Applied and Computational Mathematics
2018; 7(1-1): 1-11
http://www.sciencepublishinggroup.com/j/acm

doi: 10.11648/j.acm.s.2018070101.11

ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online)

[Ny J' v I Y
otlencer

Science Publishing Group

Convergence Analysis of Piecewise Polynomial Collocation
Methods for System of Weakly Singular Volterra Integral

Equations of The First Kind

Gholamreza Karamalil, Babak Shiri"* *, Mahnaz Kashfi’

'Shahid Sattari Aeronautical University of Science and Technology, South Mehrabad, Tehran, Iran

2Department of Applied Mathematics, University of Tabriz, Bahman Boulevard, Tabriz, Iran

Email address:

g_karamali@iust.ac.ir (G. Karamali), shiri@tabrizu.ac.ir (B. Shiri), mahnaz kash@gmail.com (M. Kashfi)

*Corresponding author

To cite this article:

Gholamreza Karamali, Babak Shiri, Mahnaz Kashfi. Convergence Analysis of Piecewise Polynomial Collocation Methods for System of
Weakly Singular Volterra Integral Equations of The First Kind. Applied and Computational Mathematics. Special Issue: Singular Integral
Equations and Fractional Differential Equations. Vol. 7, No. 1-1, 2018, pp. 1-11. doi: 10.11648/j.acm.s.2018070101.11

Received: March 21, 2017; Accepted: March 22, 2017; Published: April 11,2017

Abstract: We study regularity of solutions of weakly singular Volterra integral equations of the first kind. We then study the
numerical analysis of discontinuous piecewise polynomial collocation methods for solving such systems. The main purpose of
this paper is the derivation of global convergent and super-convergent properties of introduced methods on the graded meshes.
We apply relevant methods to a system of fractional differential equations and analyze them. The numerical experiments

confirm the theoretical results.
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1. Introduction

In this paper, we consider a system of weakly singular
Volterra integral equations of first kind (SWSVIEFK) of the
form

Ju k(t,s)ygs) —

07 :=[0,T], 1
T tos) t [0.7] M

where, 0<a <1, TOR, vON, f:7 . R". The domain of
the matrix function k(z,s): D - R"™, is

D={(ts)|(t,s)0T>,0<s<t<T}.

Also, we suppose that k(z,7) is a nonsingular matrix for all

tO0Z. The y: R - R’ is the unknown vector function. The
system (1) is an Abel's integral equation if k(z,s) =1.
The numerical solution of weakly singular Volterra integral

equations of first kind has extensively been studied (see for
example [2, 3,4, 5,6, 8,9, 10, 11, 13, 14, 15, 16], but it does

not mean that this subject has completely been studied. There
are some unsolved problems which are important and need
more challenge. One of them is convergence analysis of
collocation methods on the piecewise polynomial spaces for
solving system (1), [3]. The aim of this paper is to provide a
complete convergence analysis of these methods for this
system.

The piecewise polynomial collocation methods (PPCM)
are easily programmable and they have rapid convergent
order for many equations including integral or differential
operator. They have extensively been examined by many
authors. We refer here to [1, 3, 7, 12] and literature given
therein. Therefore, it is important to analyze PPCMs for the
system (1).

Suppose vOAN. Let ¢g:R—>R and f:Q R"™ be
scaler and matrix functions, respectively, where Q is a set. In
this paper, by gf we mean

(qf)g,':q}(;,-a i,jD{l,"',V},

and the norm we mean the max norm
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Il 7l= max, o, ., Sup| f (]
t0Q

The paper is organized as follow:

In section 2, we review existence, uniqueness and
smoothness of the solutions of system (1). In section 3, we
recall application of the collocation method on the continuous
piecewise polynomial spaces. In section 4, we generalize
Granwall’s inequalities for matrix function equations. In
section 5, we give the global convergence of the collocation
method on the continuous piecewise polynomial spaces. In
section 6, we investigate the stability function introduced in the
previous section. Finally, in section 7, we present numerical
experiments which support theoretical results.

2. Regularity Properties

The arguments of this section can be obtained by
arguments similar to [3] (section 2.1.1). Here, we should
concern that the systems we investigated are of dimension
greater than 1 while the system in [3] is of dimension greater
1. Therefore, instead of dividing by a function we should
multiply by an inverse of corresponding matrix function.

Suppose G, 0(C(Z))" and

G.(2) = sin(7my) P
T

d -
z,z)— z=10)""dt. 2
(22— [ fOG=0" 2)

Define resolvent kernel associated with the given kernel
K, (z,5) as

R(z,s):=lim Y H (z,5)
L=

where
H(z,5) = j H (z,v)H,_, (v,s)ds, i 22,
and
H,(z,8)=
_sin(7m) = (Z’Z)aij-n k(s+v(z _S)’S)dv.

