

Applied and Computational Mathematics
2017; 6(4-1): 72-82

http://www.sciencepublishinggroup.com/j/acm

doi: 10.11648/j.acm.s.2017060401.17

ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online)

Global Optimization with Descending Region Algorithm

Loc Nguyen

Vietnam Institute of Mathematics, Hanoi, Vietnam

Email address:
ng_phloc@yahoo.com

To cite this article:
Loc Nguyen. Global Optimization with Descending Region Algorithm. Applied and Computational Mathematics. Special Issue: Some Novel

Algorithms for Global Optimization and Relevant Subjects. Vol. 6, No. 4-1, 2017, pp. 72-82. doi: 10.11648/j.acm.s.2017060401.17

Received: April 8, 2017; Accepted: April 10, 2017; Published: June 9, 2017

Abstract: Global optimization is necessary in some cases when we want to achieve the best solution or we require a new

solution which is better the old one. However global optimization is a hazard problem. Gradient descent method is a

well-known technique to find out local optimizer whereas approximation solution approach aims to simplify how to solve the

global optimization problem. In order to find out the global optimizer in the most practical way, I propose a so-called descending

region (DR) algorithm which is combination of gradient descent method and approximation solution approach. The ideology of

DR algorithm is that given a known local minimizer, the better minimizer is searched only in a so-called descending region under

such local minimizer. Descending region is begun by a so-called descending point which is the main subject of DR algorithm.

Descending point, in turn, is solution of intersection equation (A). Finally, I prove and provide a simpler linear equation system

(B) which is derived from (A). So (B) is the most important result of this research because (A) is solved by solving (B) many

enough times. In other words, DR algorithm is refined many times so as to produce such (B) for searching for the global

optimizer. I propose a so-called simulated Newton – Raphson (SNR) algorithm which is a simulation of Newton – Raphson

method to solve (B). The starting point is very important for SNR algorithm to converge. Therefore, I also propose a so-called

RTP algorithm, which is refined and probabilistic process, in order to partition solution space and generate random testing points,

which aims to estimate the starting point of SNR algorithm. In general, I combine three algorithms such as DR, SNR, and RTP to

solve the hazard problem of global optimization. Although the approach is division and conquest methodology in which global

optimization is split into local optimization, solving equation, and partitioning, the solution is synthesis in which DR is backbone

to connect itself with SNR and RTP.

Keywords: Global Optimization, Gradient Descent Method, Descending Region, Descending Point

1. Introduction

The local optimization problem is specified simply as

follows [1]:

� min� ���	
subject	to	����	 ≤ 0, ∀� = 1,�����������	 = 0, ∀ = 1, !�����

Where f called target function is analytic and convex. All

constraints ui and vj are convex functions. The Lagrangian

function is composed as follows [2, p. 215]:

"��, #, $	 = ���	 + &#�����	'
�() + & $�����	*

�()

Where, # = �#), #+, … , #'	- $ = �$), $+, … , $*	-

Variables λ and µ are called Lagrange multipliers [3]. Note

that the notation T denotes transposition operator because λ

and µ are column vectors. As default, vectors mentioned in

this research are column vectors if there is no additional

explanation. If there is no constraint, Lagrangian function is

the target function f. The duality principle is derived from

local optimization problem as follows [4, p. 160]:

.�∗ = argmin� "��, #, $	�#∗, $∗	 = argmax4,567 "��, #, $	

 Applied and Computational Mathematics 2017; 6(4-1): 72-82 73

The point x
*
 is called local optimizer or local minimum

point, which is also the saddle point of Lagrangian function. If

x
*
 is a local optimizer, it satisfies Karush – Kuhn – Tucke

(KKT) condition [5] as follows:

89:
9;∂"��, #, $	∂� = 0=���	 ≤ 0, ℎ���	 = 0, ∀� = 1,�������, ∀ = 1, !�����$� ≥ 0, ∀� = 1,�������$�=���	 = 0, ∀� = 1,�������

Where
@A��,4,5	@� is partial derivative of L(x, λ, µ) with regard

to x. In practice, x
*
 is solved by combination of duality

principle and KKT condition. Concretely, suppose a triple (x
*
,

λ
*
, µ

*
) is solution of following equation system:

