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Abstract: Global optimization is necessary in some cases when we want to achieve the best solution or we require a new 

solution which is better the old one. However global optimization is a hazard problem. Gradient descent method is a 

well-known technique to find out local optimizer whereas approximation solution approach aims to simplify how to solve the 

global optimization problem. In order to find out the global optimizer in the most practical way, I propose a so-called descending 

region (DR) algorithm which is combination of gradient descent method and approximation solution approach. The ideology of 

DR algorithm is that given a known local minimizer, the better minimizer is searched only in a so-called descending region under 

such local minimizer. Descending region is begun by a so-called descending point which is the main subject of DR algorithm. 

Descending point, in turn, is solution of intersection equation (A). Finally, I prove and provide a simpler linear equation system 

(B) which is derived from (A). So (B) is the most important result of this research because (A) is solved by solving (B) many 

enough times. In other words, DR algorithm is refined many times so as to produce such (B) for searching for the global 

optimizer. I propose a so-called simulated Newton – Raphson (SNR) algorithm which is a simulation of Newton – Raphson 

method to solve (B). The starting point is very important for SNR algorithm to converge. Therefore, I also propose a so-called 

RTP algorithm, which is refined and probabilistic process, in order to partition solution space and generate random testing points, 

which aims to estimate the starting point of SNR algorithm. In general, I combine three algorithms such as DR, SNR, and RTP to 

solve the hazard problem of global optimization. Although the approach is division and conquest methodology in which global 

optimization is split into local optimization, solving equation, and partitioning, the solution is synthesis in which DR is backbone 

to connect itself with SNR and RTP. 
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1. Introduction 

The local optimization problem is specified simply as 

follows [1]: 

� min� ���	
subject	to	����	 ≤ 0, ∀� = 1,�����������	 = 0, ∀ = 1, !�����  

Where f called target function is analytic and convex. All 

constraints ui and vj are convex functions. The Lagrangian 

function is composed as follows [2, p. 215]: 

"��, #, $	 = ���	 + &#�����	'
�() + & $�����	*

�()  

Where, # = �#), #+, … , #'	- $ = �$), $+, … , $*	- 

Variables λ and µ are called Lagrange multipliers [3]. Note 

that the notation T denotes transposition operator because λ 

and µ are column vectors. As default, vectors mentioned in 

this research are column vectors if there is no additional 

explanation. If there is no constraint, Lagrangian function is 

the target function f. The duality principle is derived from 

local optimization problem as follows [4, p. 160]: 

.�∗ = argmin� "��, #, $	�#∗, $∗	 = argmax4,567 "��, #, $	 
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The point x
*
 is called local optimizer or local minimum 

point, which is also the saddle point of Lagrangian function. If 

x
*
 is a local optimizer, it satisfies Karush – Kuhn – Tucke 

(KKT) condition [5] as follows: 

89:
9;∂"��, #, $	∂� = 0=���	 ≤ 0, ℎ���	 = 0, ∀� = 1,�������, ∀ = 1, !�����$� ≥ 0, ∀� = 1,�������$�=���	 = 0, ∀� = 1,�������

 

Where 
@A��,4,5	@�  is partial derivative of L(x, λ, µ) with regard 

to x. In practice, x
*
 is solved by combination of duality 

principle and KKT condition. Concretely, suppose a triple (x
*
, 

λ
*
, µ

*
) is solution of following equation system: 

89:
9;∂"��, #, $	∂� = 0∂"��, #, $	∂# = B-	and	 ∂"��, #, $	∂$ = B-
$�����	 = 0	and	����∗	 = 0, ∀� = 1,�������, ∀ = 1, !�����

 

Where 0 denotes zero vector 0 = (0, 0,…, 0)
T
 whereas @A��,4,5	@4  and 

@A��,4,5	@5  are partial derivatives of L(x, λ, µ) with 

regard to λ and µ, respectively, which are row vectors as 

follows: ∂"��, #, $	∂# = D∂"��, #, $	∂#) , ∂"��, #, $	∂#+ , … , ∂"��, #, $	∂#' E	∂"��, #, $	∂$ = D∂"��, #, $	∂$) , ∂"��, #, $	∂$+ , … , ∂"��, #, $	∂$* E 

If such triple (x
*
, λ

*
, µ

*
) satisfies following condition, x

*
 is a 

local optimizer: 

F����∗	 ≤ 0, ∀� = 1,�������$�∗ ≥ 0, ∀� = 1,�������  

Alternately, gradient descent (GD) method [6] is also used 

to find out x
*
 with regard to f. This research is inspired from 

GD method. 

The global optimization is general form of local 

optimization as follows [7, p. 109]: min� G���	|� ∈ JK 
Where f is arbitrary and J = L�|����	 ≤ 0, ����	 =0, ∀� = 1,�������, ∀ = 1, !�����M is arbitrary set. 