T 2% vI(1-v)™

Then, we obtain corresponding Volterra’s fundamental
results that

y(z)=G,(2)+ jo‘" R(z,5)G, (s)ds. 3)

is a unique solution of system (1). Now, we can argument about
the regularity of solutions. Supposing k0O (C” (D))W and

123%

Z—km(c"’(p))””, we obtain H (zs5)O(Cc" (D). It is
t

straightforward then to show that R(z,s) D(C”’ (D))W.
Therefore, the regularity of y depends on the regularity of G, .

vxv

Theorem 2.1 Let kO(c" (D)™, %D(C”(D))W, mON,

1()=1"g(t) where gO(C'(0.T))", 1<d<m+1, dON,

and B=1-a. Then, the system (1) has a unique solution and
there exists ¢ O (C”H ([O,T]))V such that y(z) = z""*"¢q(z).

Proof. Integrating by substitution ¢ = vz, we have

[ gz -0""dr =", (2)
Where
_.['.5 a-1
6,(2) = [ Vg1 -v) v,
and hence we obtain
d (: B a-1
;Lz 2(t)(z-1)""dt
=277 (20 (2) + (@ + B, (2)).

Since g I](C"([O,T]))V, we conclude that

g, 0(c’(0.7D)",
and consequently
24" (2)+ (@ + g, () 0" (0.7]) .
Thus, using equation (2), there exists
¢, 0(c q0.1))

such that G, (z) = z%"*"'¢,(z). Taking into account that

-
q,(2) = Za—mjo R(z,5)G, (s)ds

= J‘ZMS‘”E'lql (S‘)dS (4)

0 Z‘”/?
- L’ R(zvzp™ g, 02)dv O (€ (10,7D))
and using the equation (4), we have

¥(2) =277 (q,(2) + 24, (2)),

which completes the proof.

3. Collocation Method on the Continuous
Piecewise Polynomial Spaces

For given NON, Let

n.,
1, =1, :T(ﬁ) :0<n< N},
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be a graded mesh, with grading exponent » = 1. Assume that
Un = (tn ? tn+1 ]’ 5'” = [tn ’tn+l ]’ hn = tn+1 - tn and

h=max{h, :j=0,---,N —1}. Then, it is straightforward to see

that the sequence {1 }"_ is strictly increasing and

n=0
h,<h=h, <rIN"', j=0,--,N-1. %)

We use collocation method to solve system (1) directly
(without transforming to the second kind integral equation),
on the discontinuous piecewise polynomial spaces

S ) =viv,0m (n=0,1..,N-1)}, mON.

m=1
For discontinuous piecewise polynomial spaces, let
0<¢ <---<¢, <1, mON be the collocation parameters.

Therefore, the approximate solution u, O (S‘ l)(1,1))V , has the

m=1

form

u (4, +vh) =D L WU, ,, vO(@O,1], [ =1,

j=t

,N_l,

in the interval o, (u, =u, Lo, » for /=1,---,N-1). Here, L;(v)

for j=1,---,m, are Lagrange fundamental polynomials with
respect to distinct collocation parameters and U, ;:=u, (t,;) are

solutions at the collocation
N-1 and j=1,-,

approximation
t,, =t +ch for I=1-,

points
m. We are
seeking for a collocation solution u, such that satisfies the
collocation conditions

t k > h
[ —d([’” _) s = fie, )t (©)

0
n i

for  n=0,---,N and i=1L---,m. Therefore, it is
straightforward to show that the solution of the system (6)
can be obtained by solving recursively the systems

k(t +vh )L (v
F(t )+h ZJ‘ (nl n 71) /a( )dVU”/_ :f([”l_) (7)
i T8, ~Vvh) ' '
for i=1,---,m, and n=0,---,N -1, where
1k(tm’/

+vh )L (v
)L ( )dv y
_vhl)a B

F(t,,) Zh le(

N (A 4

is the lag term. In the system (7), the integrals can be
approximated by the quadrature approximations

o k(t, t, +vh )L (v 1
J‘, (nt n ) () V—_a (a)k([n:’ n, )
v, -1, k)" W I

and

J-l k(tnn g +vh1)LI(V)
—d
0 ([ﬂ,l 1 _Vh1)a

IREMN

1
v=—>b (n,l,a)k(t, .t ),
h/a v

For 0</<n-1, where

a, (@)= %dv

and

L
b, (n.1,a) :J‘;%dv, 0<l<n-1,
n,i [_v)n

h

1

for 4, jO{L,---,
can be obtained by solving the systems

m}. Therefore, the fully discretised version

B, ) +H Y, @kG,,0,)0,, = 16,). )

recursively, for i =1,---,m and n=0,---,N =1, where

F(t,)= Zh“’Zb (nla)k(tm,,]) s

Jj=1

for i=1,---,
/[=0,--,N-1 and j=1,---,m. Now, the
approximate solution can be approximated by

m, and (A/,J. are the collocation solution at 4 for

dense output

a6, +vh) =Y LU, ,,vO(0,1],1 =1, N -1.