89:
9;∂"��, #, $	∂� = 0∂"��, #, $	∂# = B-	and	 ∂"��, #, $	∂$ = B-
$�����	 = 0	and	����∗	 = 0, ∀� = 1,�������, ∀ = 1, !�����

Where 0 denotes zero vector 0 = (0, 0,…, 0)
T
 whereas @A��,4,5	@4 and

@A��,4,5	@5 are partial derivatives of L(x, λ, µ) with

regard to λ and µ, respectively, which are row vectors as

follows: ∂"��, #, $	∂# = D∂"��, #, $	∂#) , ∂"��, #, $	∂#+ , … , ∂"��, #, $	∂#' E	∂"��, #, $	∂$ = D∂"��, #, $	∂$) , ∂"��, #, $	∂$+ , … , ∂"��, #, $	∂$* E

If such triple (x
*
, λ

*
, µ

*
) satisfies following condition, x

*
 is a

local optimizer:

F����∗	 ≤ 0, ∀� = 1,�������$�∗ ≥ 0, ∀� = 1,�������

Alternately, gradient descent (GD) method [6] is also used

to find out x
*
 with regard to f. This research is inspired from

GD method.

The global optimization is general form of local

optimization as follows [7, p. 109]: min� G���	|� ∈ JK
Where f is arbitrary and J = L�|����	 ≤ 0, ����	 =0, ∀� = 1,�������, ∀ = 1, !�����M is arbitrary set.

A point x
*
 is called global optimizer or global minimum

point if f(x
*
) ≤ f(x) for all x belonging S. Because the cost of

finding out x
*
 is very expensive, the approximation solution

approach issues a concept of global ε-optimization with

acceptance of small error ε [7, p. 135]. The global optimizer x
*

is replaced by a so-called global ε-optimizer �̅ as follows [7,

p. 123]: ���	 ≥ ���̅	 − P, ∀� ∈ J

Let z
0
 be an arbitrary point and set k=0, the approximation

solution approach has two phases to find out QR as follows [7,

p. 124]:

1. From z
k
, searching for x

k
 as a local optimizer.

2. If x
k
 is proved as the global ε-minimizer then, return �̅ = �S. Otherwise, find out a feasible solution z such

that f(z) < f(x
k
) and then, set k=k+1, set z

k
=z, and go back

phase 1.

As a convention, superscript numbers (in z
0
, z

k
, x

k
, etc.)

denote indices if there is no additional explanation. This

research focuses on global optimization, in which I propose a

so-called descending region (DR) algorithm that is a practical

implementation of approximation solution approach. I use the

very small value ε as a downward shift to determine the feasible

point z in phase 2 and I use GD method to search for local

optimizer. As a result, the final point is the global ε-minimizer.

In other words, DR algorithm is simpler and it is an advanced

variant of GD method. Section 2 is full description of DR

algorithm which has two steps for each iteration, corresponding

with two phases of theoretical approximation solution. The

feasible point z is called descending point. It is possible to

consider DR algorithm to be combination of GD method and

approximation solution approach, which aims to solve global

optimization problem in practical way. GD method follows

descending direction which is the opposite of gradient to reach

local optimizer. Note that gradient is the first derivative of

multivariate function. GD is described in subsection 2.1. There

are some alternatives of GD method such as particle swarm

optimization (PSO) and Quasi-Newton method.

PSO [8] was firstly invented by James Kennedy and Russell

Eberhart in 1995 and later on, it attracts many researchers.

PSO is inspired from bird flocking, fish schooling, and

swarming theory [8, p. 1942] in which a swarm of individuals

(birds, fishes, etc.) called particles moves in the searching

space in order to reach the global optimizer. Each particle

owns a position and a velocity. The movement of each particle,

which is change of its position and velocity, is affected by

itself and other particles (swarm) [9]. The swarm’s position is

the best one over all particles’ positions. At the i
th

 iteration, the

swarm’s position x
i
 is best if it satisfies most fitness criterion

[10, p. 3]; as usual, f(x
i
) is as small as possible. After a finite

number of movements, the swarm’s position reaches to global

optimizer. The meaning of velocity is approximate to the

meaning of gradient but velocity is not gradient. So PSO does

not require target function f to be analytic [9]. Quasi-Newton

method [11] is an alternative of Newton’s method to find out

local optimizer in case that Hessian matrix, which is second

derivative of multivariable function, is not existent or not easy

to be computed. Quasi-Newton method finds out a solution of

the equation created by setting gradient to be zero [11], as

local optimizer. Quasi-Newton method updates Hessian

matrix by successive gradients after iterations [11].