A point x
*
 is called global optimizer or global minimum 

point if f(x
*
) ≤ f(x) for all x belonging S. Because the cost of 

finding out x
*
 is very expensive, the approximation solution 

approach issues a concept of global ε-optimization with 

acceptance of small error ε [7, p. 135]. The global optimizer x
*
 

is replaced by a so-called global ε-optimizer �̅ as follows [7, 

p. 123]: ���	 ≥ ���̅	 − P, ∀� ∈ J 

Let z
0
 be an arbitrary point and set k=0, the approximation 

solution approach has two phases to find out QR as follows [7, 

p. 124]: 

1. From z
k
, searching for x

k
 as a local optimizer. 

2. If x
k
 is proved as the global ε-minimizer then, return �̅ = �S. Otherwise, find out a feasible solution z such 

that f(z) < f(x
k
) and then, set k=k+1, set z

k
=z, and go back 

phase 1. 

As a convention, superscript numbers (in z
0
, z

k
, x

k
, etc.) 

denote indices if there is no additional explanation. This 

research focuses on global optimization, in which I propose a 

so-called descending region (DR) algorithm that is a practical 

implementation of approximation solution approach. I use the 

very small value ε as a downward shift to determine the feasible 

point z in phase 2 and I use GD method to search for local 

optimizer. As a result, the final point is the global ε-minimizer. 

In other words, DR algorithm is simpler and it is an advanced 

variant of GD method. Section 2 is full description of DR 

algorithm which has two steps for each iteration, corresponding 

with two phases of theoretical approximation solution. The 

feasible point z is called descending point. It is possible to 

consider DR algorithm to be combination of GD method and 

approximation solution approach, which aims to solve global 

optimization problem in practical way. GD method follows 

descending direction which is the opposite of gradient to reach 

local optimizer. Note that gradient is the first derivative of 

multivariate function. GD is described in subsection 2.1. There 

are some alternatives of GD method such as particle swarm 

optimization (PSO) and Quasi-Newton method. 

PSO [8] was firstly invented by James Kennedy and Russell 

Eberhart in 1995 and later on, it attracts many researchers. 

PSO is inspired from bird flocking, fish schooling, and 

swarming theory [8, p. 1942] in which a swarm of individuals 

(birds, fishes, etc.) called particles moves in the searching 

space in order to reach the global optimizer. Each particle 

owns a position and a velocity. The movement of each particle, 

which is change of its position and velocity, is affected by 

itself and other particles (swarm) [9]. The swarm’s position is 

the best one over all particles’ positions. At the i
th

 iteration, the 

swarm’s position x
i
 is best if it satisfies most fitness criterion 

[10, p. 3]; as usual, f(x
i
) is as small as possible. After a finite 

number of movements, the swarm’s position reaches to global 

optimizer. The meaning of velocity is approximate to the 

meaning of gradient but velocity is not gradient. So PSO does 

not require target function f to be analytic [9]. Quasi-Newton 

method [11] is an alternative of Newton’s method to find out 

local optimizer in case that Hessian matrix, which is second 

derivative of multivariable function, is not existent or not easy 

to be computed. Quasi-Newton method finds out a solution of 

the equation created by setting gradient to be zero [11], as 

local optimizer. Quasi-Newton method updates Hessian 

matrix by successive gradients after iterations [11]. 

It is necessary to survey some other researches relevant to 

global ε-optimization. If target function f is sum of generalized 

polynomial ratios, Jiao et al. [12] proposed a three-level linear 

relaxation method, in which the original optimization problem 

is converted into the three-level linear relaxation programming 

problem (LRP) [12, pp. 190-192] and then, a branch and bound 

algorithm [12, pp. 192-193] is proposed to solve such LRP. The 
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algorithm partitions domain space into sub-rectangles and 

lower bound of each sub-rectangle is calculated based on 

solution of LRP. The final lower bound is the minimum one 

over all sub-rectangles. If deviation between upper bound and 

lower bound is smaller than ε, the global ε-optimal solution of 

relaxation problem is determined. The convergence of branch 

and bound algorithm is proved [12, pp. 193-194]. Larsson and 

Patriksson [13] allowed duality gap to be nonzero in order to 

find out the near-optimizer which is an approximation of global 

optimizer with concepts of ε-optimality and δ-complementarity 

[13, p. 439]. They establish the new condition of global 

optimality with duality gap size ε + δ to solve the near-optimizer 

[13, p. 441]. The literature of global optimization and relevant 

subject is very large. Please read the book “Convex Analysis 

and Global Optimization” of Tuy Hoang [7] to comprehend 

theory of global optimization. This research only focuses on 

practical implementation of ε-optimality approach. Section 2 is 

full description of DR algorithm. Section 3 describes how to 

solve intersection equation by simulated Newton – Raphson 

(SNR) algorithm in order to find out descending region 

necessary to DR algorithm. In turn, section 4 describes how to 

determine the starting point necessary to SNR algorithm, by 

random testing point (RTP) algorithm. Section 5 is the 

conclusion with some suggestions in future trend. In general, 

the global optimization problem is divided into three smaller 

problems such as local optimization, solving equation, and 

partitioning which are solved by three algorithms such as DR, 

SNR, and RTP, respectively. DR algorithm is the most 

important one, which is connect itself with SNR and RTP. 