J=1

We note that this discretised version is slightly different
from discretised version introduced in [3]. However, it reduce

. . 1 .
the computation complexity by a factor of —, and as we will

m
see it does not reduce the order of the collocation method.
Setting (4), = a, (@), U, =[Un,0,,T,
=[ft,)-F(@t, ) f(t,)-F, ), and taking into

account that

k(t, 5, ;) = k(t,,,) + O(h),

we can write (8) in the matrix form
K4, O k(1 )+O(h YU, =F..

Now, since 4; is invertible by Theorem 6.1, and k(¢,,t,)
is invertible by hypotheses of the introduction, the matrix
A, O(k(t,,t,)+O(h))) is invertible and there exists a unique
solution for system (8), for sufficiently small
Consequently, the fully discretised collocation method is

well-defined. In a similar manner the system (7) has a unique
solution for sufficiently small ;, and the introduced

collocation method is well-defined.
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4. Granwall’s Inequalities

First, we recall the Granwall’s inequalities [3]. Note that,
we write

v=0(h") whenever |[v|=o0(®").

Lemma 4.1. (Gronwall's inequality) Assume that {k } ,
(j20) is a given non-negative sequence and the sequence
{e,} satisfies ¢, < p, and

€, <P, +Zq. +Zk.e.

with p, 20 and ¢, 2 0for(;j 2 0). Then

kool

In this paper, we need a generalization of Gronwall’s
inequality for the matrix functions. Thus, we consider

n-1
€, =Re_ + ZKJ.E/. +0, C)

J=0

where R, p,, K, and € for j=0,1,---, are matrix functions.

We suppose that R is a diagonalizable matrix i.e.,
R =P"'DP, where D =diag(A,--,A) is a diagonal matrix
and P is a nonsingular matrix. Also, we suppose that
A O[-L1). Then, It is straightforward to show that there

exists a positive constant C such that

n-1
le, < (lle, 1 +C 1l o, ||)exp(CZ||Kj II].

5. Global Convergence

5.1. Discontinuous Collocation Method

Lemma 5.1. For r 21, we have

h n=(mn-1)" _

n-l

1
—O0(=)=1+0(h).
oy -y )

Hence
1-a

hn—l I-a
h]__” =1- O(hn ),

n

and similarly

n-1

Proof. One can easily observe the results by expanding the
polynomials (n+1)" and (n-1)" for case rON. The other

cases can be obtained by applying the Hopital’s rule.

Theorem 5.2. Let k0(c" (D)™, %D(C’”(D))W,

mON, f(t)=t"g(t) where ¢O(C'(0.T)), 1sd<m+1,
dON, and B=1-a. Then the approximate solution u, of

the discontinuous collocation method for system (1) with
collocation parameters 0<c <¢,<---<¢, <1 and the
grading exponent r =1 converges to the solution if the
eigenvalues of the stability matrix O be in the interval [-1,1).
Furthermore, the collocation error satisfies

N 1<y s—d -1 ,
a+p-1
| (&) =u, ()l c
~d+1 d-1
N > —
a+ -1

for a constant ¢ >0 and sufficiently large N.

Proof. Suppose that the assumptions of Theorem \ref{th1}
hold. Let e, (r) = y(¢) —u,(¢). An application of Theorem 2.1
implies that yD(C“H([e,T]))V for all ¢>0. Therefore, by

Peano’s theorem ([3], Section 1.8)

e, (t, +vh) = iL, (ME,, + ' R,(v) (10)

=

where E  =e(t +ch) for j=1,---,m [=0,---,N, the

remainder R,(v) is a bounded function and

/1,={'8+a_1’ =0, (11)

d-1, Otherwise.