It is necessary to survey some other researches relevant to

global ε-optimization. If target function f is sum of generalized

polynomial ratios, Jiao et al. [12] proposed a three-level linear

relaxation method, in which the original optimization problem

is converted into the three-level linear relaxation programming

problem (LRP) [12, pp. 190-192] and then, a branch and bound

algorithm [12, pp. 192-193] is proposed to solve such LRP. The

74 Loc Nguyen: Global Optimization with Descending Region Algorithm

algorithm partitions domain space into sub-rectangles and

lower bound of each sub-rectangle is calculated based on

solution of LRP. The final lower bound is the minimum one

over all sub-rectangles. If deviation between upper bound and

lower bound is smaller than ε, the global ε-optimal solution of

relaxation problem is determined. The convergence of branch

and bound algorithm is proved [12, pp. 193-194]. Larsson and

Patriksson [13] allowed duality gap to be nonzero in order to

find out the near-optimizer which is an approximation of global

optimizer with concepts of ε-optimality and δ-complementarity

[13, p. 439]. They establish the new condition of global

optimality with duality gap size ε + δ to solve the near-optimizer

[13, p. 441]. The literature of global optimization and relevant

subject is very large. Please read the book “Convex Analysis

and Global Optimization” of Tuy Hoang [7] to comprehend

theory of global optimization. This research only focuses on

practical implementation of ε-optimality approach. Section 2 is

full description of DR algorithm. Section 3 describes how to

solve intersection equation by simulated Newton – Raphson

(SNR) algorithm in order to find out descending region

necessary to DR algorithm. In turn, section 4 describes how to

determine the starting point necessary to SNR algorithm, by

random testing point (RTP) algorithm. Section 5 is the

conclusion with some suggestions in future trend. In general,

the global optimization problem is divided into three smaller

problems such as local optimization, solving equation, and

partitioning which are solved by three algorithms such as DR,

SNR, and RTP, respectively. DR algorithm is the most

important one, which is connect itself with SNR and RTP.

2. Descending Region Algorithm

Suppose f is the target analytic function that we need to find

out its global optimizer with regard that f is scalar-by-vector

function (multivariate function). �: U → ℝ

Where ℝ is real number field and U is real vector space

such that U ⊆ ℝ* . Suppose f is arbitrary but U is convex.

Descending region (DR) algorithm is iterative algorithm whose

input is an initial point ω
0
 and the output is global optimizer z

**
.

The ideology of DR algorithm is that given a known local

optimizer z
*
, the better local optimizer is searched only in a

so-called descending region under the known point z
*
. If the

target function has global minimum value, DR algorithm is

terminated after a finite number of iterations; at that time the

local optimizer z
*
 approaches the global optimizer z

**
. In DR

algorithm, the descending region is begun by a so-called

descending point which is defined as the point under the

optimizer z
*
 and so the next better optimizer is searched under

descending point. Suppose z
i
 is the descending point at the i

th

iteration and z
i
 is initialized by ω

0
. DR algorithm has many

iterations and each iteration includes two steps:

1. Step 1: Searching for local optimizer step.

2. Step 2: Determining descending region step.

Such two steps are implementations of two phases of

approximation solution approach [7, p. 124]. In general, Table 1

shows the pseudo-code like for DR algorithm. Note, the input is

an arbitrary point ω
0
 and the output is global optimizer z

**
.

Table 1. DR algorithm.

//Initialization

z0 = ω0

z** = z* = +∞

i = 0

Loop

z*:= searching for local optimizer with the input zi (step 1)

zi:= determining descending point with the input z* (step 2)

z** = z*

i = i + 1

While (no descending point zi found)

2.1. Searching for Local Optimizer Step

With the descending point z
i
, I apply GD method [1] [6] to

find out the local optimizer z
*
. Note that z

i
 is initialized by ω

0
.

We know that GD method is also iterative method; suppose at

the iteration j
th

 in this method, the next candidate point Y�Z)� is

computed as follows [6]: Y�Z)� = Y�� + [��\��
Where,

- The point Y�� is the previous candidate point and Y�� is

initialized by the starting point z
i
.

