

linear system 

0
( ) ( ) ( , , ( )) ( ) ( ),

t

yA t y t K t s s u s ds R tθ+ =∫          (22) 

then we will obtain a linear system of the error function 

similar to the system (21). Thus, the order of the error 

functions in the nonlinear systems of indexν is equal to its 

corresponding linear system of index .ν  

Remark 7.1 Note that, in the above argument, we do not 

know anything about the continuity or the differentiability of 

the function ,θ  hence of the function ( , ) ( , , ( ))yK t s K t s sθ=  

with respect to .s However, it does not damage our expressed 

reasons, since in the above analysis we only need the 1m +  

times differentiability of the solution (to use the Peano 

interpolation formula), which follows from the assumption 
1

( , , ) ( , ).
m r r

K t s y
+∈ ×C ℝ ℝD  

Now, we can state the following theorem which is the 

direct result of the expressed facts. 

Theorem 7.1. Let the nonlinear system (2) be index 1 and 
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for .m ∈ℕ  Then the approximate solution of applying the 

DDCM for sufficiently small ,h say, hu
 
with distinct collocation 

parameters 1 , , (0,1]mc c… ∈
 
converges to the solution ,y  for 

1,m ≥  as 0,h →  with .,Nh const<  if and only if 
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