2. Descending Region Algorithm 

Suppose f is the target analytic function that we need to find 

out its global optimizer with regard that f is scalar-by-vector 

function (multivariate function). �: U → ℝ 

Where ℝ is real number field and U is real vector space 

such that U ⊆ ℝ* . Suppose f is arbitrary but U  is convex. 

Descending region (DR) algorithm is iterative algorithm whose 

input is an initial point ω
0
 and the output is global optimizer z

**
. 

The ideology of DR algorithm is that given a known local 

optimizer z
*
, the better local optimizer is searched only in a 

so-called descending region under the known point z
*
. If the 

target function has global minimum value, DR algorithm is 

terminated after a finite number of iterations; at that time the 

local optimizer z
*
 approaches the global optimizer z

**
. In DR 

algorithm, the descending region is begun by a so-called 

descending point which is defined as the point under the 

optimizer z
*
 and so the next better optimizer is searched under 

descending point. Suppose z
i
 is the descending point at the i

th
 

iteration and z
i
 is initialized by ω

0
. DR algorithm has many 

iterations and each iteration includes two steps: 

1. Step 1: Searching for local optimizer step. 

2. Step 2: Determining descending region step. 

Such two steps are implementations of two phases of 

approximation solution approach [7, p. 124]. In general, Table 1 

shows the pseudo-code like for DR algorithm. Note, the input is 

an arbitrary point ω
0
 and the output is global optimizer z

**
. 

Table 1. DR algorithm. 

//Initialization 

z0 = ω0 

z** = z* = +∞ 

i = 0 

 

Loop 

z*:= searching for local optimizer with the input zi (step 1) 

zi:= determining descending point with the input z* (step 2) 

z** = z* 

i = i + 1 

While (no descending point zi found) 

2.1. Searching for Local Optimizer Step 

With the descending point z
i
, I apply GD method [1] [6] to 

find out the local optimizer z
*
. Note that z

i
 is initialized by ω

0
. 

We know that GD method is also iterative method; suppose at 

the iteration j
th

 in this method, the next candidate point Y�Z)�  is 

computed as follows [6]: Y�Z)� = Y�� + [��\��  
Where, 

- The point Y�� is the previous candidate point and Y�� is 

initialized by the starting point z
i
. 

- The direction \��  is the descending direction, which is the 

opposite of gradient of function f. We have \�� =−∇�^Y��_ where ∇� denotes the gradient of function f. 

- The value [�� is the length of the descending direction \�� . 
After m iterations, the point Y��  converges to the local 

optimizer z
*
. If the terminated condition of GD method is 

equal to 0 ^\�� = B-_ then, z
*
 is likely local optimizer and we 

go to step 2. Otherwise, the terminated condition is that GD 

method runs after m iterations, we compare the current 

optimizer z
*
 with the previous optimizer y

*
: 

- If z
*
 is equal to y

*
, then DR algorithm stops and z

*
 is the 

global optimizer, z
**

 = z
*
. 

- If z
*
 is not equal to y

*
, then go to step 2. 

2.2. Determining Descending Region Step 

Given the local optimizer z
*
 found out in step 1 and let ε be 

a very small pre-defined positive number, ε > 0. The number ε 

is also called descending error. Let h(x) be hyper-plane that 

goes through the level f(z
*
) – ε and is parallel to the abscissa 

hyper-plane or domain plane of function f, we have: ℎ�Q	 = ��Y∗	 − P 

Let f
*
 = f(z

*
) be the minimum value of target function f at z

*
, 

we have: ℎ�Q	 = �∗ − P 

The intersection between hyper-plane h(x) and the function 

f(x) is a contour at level f
*
 – ε with note that f(x) is a 

hyper-surface. Following is the equation of such contour: ��Q	 = ℎ�Q	 ⇔ ��Q	 = �∗ − P 
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Or, ��Q	 − �∗ + P = 0 

Note that this equation is called intersection equation. If the 

contour is not existent; in other words, if the hyper-plane h(x) 

does not intersect with the surface f(x), then DR algorithm is 

stopped and z
*
 is the global optimizer and we have z

**
 = z

*
. 

Otherwise, suppose z
0
 is a point that belongs to the contour; in 

other words, z
0
 is a solution of the equation f(x) = f

*
 – ε with 

note that the method to find out z
0
 is proposed later, then we do 

two important tasks: 

- Increasing i by 1, we have i = i+1. 

- The new descending point z
i
 is assigned by the solution 

z
0
 and we have z

i
 = z

0
 with attention that the index i was 

increased by 1. After that, we go back step 1. 

It is easy to recognize that the next better local optimizer is 

searched only in the region under the solution z
0
. This region is 

descending region. So this algorithm is called descending 

region (DR) algorithm and solution z
0
 is also called descending 

point. Although both z
i
 and z

0
 are called descending points, the 

point z
i
 is known as descending point at the i

th
 iteration and z

0
 is 

solution of the equation f(x) = f
*
 – ε. In Table 2, the pseudo-code 

for DR algorithm is refined with note that the input is an 

arbitrary point ω
0
 and the output is global optimizer z

**
. 

Table 2. DR algorithm refined. 