- The direction \�� is the descending direction, which is the

opposite of gradient of function f. We have \�� =−∇�^Y��_ where ∇� denotes the gradient of function f.

- The value [�� is the length of the descending direction \�� .
After m iterations, the point Y�� converges to the local

optimizer z
*
. If the terminated condition of GD method is

equal to 0 ^\�� = B-_ then, z
*
 is likely local optimizer and we

go to step 2. Otherwise, the terminated condition is that GD

method runs after m iterations, we compare the current

optimizer z
*
 with the previous optimizer y

*
:

- If z
*
 is equal to y

*
, then DR algorithm stops and z

*
 is the

global optimizer, z
**

 = z
*
.

- If z
*
 is not equal to y

*
, then go to step 2.

2.2. Determining Descending Region Step

Given the local optimizer z
*
 found out in step 1 and let ε be

a very small pre-defined positive number, ε > 0. The number ε

is also called descending error. Let h(x) be hyper-plane that

goes through the level f(z
*
) – ε and is parallel to the abscissa

hyper-plane or domain plane of function f, we have: ℎ�Q	 = ��Y∗	 − P

Let f
*
 = f(z

*
) be the minimum value of target function f at z

*
,

we have: ℎ�Q	 = �∗ − P

The intersection between hyper-plane h(x) and the function

f(x) is a contour at level f
*
 – ε with note that f(x) is a

hyper-surface. Following is the equation of such contour: ��Q	 = ℎ�Q	 ⇔ ��Q	 = �∗ − P

 Applied and Computational Mathematics 2017; 6(4-1): 72-82 75

Or, ��Q	 − �∗ + P = 0

Note that this equation is called intersection equation. If the

contour is not existent; in other words, if the hyper-plane h(x)

does not intersect with the surface f(x), then DR algorithm is

stopped and z
*
 is the global optimizer and we have z

**
 = z

*
.

Otherwise, suppose z
0
 is a point that belongs to the contour; in

other words, z
0
 is a solution of the equation f(x) = f

*
 – ε with

note that the method to find out z
0
 is proposed later, then we do

two important tasks:

- Increasing i by 1, we have i = i+1.

- The new descending point z
i
 is assigned by the solution

z
0
 and we have z

i
 = z

0
 with attention that the index i was

increased by 1. After that, we go back step 1.

It is easy to recognize that the next better local optimizer is

searched only in the region under the solution z
0
. This region is

descending region. So this algorithm is called descending

region (DR) algorithm and solution z
0
 is also called descending

point. Although both z
i
 and z

0
 are called descending points, the

point z
i
 is known as descending point at the i

th
 iteration and z

0
 is

solution of the equation f(x) = f
*
 – ε. In Table 2, the pseudo-code

for DR algorithm is refined with note that the input is an

arbitrary point ω
0
 and the output is global optimizer z

**
.

Table 2. DR algorithm refined.

//Initialization

z0 = ω0

z** = z* = +∞

ε:= very small pre-defined number

i = 0

Loop

//Step 1: Searching for local optimizer

z*:= searching for local optimizer with the input zi

If z* not found then

break

Else If z* equal previous optimizer then

z** = z*

break

End If

//Step 2: Determining descending region

z0:= solution of intersection equation with the inputs z* and ε

zi = z0

z** = z*

i = i + 1

While (no descending point z0 found)

For example, given target one-variable function

���	 = 116 �b − 112 �d − 34�+ − 23

Given initial point ω
0
 = (–2.76, –1), it is easy to receive the

first local optimizer x
*
 = (–2, –2) by applying gradient method.

Suppose the very small number ε is 1, the descending point z
0

which is solution of intersection equation f(x) – f
*
 + ε = f(x) – (–

2) + 1 = f(x) + 3 = 0 is solved by the method mentioned in next

section; hence we get z
0
 = (1.84, –3). Starting from z

0
 = (1.84, –

3), the next local optimizer is found out, x
*
 = (3, –4.6) by

applying gradient method again. The new intersection equation

f(x) + 5.6 = 0 has no solution and it is concluded that the global

optimizer is x
**

 = (3, –4.6). Fig. 1 depicts this example.