By subtracting equation (1) (at ¢ =¢,,) from equation (6)
we obtain

J-, k(t” " c)eh (9)

=0, (12)

n i

for n=1---,N-1, i =1,---,m, and hence,

—d
-s)’

w k(t,,8)e, (s)
ZI
+J‘/“ k(t”v,.,s)e,‘ (s) .=
v, )"

(13)
Letting n = 0, substituting s =vh,, and using (10) we have

(k(ch vh,)

Zj = — VL (n)dVE,

- jo" R (v)dv,

(14)

for i=1,---,
functions, k(c,h,,vh,) = k(0,0)+O(h,) and the system (14) can

m. By Taylor's theorem for multivariable matrix
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be written in the matrix form

(4, Ok(0,0) +O(h))E, = O(h")

where & =[E,,,....E,, 1" and
L) -
(Ag),j ﬁdv Z’JD{L'”am}' (15)

Since, 4, and k(0,0) are invertible matrices, we can
=O(h), for sufficiently small 4. We can
nON.

into corresponding

conclude that &
now proceed to obtain an estimate for e, =e, |, ,
1=0,---,n,

integrals in (13) and using (10) we obtain

n2 o om k(t ..t +sh k(t,_ .t +sh

Z ZJ‘ (nl ! 11_ (nlm ! ) ,(s)dSE/,,-

=0 =1 —t,=sh)y (., " _Sh/) '
mo k(2 +sh L. (s

h .[01 ( )L ( )d

_ —sh a S n=l,j
Jj=1 (t”’ tn—l § n—l)

zj k(tm, , tsh )L, (S)dvE

-t =sh) "

+sh,_ ])L (s)
= Rn

Substituting s =1, +vh,

n,i? n]

(16)

n.
tn—],m n=1

. ~t

n-1,

—h ds n=1,j
sh, )"

n-1

Rewriting (16) with replaced n by n—-1 and j=m and
subtracting it from (16), we obtain

DR

k(t .t +sh)  k(t_ .t +sh)
- - ($)dSE, |
=t =sh)" (¢, —t —sh) '

k(1 +sh, )L, (s)
(tn i - tn—l - Shn—l )a

nt’

n.3]

k(t .t +sh )L (s
LN ‘m DO
,—t —sh)" "
! 17)
k(t t_ +sh )L (s)
_hn Z n=1,m n-1 J 5 .y
B J. n 1,m _tn—l _Shn—l) v
Iéﬂ
where
_[gn -
&2 k(@8 tsh) o k(1 shy)
hlJ‘ i 1) 1, !, 1/1, R1 (s)ds

1=0 0 (tn,i _tl _Shl)a (tn—l,m _t1 _Sh1)

+hn_1J'1k(tm’ n-1 +€hn l)hn 1 Y- 1(5)

a hn
h_ (c P +1-5)"

n-1

o k(t .t +sh )W R (s
”’JQ (t,,51, tsh)h; ,1()ds

" (¢, —s)” (18)
j k(tn 1,m > Z, +Sh )hn 17— 1(S)
"o B (c, =5)"
_ O( - j
hn—l
by Lemma 5.1 and following Remark.
Remark 5.3. We note that,
k +sh v
PPRLICULLL N (e, 1, 1%10,1D)™ for

(x—t,—sh)”
1=0,---,n=2. Therefore, if we apply mean value theorem for
each components of the above matrix function, then we have

k(b0 +sh) kG
(tn’l. -, —shl)

n=1,m> tl + Shl)
(t)rl,m - tl - Shl )”
=hk,(t, +sh,).

(19)

where there exist 1 < 6, < such that

1,m P9 i, n,m

(k. (t, +sh),,

0k
pq( 9

ot " 11’1

—sh)”

A +sh))
=(c + 1 c n-1
=( +(1=¢,) =) 2

n (/)q il

for p,gO{l,---,v}, i=1--,mand [=0,---,n=2.

. ok . .
By our assumptions o is bounded and there exists M >0
¢

h
such that || (¢, +(1- cm)}’;—‘1

n

k
)(j)_ l< M. Therefore,
¢

[ +sh),,L,65)] ds
L M|L(s)]
Sjo—g S —ds
(pq il tz sz)
[MILOL_,
U _Shz)a
M2°
S—
(1-a)h’

(20)

<

(n-1-10"
for /=0,---,n—2. The last inequality is obtained by Lemma
(6.2.10) [3]. Also, setting

M2°
(1-a)

na) =

we conclude that
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I jul (k, ¢, +sh)L,(s)ds lls y(a)h ™ (n=1-1)"". (21)

Furthermore, to obtain equation (18), we use the fact that
n=2
the sum Zh,“" (n—1-1)"" is bounded.
=0

Substituting (19) into (17), and using Taylor's series for
other terms and components we obtain

Zhh Zj k. (4, + sh)L,(s)dsE,,

=0

+h Zjol (k(t,,t,) +c,()h, +c,()h,_)L, (S)d

D01,

J=1 a hn a
h_ (c P +1-35)

n-1

k s)h )L,
( (tn,t,,)+c3(9))a,,) ,(S)dSEw
S

+h “
”;L /’l:(ci_

k(t ,t Y+c,(s)h )L (s
(k(z,,t,) +c,(s)h,_ )L ( )dsE”_l.
h (e, =) 7

n-1

(22)

m
I Z J“'m
n-1 0
J=t
=R
n

where ¢, (s) for i=1,---,4 are bounded matrix functions.