//Initialization 

z0 = ω0 

z** = z* = +∞ 

ε:= very small pre-defined number 

i = 0 

 

Loop 

//Step 1: Searching for local optimizer 

z*:= searching for local optimizer with the input zi 

If z* not found then 

break 

Else If z* equal previous optimizer then 

z** = z* 

break 

End If 

 

//Step 2: Determining descending region 

z0:= solution of intersection equation with the inputs z* and ε 

zi = z0 

z** = z* 

i = i + 1 

While (no descending point z0 found) 

For example, given target one-variable function  

���	 = 116 �b − 112 �d − 34�+ − 23 

Given initial point ω
0
 = (–2.76, –1), it is easy to receive the 

first local optimizer x
*
 = (–2, –2) by applying gradient method. 

Suppose the very small number ε is 1, the descending point z
0
 

which is solution of intersection equation f(x) – f
*
 + ε = f(x) – (–

2) + 1 = f(x) + 3 = 0 is solved by the method mentioned in next 

section; hence we get z
0
 = (1.84, –3). Starting from z

0
 = (1.84, –

3), the next local optimizer is found out, x
*
 = (3, –4.6) by 

applying gradient method again. The new intersection equation 

f(x) + 5.6 = 0 has no solution and it is concluded that the global 

optimizer is x
**

 = (3, –4.6). Fig. 1 depicts this example. 

3. Method to Determine Descending 

Region 

As aforementioned, descending point z
0
 is a solution of the 

equation of the intersection between hyper-plane h(x) and 

target function f(x) and descending region is the region under 

the solution z
0
. So determining descending region is 

equivalent to solving the intersection equation specified by (1) 

in order to find out its solution z
0
. ��Q	 − �∗ + P = 0                 (1) 

Where f
*
 = f(z

*
) and z

*
 is a local optimizer. Note that – f

*
 + ε 

is scalar constant. Let y = f(x) – f
*
 + ε, we have: =�Q	 = ��Q	 + P − �∗ − g 

Function g(x) is called augmented target function. The 

surface specified by y = f(x) – f
*
 + ε is the same to the one 

specified by g(x) = 0 [14] with attention that y is the scalar 

variable while Q = ��), �+, … , �*	- is the vector variable. Let ∇= be the gradient of function g, we have [14]: 

∇=�Q	 = �∇��Q	, −1	 = h i�i�) , i�i�+ , … , i�i�* , −1j 

Where 
klk�m is the partial derivative of f with regard to partial 

variable xi. As a convention, gradient is row vector. The value 

of gradient ∇= at arbitrary point Q7 = ��)7, �+7, … , �*7	-  is: 

∇=�Q7	 = �∇��Q7	, −1	 = h i�i�) �Q7	, i�i�+ �Q7	, … , i�i�* �Q7	, −1j 

Where 
klk�n �Q7	 is the value of partial derivative of f with regard to partial variable xi of x

0
. Please distinguish the arbitrary 

starting point x
0
 from the initial point ω

0
 of DR algorithm mentioned in previous section. The gradient ∇= is normal vector of 

tangent hyper-plane of g and so this tangent hyper-plane at point x
0
 is specified by following equation [14]: 

∇=�Q7	 h Q − Q7g − ��Q7	 + �∗ − Pj = 0 ⇔ h i�i�) �Q7	, i�i�+ �Q7	, … , i�i�* �Q7	, −1j ∗ h Q − Q7g − ��Q7	 + �∗ − Pj = 0 

We deduce that 
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��) − �)7	 i�i�) �Q7	 + ��+ − �+7	 i�i�+ �Q7	 + ⋯ + ��* − �*7	 i�i�* �Q7	 − �g − ��Q7	 + �∗ − P	 = 0 

So we have: 

g = ��Q7	 − �∗ + P + &��� − ��7	 i�i��
*

�() �Q7	 

It implies g = ∇��Q7	Q + ��Q7	 − �∗ + P − ∇��Q7	Q7 

Equation (2) is the hyper-line which represents the intersection between tangent hyper-plane and the hyper-plane y = 0 and so 

it is called intersection hyper-line.  ∇��Q7	Q − p7 = 0                                        (2) 

Where c
0
 is a scalar value: p7 = ∇��Q7	Q7 + �∗ − ��Q7	 − P 

Equation (2) has many solutions which are points belonging to it. Now we find out only one solution x
1
 of (2) with regard that 

x
1
 satisfies two following conditions: 

1. Point x
1
 is the projection of x

0
 on the intersection hyper-line. 

2. Point x
1
 belongs to intersection hyper-line. 

The first condition implies that the vector p
1
 = x

0
 – x

1
 is parallel to orthogonal vector of intersection hyper-line. It is easy to 

infer from (2) that such orthogonal vector is ∇��Q7	. Therefore, the first condition is interpreted by following equation: 

q) = r∇��Q7	 ⇔
899
:
99;�)7 − �)) = r i�i�) �Q7	

�+7 − �+) = r i�i�+ �Q7	⋮�*7 − �*) = r i�i�* �Q7	
⇔

899
:
99;�)) + 0 + ⋯+ 0 + r i�i�) �Q7	 = �)7

0 + �+) + ⋯+ 0 + r i�i�+ �Q7	 = �+7⋮0 + 0 + ⋯+ �*) + r i�i�* �Q7	 = �*7
 

Where Q) = ��)), �+), … , �*)	-  and l are unknowns. 