3. Method to Determine Descending

Region

As aforementioned, descending point z
0
 is a solution of the

equation of the intersection between hyper-plane h(x) and

target function f(x) and descending region is the region under

the solution z
0
. So determining descending region is

equivalent to solving the intersection equation specified by (1)

in order to find out its solution z
0
. ��Q	 − �∗ + P = 0 (1)

Where f
*
 = f(z

*
) and z

*
 is a local optimizer. Note that – f

*
 + ε

is scalar constant. Let y = f(x) – f
*
 + ε, we have: =�Q	 = ��Q	 + P − �∗ − g

Function g(x) is called augmented target function. The

surface specified by y = f(x) – f
*
 + ε is the same to the one

specified by g(x) = 0 [14] with attention that y is the scalar

variable while Q = ��), �+, … , �*	- is the vector variable. Let ∇= be the gradient of function g, we have [14]:

∇=�Q	 = �∇��Q	, −1	 = h i�i�) , i�i�+ , … , i�i�* , −1j

Where
klk�m is the partial derivative of f with regard to partial

variable xi. As a convention, gradient is row vector. The value

of gradient ∇= at arbitrary point Q7 = ��)7, �+7, … , �*7	- is:

∇=�Q7	 = �∇��Q7	, −1	 = h i�i�) �Q7	, i�i�+ �Q7	, … , i�i�* �Q7	, −1j

Where
klk�n �Q7	 is the value of partial derivative of f with regard to partial variable xi of x

0
. Please distinguish the arbitrary

starting point x
0
 from the initial point ω

0
 of DR algorithm mentioned in previous section. The gradient ∇= is normal vector of

tangent hyper-plane of g and so this tangent hyper-plane at point x
0
 is specified by following equation [14]:

∇=�Q7	 h Q − Q7g − ��Q7	 + �∗ − Pj = 0 ⇔ h i�i�) �Q7	, i�i�+ �Q7	, … , i�i�* �Q7	, −1j ∗ h Q − Q7g − ��Q7	 + �∗ − Pj = 0

We deduce that

76 Loc Nguyen: Global Optimization with Descending Region Algorithm

��) − �)7	 i�i�) �Q7	 + ��+ − �+7	 i�i�+ �Q7	 + ⋯ + ��* − �*7	 i�i�* �Q7	 − �g − ��Q7	 + �∗ − P	 = 0

So we have:

g = ��Q7	 − �∗ + P + &��� − ��7	 i�i��
*

�() �Q7	

It implies g = ∇��Q7	Q + ��Q7	 − �∗ + P − ∇��Q7	Q7

Equation (2) is the hyper-line which represents the intersection between tangent hyper-plane and the hyper-plane y = 0 and so

it is called intersection hyper-line. ∇��Q7	Q − p7 = 0 (2)

Where c
0
 is a scalar value: p7 = ∇��Q7	Q7 + �∗ − ��Q7	 − P

Equation (2) has many solutions which are points belonging to it. Now we find out only one solution x
1
 of (2) with regard that

x
1
 satisfies two following conditions:

1. Point x
1
 is the projection of x

0
 on the intersection hyper-line.

2. Point x
1
 belongs to intersection hyper-line.

The first condition implies that the vector p
1
 = x

0
 – x

1
 is parallel to orthogonal vector of intersection hyper-line. It is easy to

infer from (2) that such orthogonal vector is ∇��Q7	. Therefore, the first condition is interpreted by following equation:

q) = r∇��Q7	 ⇔
899
:
99;�)7 − �)) = r i�i�) �Q7	

�+7 − �+) = r i�i�+ �Q7	⋮�*7 − �*) = r i�i�* �Q7	
⇔

899
:
99;�)) + 0 + ⋯+ 0 + r i�i�) �Q7	 = �)7

0 + �+) + ⋯+ 0 + r i�i�+ �Q7	 = �+7⋮0 + 0 + ⋯+ �*) + r i�i�* �Q7	 = �*7

Where Q) = ��)), �+), … , �*)	- and l are unknowns.

The second condition implies that x
1
 satisfies (2).