Multiplying (21) by k" =k(s.,r) and dividing by 4, we
obtain

n=2 m _
> D[kt +sh)L,(5)dsE,

1=0  j=1
-1 -1
. h_ & J-I (I+k ¢, (), +k c,(s)h,_)L, (S)dsEM
hoh S h, a !
n'n-1 J= (C17+1_S)
hn*l
ZI (1+k ¢ (s)h)L, (s)
=i (¢ =)
- hn*l ZJ‘ (1+k C, (S)hn 1)L (S) (23)
B = (c, =3)"
_&,
hn
Denoting,

.o
B),, =2 [ K (1, +sh)L (5)ds, 1=0,+,n=2,
j=1

v L.(s)
A) =| ———d
A=)
., L. (?)
A) =
( 2)”/ J.o (C —S) 5>

o L.(s)
= ——d
A, =] P
. h .
(K¢, ()= +K e, ()L, (5)
(KD, = [ s
nJij ot Yy h R
(c, h" +1-s)

n=1

o ke, ()L, (s)
o e
(¢, —9)
o ke, ()L, (s)

K?”) =| —————ds,
@, =), (c,~5)"

and we can rewrite system (22) in the matrix form
n=2
n
> hBE,
1=0

hl (1)
+—=L (A +O(h) - A, +h_K")OLE

v n-1

24

n n-l1

+h—(A +h KHOLE =

vn

=w|z>

n

where I, is identity matrix of dimension V. Multiplying

equation (23) by
((A3 +han12)) O IV)_1 = (A, + hﬂKLZ))—l o1,

(which exists for sufficiently small 4, by Theorem 6.1), we
obtain

I-a

h
€ = h'f—if,(D +O0(h,))E,.,

, 25
n=2
+ 2 hICVE + O + ).
1=0
where € =~(A, +4,K,")" D1,B," and
0= (As)’l (A —AI)D I,.
Using Lemma 5.1 we can conclude that
&, =(@+0(hE,,
n=2
e Shers out a0
1=0
and by (5) we have
E =0&  +OH™E,
n=2 (26)
+ th‘”E +O(h +hd1)
1=0

If eigenvalues of the stability matrix O be in the interval
[-1,1), we can invoke generalized Granwall's inequality to
conclude that

g, lI=(IlE, I +cowm +h'™)
n=2
*‘*X"(C(th@ e +0<”‘”>))
=0

where C >0 is a constant.
Remark 5.4. By continuity and non-singularity
assumptions, for sufficiently small 7, (large N ), we can find

@7



Applied and Computational Mathematics 2018; 7(1-1): 1-11 7

M >0 such that

Fea, +n X" O, |l

< ) oL
y@)

M
na)

<

by (21), |(B"),, < (@) " (n=1-1) and therefore

), ks M@m-1-0"n". (28)

Consequently, the equation (28) yields

n=2
Zhn mICP s M) (n=1-1)"
1=0
n=2

<hMZj (n—-1-5)"ds

= hMjU (n—1-s)"“ds

- (29)

1-a
V- D™
" Nl-oa)

rTM
< .
(1-a)

Taking into account the equations (27) and (29), we obtain
the main results of this section:

I, lls O[T(ij ” +(r )" (ij 7 j
N N
MrT
c oy ||.
xexp( ((l—af ( )D

5.2. Discretised Discontinuous Collocation Method

(30)

Now, we can state an error bound for solutions of
discretised discontinuous collocation method.

Ok

Theorem 5.5. Let kD(c"(D))™, a—D(C )",

mON, f()=1"g(t) where gO(C'([0,T)), 1sd<m+l,
dON, and fz1-a. Then the approximate solution u, of
the discretised discontinuous collocation method for system
(1) with collocation parameters 0<¢ <¢, <---<¢, <1 and
the grading exponent » =1 converges to the solution if the
eigenvalues of the stability matrix O be in the interval [-1,1).
Furthermore, the collocation error satisfies

NP 1<r< a-1
a+p-1
|| t)—u t||Sc
Y6y =u, () i

—d+1
N 72

for a constant ¢ >0, and sufficiently large N.
Proof. By partitioning the domain of integral in (1) and
substituting s =¢, +vh, we obtain

IZI: J~1k(t

‘h J~—k(tt +vh ) y(t, +vh )
dv
e (=1, +sh)