The second condition implies that x
1
 satisfies (2). 

∇��Q7	Q) − p7 = 0 ⇔ �)) i�i�) �Q7	 + �+) i�i�+ �Q7	 + ⋯+ �*) i�i�* �Q7	 = p7 

We set up the set of equations so as to determine x
1
 as below: 

899
9:
999
;�)) + 0 + ⋯ + 0 + r i�i�) �Q7	 = �)7
0 + �+) + ⋯ + 0 + r i�i�+ �Q7	 = �+7⋮0 + 0 + ⋯+ �*) + r i�i�* �Q7	 = �*7
�)) i�i�) �Q7	 + �+) i�i�+ �Q7	 + ⋯+ �*) i�i�* �Q7	 + 0 = p7

 

 
Such set of equations is called projection set of equations or 

projection system. Note that the unknowns of projection 

system are �)), �+),…, �*) and l. Let A
0
 and b

0
 be matrix and 

vector such that: 
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t7 =
u
vvv
vvv
w 1 0 ⋯ 0 i�i�) �Q7	

0 1 ⋯ 0 i�i�+ �Q7	⋮ ⋮ ⋱ ⋮ ⋮0 0 ⋯ 1 i�i�* �Q7	i�i�) �Q7	 i�i�+ �Q7	 ⋯ i�i�* �Q7	 0 y
zzz
zzz
{

 

|7 = DQ7p7E =
u
vw

�)7�+7⋮�*7p7y
z{ 

p7 = ∇��Q7	Q7 + �∗ − ��Q7	 − P 

The projection system is re-written, as seen in (3): 

t7 }Q)r ~ = |7                (3) 

Matrix A
0
 is called projection matrix and vector b

0
 is called 

projection vector. The determinant of matrix A
0
 denoted |A

0
| is

 

not equal to 0 if and only if the gradient ∇��Q7	 is not equal 

to 0
T
. Suppose |A

0
| is not equal to 0, it is easy to find out x

1
 by 

Cramer’s method as follows [15, pp. 136-138]: 

Q) = ��))�+)⋮�*)
� = 1|t7| �

|t)7||t+7|⋮|t*7 |� 

Let t�7 is the matrix constructed by replacing j
th

 column in 

matrix A
0
 by projection vector b

0
. 

I proposed the iterative method which is a simulation of the 

Newton – Raphson method [16, pp. 67-71] so as to solve (1) 

based on (3). The proposed method is called simulated Newton 

– Raphson (SNR) algorithm. Suppose we have an 

approximate solution x
k
 at the k

th
 iteration, we set up the 

projection system based on x
k
 in order to find out the next 

better solution x
k+1

; hence x
k+1

 is solution of (4). 

tS hQSZ)r j = |S             (4) 

Where, 

tS =
u
vvv
vvv
w 1 0 ⋯ 0 i�i�) �QS	

0 1 ⋯ 0 i�i�+ �QS	⋮ ⋮ ⋯ ⋮ ⋮0 0 ⋯ 1 i�i�* �QS	i�i�) �QS	 i�i�+ �QS	 ⋯ i�i�* �QS	 0 y
zzz
zzz
{

 

|S = DQSpSE =
u
vw

�)S�+S⋮�*SpSy
z{ 

pS = ∇��QS	QS + �∗ − ��QS	 − P 

As aforementioned, the positive number ε is a very small 

pre-defined number and f
*
 is the local minimum value at z

*
. 

Note that A
k
 and b

k
 are totally determined according to x

k
 and 

x
k
 is initialized by an arbitrary point x

0
. It is easy to infer that 

the solution x
k+1

 is calculated as below: 

QSZ) = u
w�)SZ)�+SZ)⋮�*SZ)y

{ = 1|tS| u
vw

�t)S��t+S�⋮|t*S |y
z{ 

Where t�S is the matrix constructed by replacing j
th

 column 

in projection matrix A
k
 by projection vector b

k
. 

It is easy to recognize that x
k+1

 is calculated based on 

previous x
k
 and so SNR algorithm is an iterative process. If the 

descending point z
0
 which is solution of (1) is existent then, x

k
 

will approach z
0
 after a finite number of iterations. In other 

words, the descending region which supports us to search for 

global optimizer is determined. 

The convergence of SNR algorithm is dependent on the 

starting point x
0
. If x

0
 is not in the volume where SNR 

algorithm converges, no solution z
0
 is found although there is 

existence of solutions of (1). Moreover, the closer to 

descending point z
0
 the point x

0
 is, the faster the convergence 

speed is. So the way to choose right x
0
 is very important, 

which is mentioned in next section. 

There are two terminated conditions of SNR algorithm to 

determine descending point z
0
: 

- Equation (1) has a solution x
k
 where f(x

k
) is equal or 

approximated to 0 at the k
th

 iteration, f(x
k
) ≈ 0. At that 

time we have z
0
 = x

k
. 