∇��Q7	Q) − p7 = 0 ⇔ �)) i�i�) �Q7	 + �+) i�i�+ �Q7	 + ⋯+ �*) i�i�* �Q7	 = p7

We set up the set of equations so as to determine x
1
 as below:

899
9:
999
;�)) + 0 + ⋯ + 0 + r i�i�) �Q7	 = �)7
0 + �+) + ⋯ + 0 + r i�i�+ �Q7	 = �+7⋮0 + 0 + ⋯+ �*) + r i�i�* �Q7	 = �*7
�)) i�i�) �Q7	 + �+) i�i�+ �Q7	 + ⋯+ �*) i�i�* �Q7	 + 0 = p7

Such set of equations is called projection set of equations or

projection system. Note that the unknowns of projection

system are �)), �+),…, �*) and l. Let A
0
 and b

0
 be matrix and

vector such that:

 Applied and Computational Mathematics 2017; 6(4-1): 72-82 77

t7 =
u
vvv
vvv
w 1 0 ⋯ 0 i�i�) �Q7	

0 1 ⋯ 0 i�i�+ �Q7	⋮ ⋮ ⋱ ⋮ ⋮0 0 ⋯ 1 i�i�* �Q7	i�i�) �Q7	 i�i�+ �Q7	 ⋯ i�i�* �Q7	 0 y
zzz
zzz
{

|7 = DQ7p7E =
u
vw

�)7�+7⋮�*7p7y
z{

p7 = ∇��Q7	Q7 + �∗ − ��Q7	 − P

The projection system is re-written, as seen in (3):

t7 }Q)r ~ = |7 (3)

Matrix A
0
 is called projection matrix and vector b

0
 is called

projection vector. The determinant of matrix A
0
 denoted |A

0
| is

not equal to 0 if and only if the gradient ∇��Q7	 is not equal

to 0
T
. Suppose |A

0
| is not equal to 0, it is easy to find out x

1
 by

Cramer’s method as follows [15, pp. 136-138]:

Q) = ��))�+)⋮�*)
� = 1|t7| �

|t)7||t+7|⋮|t*7 |�

Let t�7 is the matrix constructed by replacing j
th

 column in

matrix A
0
 by projection vector b

0
.

I proposed the iterative method which is a simulation of the

Newton – Raphson method [16, pp. 67-71] so as to solve (1)

based on (3). The proposed method is called simulated Newton

– Raphson (SNR) algorithm. Suppose we have an

approximate solution x
k
 at the k

th
 iteration, we set up the

projection system based on x
k
 in order to find out the next

better solution x
k+1

; hence x
k+1

 is solution of (4).

tS hQSZ)r j = |S (4)

Where,

tS =
u
vvv
vvv
w 1 0 ⋯ 0 i�i�) �QS	

0 1 ⋯ 0 i�i�+ �QS	⋮ ⋮ ⋯ ⋮ ⋮0 0 ⋯ 1 i�i�* �QS	i�i�) �QS	 i�i�+ �QS	 ⋯ i�i�* �QS	 0 y
zzz
zzz
{

|S = DQSpSE =
u
vw

�)S�+S⋮�*SpSy
z{

pS = ∇��QS	QS + �∗ − ��QS	 − P

As aforementioned, the positive number ε is a very small

pre-defined number and f
*
 is the local minimum value at z

*
.

Note that A
k
 and b

k
 are totally determined according to x

k
 and

x
k
 is initialized by an arbitrary point x

0
. It is easy to infer that

the solution x
k+1

 is calculated as below:

QSZ) = u
w�)SZ)�+SZ)⋮�*SZ)y

{ = 1|tS| u
vw

�t)S��t+S�⋮|t*S |y
z{

Where t�S is the matrix constructed by replacing j
th

 column

in projection matrix A
k
 by projection vector b

k
.

It is easy to recognize that x
k+1

 is calculated based on

previous x
k
 and so SNR algorithm is an iterative process. If the

descending point z
0
 which is solution of (1) is existent then, x

k

will approach z
0
 after a finite number of iterations. In other

words, the descending region which supports us to search for

global optimizer is determined.

The convergence of SNR algorithm is dependent on the

starting point x
0
. If x

0
 is not in the volume where SNR

algorithm converges, no solution z
0
 is found although there is

existence of solutions of (1). Moreover, the closer to

descending point z
0
 the point x

0
 is, the faster the convergence

speed is. So the way to choose right x
0
 is very important,

which is mentioned in next section.

There are two terminated conditions of SNR algorithm to

determine descending point z
0
:

- Equation (1) has a solution x
k
 where f(x

k
) is equal or

approximated to 0 at the k
th

 iteration, f(x
k
) ≈ 0. At that

time we have z
0
 = x

k
.