+Vvh)y(t, +vh, )dv
(t—t, +sh)"

(32)

= 1.

for n=0,---,N-1and i=1,---,
Peano’s theorem, we obtain

m. Applying Theorem 2.1 and

k(t,t, +vh)y(t, +vh)

= Z k(t,t, )y(t, )L, (") + kR (1,v),

where A, is defined by (\ref{lambda}) and R, (z,v) for
[ =0,---,N —1are uniformly bounded functions on D. Setting
t =t ,, and using (11), we obtain

n-1

DI

=0 =1

vk(t ., t
)(tm—t+ )

. (33)

: Aok, o1, )9(0,) * R,
NS S
= /().

where

oo BUR (L)
Zh,z.[o—dv
i (e, sk

f Jw, h, ‘R (t,,,v)
——dy
e, -, )’

(34)

for n=0,--,N-1 and i=1,---,
notation of previous sections to write the equation (33) in the
form

m. Now, we can use the

S 03 ['b (ulayk .t
2 Zj (L (t, .1, )¥(t,,) 55

+h,a, (Qk(t, .1, )y(t, )+ R,

4, =7,

By subtracting equation (32) from equation (8) we have

n-l

ZthU(nla')k(t,”,,/) y

h a; (a)k(tnl’ n, /)En,j +R [ :0’

nij n,i

(36)

U, for 1=0,-,N-1 and j=1--,m
Rewriting (36) with n replaced by n-1 and j=m and

subtracting it from (36), we obtain

where l:A“,J. =y, -
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n=2

h

1

M=

(b, (n.1, @)k, .1, ) = b, (n=LLaYk(r, .1, ) )E, |

)11’[/
=0

<
Il

+h, | Z b‘j (n,n-1, a)k(tn,i sl )En—l,j

Jj=1

h,_a, (@K@, .t )E,., (37)
+h,a, (k@ ,, ,1,)En, +R,-R_, =0,
for n=0,---,N-1 and i =1,---,m, where it is straightforward

to show that

R=Ro= O(hh— (! +h;”)].

-1
Also, by Remark 5.3, we have

b, (n,La)k(t, .1, ) = b, (n=LLaYk(,

nz’l/ mj

=hk(1,,):

ni

nlm’l/)

Using mean value theorem for other terms and components
of equation (37), there exist bounded matrix functions ¢, (s),

for i =1,---,4 such that

n-2 no
Db, D[ K )L, (5)dsE,
=0 j=1
n, o (k(t, )+ (s)h, +E (s)h )L,
h Ll( (t,.1,) * ¢ ($)h, +¢,(s)h, )L, (s)

j=1 a hn a
h' (c, h— +1-s)

n-1,j
n-1

(k(t,.t,)*+c (s)h,)L, (S)d

+h E
e
moae (k(t .t )+e,(s)h )L .(s
o 3 et TG OR B (38)
IEhe h,.\(c, =5)
+Rn,l‘_ n—lm =0,n=0,---,N—1,i=1,---,m

The equation (38) is similar to (22) and hence the rest of
the proof is similar to the lines after this equation.

6. Stability Matrix

We can use the well-known formula of interpolation
ZCjL/.(S) =5, i=0,1-,m~1,
j=1

to obtain

z J~b L(S) J~b s s

39
' (d- °(d=s) %

Therefore, defining following matrices

(40)

1 N
(Dl )i.j - J.() (Ci + 1 _S)a

j-1
c s’

(D,),, = [ ———ds,

" (e, m9)"

ad? for i, jO{l,---,m}, we can show

and (D), :J-O‘
that

AC=D, A,C=D,, AC=D,. (41)

The matrix C is a Vandermonde matrix, and is invertible.
Thus, A, is invertible if and only if D, be invertible.

The elements of D,, D, and D, can be computed by the
following formula

Ib s ds
°(d-s)"

:Zi: i (_1)‘_1 d/’(di—/—an
j=0 J i_j_a+1

and for D, we have
—a+l m=1 - m=1-j
c e m—1) (-1
SRR (A I
-a+1 w\ J Jm-j-a

C—a+1 m—-1 m _1 _1 m=1-j
m C:*D/Z ( )
-a+1 S\ j Jm-j-a

Theorem 6.1. The matrices A, and D, are invertible

_ (d _b)if/'faﬂ)

matrices.
Proof. By previous argument, it remains to prove that D,

is invertible. It is not enough to show that the columns of D,
are independents. Let D,(j) be the j -th column of the
matrix D, and let Zd/.Ds( /) =0,where d OR. Therefore,

J=1

L
X gde( i )L

=l k=0 j—k-a

-1
X7 =0

for x=¢,,---,c,. Hence, the polynomial

m ljlk -
)= de( ]() .

j=1 k=0 jkO’

is of degree m-1, and has m roots, ( p(c,)=0 for

j=1,---,m) and is zero polynomial by fundamental theorem
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of algebra. Hence, d =0, for j=1,---,m, which completes

the proof.