- Equation (1) has no solution when the determinant |A
k
| is 

equal to 0 at the k
th

 iteration. 

It is necessary to make a simple example of SNR algorithm. 

Suppose f
*
=1, ε=1, and f(x) is approximated to x1

2
 + x2

2
 – 4 in 

solution volume where the superscript number “2” denotes the 

square. Some advanced methods such as feasible length [17] and 

minimizing square error [18] are suggested to approximate f by 

Taylor polynomial. The augmented target function is g(x) = x1
2
 + 

x2
2
 + ε – f

*
 – y = x1

2
 + x2

2
 – 4 – y. The gradient of f is ∇��Q	 =�2�), 2�+	. Given starting point x

0
 = (2, 1)

T
, at the first iteration, 

we have the initial solution as follows: ��Q7	 = 1
t7 = �1 0 20 1 02 0 0�
|7 = �2,1,9	-Q) = �1.8,0.9	-
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The SNR algorithm converges at the 4
th

 iteration with x
4
 = 

(1.79, 0.89)
T
 and f(x

4
) ≈ 0. So we have the descending point z

0
 

= x
4
 = (1.79, 0.89)

T
. In Fig. 2, the target surface f is marked 

yellow and the tangent hyper-plane of f at x
4
 (y = –8 + 3.58x1 + 

1.79y) is marked blue. 

Because the cost of solving (1) by SNR algorithm is 

significant, it is necessary to test whether (1) has solution 

or not before finding out the descending point. If there is 

no existence of solutions of (1), DR algorithm is stopped 

and we concludes that the current local optimizer z
*
 is 

global optimizer z
**

. In practice, we often apply DR 

algorithm into finding out the global optimizer in a given 

volume [a, b] which is an interval in ℝ, rectangle in ℝ+ 

or volume in ℝd. 

Therefore, if (1) is a polynomial equation, p(x) = 0 where 

p(x) = f(x) – (f(z
*
) + ε) is a polynomial and x is scalar unknown, 

there is some methods to determine interval of solutions, for 

example, given p(x) = anx
n
 + an-1x

n-1
 +…+ a1x

1
 + a0 and let A 

be the largest among absolute values of coefficients, A = max 

{|a1|, |a2|,…, |an-1|, |an|}, then the upper bound u of all real 

solutions is calculated as below [6]: 

� = 1 + ��* 

Where an is the coefficient of x
n
 with attention that the 

number n denotes the n
th
 power when we often use the 

superscript number to denote index. If u is smaller than lower 

bound a of given interval [a, b], then (1) has no solution. We can 

use another method, Sturm’s theorem [6] [19], to determine the 

number of distinct real solutions located in given interval [a, b]. 

If (1) is arbitrary equation, we still use the terminated condition 

|A
k
| = 0 and so how to choose optimal starting point x

0
 is very 

important and is mentioned in next section. 

There is a case that target function f has infinitely many 

local optimizers, which means that f has no global optimizer. 

This case leads DR algorithm to run in infinite loop. So we add 

one more terminated condition that DR algorithm will stop 

after M iterations. In Table 3, the pseudo-code for DR 

algorithm is refined again with note that the input is an 

arbitrary point ω
0
 and the output is global optimizer z

**
. 

Table 3. Final version of DR algorithm. 

//Initialization 

z0 = ω0 

z** = z* = +∞ 

ε:= very small pre-defined number 

M:= the maximum number of iterations 

i = 0 

 

Loop 

//Step 1: Searching for local optimizer 

z*:= searching for local optimizer with the input zi 

If z* not found then 

break 

Else If z* equal previous optimizer then 

z** = z* 

break 

End If 

 

//Step 2: Determining descending region 

z0 = +∞ 

x0:= choosing optimal starting point 

k = 0 

 

Loop //Solving intersection equation by SNR algorithm 

If f(xk) ≈ 0 then 

z0 = xk 

break 

End If 

 

Constructing matrix Ak and vector bk according to xk, z*, and ε 

If |Ak| = 0 then 

break 

End If 

Constructing matrices t�S according to tS and |S QSZ) = 1|tS| �|t)S|, |t+S|, … , |t*S|	- 

k = k + 1 

While (true) 

 

If z0 = +∞ then // If no descending point is found 

z** = z* 

break 

Else 

i = i + 1 

zi = z0 

End If 

 

While (i < M) //prevent infinite loop when there is no global maximum 

4. Choosing Optimal Starting Point for 

Solving Intersection Equation 

Given (1), the problem needs solved is to select the starting 

point x
0
 so that such point is in the volume where SNR 

algorithm converges. The volume is defined as the sub-space 

or sub-set, denoted v(a, b) or [a, b]. ���, |	 = ��, |� = ��), �)� × ��+, �+� × …× ��* , �*� 
The capacity of volume is defined by following formula: 

p��, |	 = ���� − ��	*
�()  

Volume can be an interval v(a, b) = [a, b] in ℝ, a rectangle 

v(a, b) = [a1, b1] x [a2, b2] in ℝ+ or a volume v(a, b) = [a1, b1] 

x [a2, b2] x [a3, b3] in ℝd. Note that the volume is infinite 

volume if any of its bound is infinite, for example: ���, |	 = ��, |� = �−∞, �)� × ��+, �+� × …× ��* , +∞� 
If the volume is infinite volume, its capacity is positive 

infinite, c(a, b) = +∞. 

Solution volume is defined as the volume in which solution 

of (1) is existent. It is easy to recognize that [a, b] is the 

solution volume of function f if and only if there exist two 

values x and y belonging to [a, b] such that f(x)f(y) ≤ 0 

according to Bolzano-Cauchy’s theorem [6]. ��, |�	solution	volume ⇔ ∃Q, � ∈ ��, |�: ��Q	���	 ≤ 0 (5) 

The aforementioned problem is solved by determining the 
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solution volume [a, b] such that [a, b] is as small as possible. 

In other words, given pre-defined volume [a, b], what we need 

to do is to find out the sub-volume [a
i
, b

i
] so that it satisfies 

three conditions: 

1. It is in [a, b]; in other words, [a
i
, b

i
] ⊆ [a, b]. 

2. It is also solution volume, satisfying (5). 

3. It is as small as possible. This condition helps SNR 

algorithm to converge as fast as possible. 

Such sub-volume is called optimal volume. Because it is 

impossible to determine optimal volume by calculating 

exhaustedly f(x) for all x in [a
i
, b

i
], I propose a so-called 

random testing point (RTP) algorithm to find out optimal 

volume. Firstly, suppose x and y are points in [a
i
, b

i
] such that 

f(x) > 0 and f(y) < 0, respectively. Hence, x and y are called 

positive point and negative point, respectively. Let �Z�  and ���  be the number of positive and negative points, 

respectively and let p
i
 be the ratio of ���  to the number of total 

points �� in optimal volume [a
i
, b

i
], according to (6). 

�� = ��m��m Z��m = ��m�m                 (6) 

Where �� = �Z� + ���  is the number of total points and so, 

p
i
 is the probability of occurrence of negative points in optimal 

volume [a
i
, b

i
]. RTP algorithm to find out optimal volume is 

based on two heuristic assumptions: 

- If [a
i
, b

i
] is optimal volume, then the probability 0 < p

i
 < 1, 

in other words, both �Z� > 0 and ��� > 0. 

- The nearer to ½ the probability p
i
 is, the more likely it is 

that [a
i
, b

i
] is optimal volume. 

RTP algorithm is iterative algorithm whose input is volume 

[a, b] and output is optimal volume [a
i
, b

i
]. Given volume [a, b] 

= [a1, b1] x [a2, b2] x … x [an, bn] is divided into n*n 

sub-volumes [a
i
, b

i
] = [�)� , �)� ] x [�+� , �+� ] x … x [�*� , �*� ] 

where i = 1,�������. RTP algorithm has finitely many iterations. 

We do two tasks at each iteration: 

1. Creating many enough random points in each volume [a
i
, 

b
i
]. 

2. Counting the number of positive and negative points, �Z�  

and ���  and calculating the probability p
i
 of each 

sub-volume [a
i
, b

i
] based on �Z�  and ��� . Which 

sub-volume that has probability p
i
 being larger than 0 

and smaller than 1 and nearest to ½ is chosen to be the 

input for next iteration. 

There are two stopped conditions of RTP algorithm: 

1. The deviation between probability p
i
 and ½ or the 

capacity c(a
i
, b

i
) is smaller than a small pre-defined 

number δ. 

2. Or, the algorithm reaches the maximum number of 

iterations. 

When the optimal volume is determined, the optimal 

starting point x
0
 is any point in such volume. Of course, if 

there is a random point c
i
 ∈ [a

i
, b

i
] such that f(c

i
) = 0, then we 

have x
0
 = c

i
. In general, Table 4 shows the pseudo-code for 

RTP algorithm whose input is volume [a, b] and output is 

optimal starting point x
0
. 

 

 

 

Table 4. RTP algorithm to find out optimal starting point. 

//Initialization 

Creating many enough random points in [a, b] 

N–:= the number of positive points in [a, b]  

N+:= the number of negative points in [a, b] 

If N– > 0 and N+ > 0 then 

[a*, b*] = [a, b] 

Else 

[a*, b*] = Ø 

End If 

δ:= small pre-defined number 

M:= the maximum number of iterations 

k = 0 

 

Loop 

Partitioning [a, b] into n*n sub-volumes [ai, bi] 

min_value = +∞ 

[amin, bmin] = Ø 

 

For each [ai, bi] in [a, b] 

Creating many enough random points in [ai, bi] 

Counting the number of positive and negative points, �Z�  and ���  

Calculating pi according to (6) ��r�� = �� − 12 	or	��r�� = p���, |�	 

If 0 < pi < 1 and min_value ≥ value then 

min_value = value 

[amin, bmin] = [ai, bi]  

End If 

End For 

 

If [amin, bmin] ≠ Ø then 

[a*, b*] = [amin, bmin] 

[a, b] = [a*, b*] 

Else 

break 

End If 

 

k = k + 1 

While (k < M and min_value ≥ δ) 

 

If [a*, b*] ≠ Ø then 

x0:= any point in volume [a*, b*] 

End If 

The essence of RTP algorithm is to narrow solution volume 

according to horizontal axis; similarly, the essence of DR 

algorithm is to narrow the descending region according to 

vertical axis. If the descending region is also reduced 

according horizontal axis, DR algorithm will converge faster. 