Based on the Theorem 5.2, the convergence of the
introduced collocation method depends on the eigenvalues of
the stability matrix

R=(A)" (A, -A)01,.

Since, A, is invertible, the stability matrix R is well-
defined. Also, the
(A,)" (A, -A,) have the same eigenvalues, and without loss
of generality, we can redefine the stability matrix as
0:=(A,)" (A, -A,). Moreover, we can use equation (41) to
obtainC™'0C = (D,)" (D, =D,).

Therefore, O and (D,)" (D, - D,) are similar and have the

same eigenvalues. This fact can help us to compute the
eigenvalues of 0. For case m =1, we have

matrices O and the matrix

. 207 =(+¢)™
(D3) (D2 _D]) e —

a

For, a =0, it agrees with the results of [3] which is the
Volterra integral equation of first kind. For m =2, one can
directly compute the eigenvalues of (D,)"(D,-D,) for a
given collocation points.

7. Numerical Experiments

We give some examples to show efficiency and
effectiveness of the introduced methods. In these examples,
we obtain the absolute error with respect to the parameters N
and ¢, we denote it by

for i=1---v, where y,(t) and ,u,(¢) are exact and numerical

solutions of the i -th components, respectively. We report the
approximation of convergent order using the formula
ie‘V

Py =log, ——,

i 62 N

for the next examples:
Method 0. m=1,and ¢, =0.5.

Method 1. m=2 , ¢, =05 and ¢, =1.
Method 2. Roots of shifted Legendre polynomial of degree

3-3 3+

6 o6
Method 3. Roots of shifted Chebyshev polynomial of
2-2 2+
4 4
Method 4. Roots of shifted Chebyshev polynomial of

-3 1 2+43

, 6 =—,¢ = .

4 2 4
Method 5. Roots of shifted Legendre polynomial of degree

i =1---v. We apply the following methods

2: ¢

degree 2: ¢, = ¢,

degree 3: ¢, =

I EaC R S C L)
= 2\/§ ,02—2,(33— 2\/g .

Set A=max,_,,A, where A for

=1,2,3 7i?

3: ¢

i=1,2,3 are the

eigenvalues of stability matrix 0. Table 1 shows the values
of A for methods 1-5, and different values of a. This insures
us that the numerical solution of the corresponding methods
is convergent to the exact solution, for given examples.

Table 1. * = LN /]i‘ for methods 1-5 and different values of @ .

a 0.4 0.6 0.8 0.85 0.9 0.95
M. 1 0.45 0.66 0.66 0.89 0.93 0.96
M.2 0.36 0.61 0.61 0.87 091 0.96
M.3 0.41 0.63 0.63 0.87 0.92 0.96
M. 4 0.43 0.65 0.65 0.88 0.92 0.96
M. 5 0.42 0.64 0.64 0.88 0.92 0.96

Now, consider system (1) with

1 ( e” (s+t)e“)
k(t,s) =
ra-a\(s-ne &~

and
s =
rg+a) +[r<ﬁ+a+2> . r(ﬁ+a+1)jtz
5| TA+A) rG+p  re+p)
rg+a+n . +(_r(ﬁ+a> . l'(/3+a+l))t
re2+p) ra+p re+p

Then, the exact solution of the two dimensional system (1) is
y(s) = (ef"s”“”l,e“sﬂm )T .

We can construct the following examples by altering the
parameters of the above system.

Example 7. 1. Let T=1, =1 and azé,é, then apply
the methods 1-3.
17 18 1
Example 7. 2. Let T=5, B=1 and a:—7,—,—9,
20 20 20

apply the methods 4-5.
Example 7. 3. Let T =10, £=1,1.5,2 and a =0.9, then

apply the methods 1-5.
By Theorem 5.2, we expect the error estimate

I e, (1) l< ¢

in Examples 7.1.-7.2. Tables, 2-5 confirm this error estimate.

Table 2. The absolute error and corresponding convergent order in Example
I with r=1.