Suppose in horizontal axis, DR algorithm begin seeking local 

optimizers in given initial volume [a, b], such volume is called 

searching volume, which is reduced after each iteration. If the 

current local optimizer is x
*
 then, the next searching volume is 

[x
*
, b] with assumption that the global optimizer leans only 

forward. In other words, the next descending point z
0
 is 

searched in [x
*
, b] according to horizontal axis and below f(x

*
) 

according to vertical axis. Of course, the solution volume of 

RTP algorithm to find out optimal starting point is [x
*
, b]. In 

general, the descending region is reduced according to both 

horizontal axis and vertical axis. Back the example in section 

2.2, given target function, 

���	 = 116 �b − 112 �d − 34�+ − 23 
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Fig. 3 depicts how to find out global optimizer of target 

function by the improved DR algorithm. In Fig. 3, two 

descending regions are shaded areas. It is easy to recognize 

that the descending areas are narrowed according to two axes. 

The pseudo-code for DR algorithm is improved as seen in 

Table 5 with note that the input is an arbitrary point ω
0
 and 

searching volume [a, b] and the output is global optimizer z
**

 

with note that [a, b] can be infinite volume. 

Table 5. Improved DR algorithm with optimal starting point. 

//Initialization 

z0 = ω0 ∈ [a, b] 

z** = z* = +∞ 

ε:= very small pre-defined number 

M:= the maximum number of iterations 

i = 0 

 

Loop 

//Step 1: Searching for local optimizer 

z*:= searching for local optimizer with the input zi 

If z* not found then 

break 

Else If z* equal previous optimizer then 

z** = z* 

break 

End If 

 

//Step 2: Determining descending region 

z0 = +∞ 

[a, b] = [z*, b] or [a, b] = [a, z*] if global optimizer leans only forward or 

only backward, respectively. Otherwise, do nothing. 

 

x0:= choosing optimal starting point with input [a, b] by RTP algorithm. 

z0:= solution of intersection equation with inputs x*, ε, and x0 by SNR 

algorithm. 

 

If z0 = +∞ then // If no descending point is found 

z** = z* 

break 

Else 

i = i + 1 

zi = z0 

End If 

While (i < M) 

5. Conclusion 

The essence of DR algorithm is to solve the linear system 

equation (4) many enough times, which aims to solve 

intersection equation (1). In other words, the hazard problem 

of global optimization is turned back the most common 

problem with note that linear equation system is always 

solvable. However, that SNR algorithm to solve (1) via (4) is 

a simulation of Newton – Raphson method causes a new 

problem of convergence. This is the weak point of the research 

that I alleviate by RTP algorithm based on partitioning 

solution space and generating random testing points in order 

to find out optimal starting point for fast convergence. 

Currently, I cannot research out a new method better than SNR 

algorithm. Therefore DR algorithm will be improved 

significantly if we can predict that (1) has no solution before 

solving it or we can predict the solution volume of (1). Sturm’s 

theorem mentioned in section 3 is a good prediction tool but it 

is only applied into the case that (1) is a polynomial. RTP 

algorithm with random point generation is also not an optimal 

tool. However, for my opinion, the prediction approach is 

potential. In the future, I will research deeply how to 

approximate (1) into simpler forms such as exponent function 

and polynomial in order to apply easily prediction tools. For 

example, (1) can be easily approximated by Taylor polynomial. 

The smaller the searching volume is, the more accurate the 

Taylor polynomial is. If the volume is one-dimension interval, 

optimal degree of Taylor polynomial is equal to or larger than 

the length of such interval according to [17]. Alternately, 

Taylor polynomial can be also optimized by minimizing 

square error according to [18]. I suggest a so-called 

segmentation approach in which the solution volume is split 

into many small enough segments. Later on, for each segment, 

approximation methods such as feasible length and 

minimizing square error are applied to approximate (1) by a 

Taylor polynomial in such segment so that it is accurate to 

predict solution volume of such polynomial. Final solution 

volume of (1) is the best one from many polynomials over all 

segments. This approach shares the same ideology of volume 

partitioning with RTP algorithm. It can be more complicated 

but better than RTP.  

There is a question: Can the target function be 

approximated by polynomial so that it is easy to find out the 

global optimizer on such target polynomial? The answer is 

that such global optimizer is imprecise because the target 

polynomial is an approximation of f which is much varied 

when domain space of f is large enough. However it is 

acceptable if we use polynomial approximation to only predict 

solution volume of (1) and then, use SNR algorithm to find out 

exactly the descending point z
0
. 
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Figure 1. An example of DR algorithm. 

 

Figure 2. An example of SNR algorithm. 

 

Figure 3. Improved DR algorithm. 
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