N a=04 a=038

€ €

M. 1 & &
64 1.030e-2 - 6.388¢-4 -
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N a=04 a=08
128 7.868e-3 0.388 3.697e-4 0.787
256 5.987¢e-3 0.394 2.132¢-4 0.794
€ P, €y P,
M.?2 64 1.153e-2 - 4.989¢-4 -
128 8.768e-3 0.395 2.878e-4 0.794
256 6.657¢-3 0.397 1.656¢e-4 0.797
E:\’ p\ FN p\
M.3 64 1.227e-2 - 4.694¢-4 -
128 9.320¢e-3 0.396 2.705e-4 0.795
256 7.072¢-3 0.398 1.556e-4 0.798

in Example 7.3. Tables, 6-7 show this estimate. In all tables,
we reported estimate of the order for the component of the
system which is less. Finally, these examples show that the
obtained convergent result is optimal and can’t be improved
for our investigated class of SWSVIEFKs.

Table 6. The absolute error and corresponding convergent order in Example

3with ¥ =1

Table 3. The absolute error and corresponding convergent order in Example

2
1 with r=—.
a
N a=04 a=08
FN p\ E:V p\
M. 1 64 1.177e-4 - 2.789e-5 -
128 2.978e-5 1.983 7.240e-6 1.946
256 7.492¢-6 1.991 1.880e-6 1.946
6,’\’ p\ E‘\ p\
M.2 64 1.299¢-4 - 1.551e-5 -
128 3421e-5 1.925 3.938e-6 1.978
256 8.776e-6 1.963 9.924e-7 1.989
FN p\ E:V p\
M. 3 64 1.624e-4 - 2.558e-5 -
128 4.325e-5 1.908 6.798e-6 1912
256 1.120e-5 1.949 1.781e-6 1.932

N B=1 B=2
6,’\’ p\ 6,’\’ p\

M1 956 1.635e-4 - 5.918e-5 -
512 8.873e-5 0.882 1.601e-5 1.886

Mo 236 1.179¢-4 - 2.732¢-5 .
Cs12 6.362e-5 0.890 7.496e-6 1.866

M3 256 1.079¢-4 - 1.986¢-5 .
: 512 5.821e-5 0.890 5.334e-6 1.897

M4 256 3.494e-5 - 7.828e-7 -
ts12 1.874e-5 0.899 2.131e-7 1.877

M5 236 1.858¢-5 - 4.904e-7 .
: 512 9.943¢-6 0.902 1.337e-7 1.875

Table 7. The absolute error and corresponding convergent order in Example

Table 4. The absolute error and corresponding convergent order in Example

2with r =1,
N a =085 a=0.95
FN p\ E:\’ p\
M4 32 3.281e-4 . 3.763e-5 .
64 1.750e-4 0.907 1.759¢-5 1.097
128 9.689¢-5 0.853 8.867¢e-6 0.988
6,’\’ p\ E‘\ p\
M5 32 4236e-4 - 4435e-5 -
64 2.281e-4 0.893 2.024e-5 1.132
128 1.259¢-4 0.858 1.014¢-5 0.997

m
Swith " = .
B-0.1
N B=1 B=2
€y p\ €y p\
M. T 28 8.908¢-7 . 1.597¢-5 -
256 2.112e-7 2.077 4.126e-6 1.953
Mo 128 7.452¢-6 . 6.391e-5 -
“C 256 1.891e-6 1.978 1.641e-5 1.962
M3 128 1.373e-5 . 1.053e-4 §
2256 3.710e-6 1.888 2.854¢-5 1.883
M4 128 5.925¢-8 . 1.697¢-7 -
256 8.340e-9 2.829 2.135¢-8 2.990
M5 128 5.925¢-8 . 1.697¢-7 -
2256 8.340e-9 2.829 2.135¢-8 2.990

Table 5. The absolute error and corresponding convergent order in Example

3
2with r =—.
a
N a =085 a=095
€ P, €y P,
M. 1 32 2.677e-6 - 1.024¢-6 -
64 3.186e-7 3.071 1.239¢-7 3.046
128 4.064e-8 2.971 1.535¢-8 3.013
€ P, €y P,
M. 2 32 2.359¢-6 - 1.026e-6 -
’ 64 2.463e-7 3.260 1.140e-7 3.169
128 2.992e-8 3.041 1.331e-8 3.098

Also, by Theorem 5.2, we expect the estimate

NP 1<r< e ,
B-0.1
e, l<c
-m m
N, rz2—,
a+p-1

8. Conclusion

A convergence analysis of the collocation methods for
SWSVIEFKs on discontinuous piecewise polynomial spaces has
been investigated. Based on this analysis, the order of the
method does not change by increasing collocation parameters on
uniform mesh. However, it can be increased up to m by using
graded mesh. Our analysis stands on the eigenvalues of stability
matrix. We obtained a closed form of this eigenvalues for case
m =1. However, for cases m > 1, we obtained the eigenvalues of
stability matrix for prescribed collocation parameters.
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