- Equation (1) has no solution when the determinant |A
k
| is

equal to 0 at the k
th

 iteration.

It is necessary to make a simple example of SNR algorithm.

Suppose f
*
=1, ε=1, and f(x) is approximated to x1

2
 + x2

2
 – 4 in

solution volume where the superscript number “2” denotes the

square. Some advanced methods such as feasible length [17] and

minimizing square error [18] are suggested to approximate f by

Taylor polynomial. The augmented target function is g(x) = x1
2
 +

x2
2
 + ε – f

*
 – y = x1

2
 + x2

2
 – 4 – y. The gradient of f is ∇��Q	 =�2�), 2�+	. Given starting point x

0
 = (2, 1)

T
, at the first iteration,

we have the initial solution as follows: ��Q7	 = 1
t7 = �1 0 20 1 02 0 0�
|7 = �2,1,9	-Q) = �1.8,0.9	-

78 Loc Nguyen: Global Optimization with Descending Region Algorithm

The SNR algorithm converges at the 4
th

 iteration with x
4
 =

(1.79, 0.89)
T
 and f(x

4
) ≈ 0. So we have the descending point z

0

= x
4
 = (1.79, 0.89)

T
. In Fig. 2, the target surface f is marked

yellow and the tangent hyper-plane of f at x
4
 (y = –8 + 3.58x1 +

1.79y) is marked blue.

Because the cost of solving (1) by SNR algorithm is

significant, it is necessary to test whether (1) has solution

or not before finding out the descending point. If there is

no existence of solutions of (1), DR algorithm is stopped

and we concludes that the current local optimizer z
*
 is

global optimizer z
**

. In practice, we often apply DR

algorithm into finding out the global optimizer in a given

volume [a, b] which is an interval in ℝ, rectangle in ℝ+

or volume in ℝd.

Therefore, if (1) is a polynomial equation, p(x) = 0 where

p(x) = f(x) – (f(z
*
) + ε) is a polynomial and x is scalar unknown,

there is some methods to determine interval of solutions, for

example, given p(x) = anx
n
 + an-1x

n-1
 +…+ a1x

1
 + a0 and let A

be the largest among absolute values of coefficients, A = max

{|a1|, |a2|,…, |an-1|, |an|}, then the upper bound u of all real

solutions is calculated as below [6]:

� = 1 + ��*

Where an is the coefficient of x
n
 with attention that the

number n denotes the n
th
 power when we often use the

superscript number to denote index. If u is smaller than lower

bound a of given interval [a, b], then (1) has no solution. We can

use another method, Sturm’s theorem [6] [19], to determine the

number of distinct real solutions located in given interval [a, b].

If (1) is arbitrary equation, we still use the terminated condition

|A
k
| = 0 and so how to choose optimal starting point x

0
 is very

important and is mentioned in next section.

There is a case that target function f has infinitely many

local optimizers, which means that f has no global optimizer.

This case leads DR algorithm to run in infinite loop. So we add

one more terminated condition that DR algorithm will stop

after M iterations. In Table 3, the pseudo-code for DR

algorithm is refined again with note that the input is an

arbitrary point ω
0
 and the output is global optimizer z

**
.

Table 3. Final version of DR algorithm.

//Initialization

z0 = ω0

z** = z* = +∞

ε:= very small pre-defined number

M:= the maximum number of iterations

i = 0

Loop

//Step 1: Searching for local optimizer

z*:= searching for local optimizer with the input zi

If z* not found then

break

Else If z* equal previous optimizer then

z** = z*

break

End If

//Step 2: Determining descending region

z0 = +∞

x0:= choosing optimal starting point

k = 0

Loop //Solving intersection equation by SNR algorithm

If f(xk) ≈ 0 then

z0 = xk

break

End If

Constructing matrix Ak and vector bk according to xk, z*, and ε

If |Ak| = 0 then

break

End If

Constructing matrices t�S according to tS and |S QSZ) = 1|tS| �|t)S|, |t+S|, … , |t*S|	-

k = k + 1

While (true)

If z0 = +∞ then // If no descending point is found

z** = z*

break

Else

i = i + 1

zi = z0

End If

While (i < M) //prevent infinite loop when there is no global maximum

4. Choosing Optimal Starting Point for

Solving Intersection Equation

Given (1), the problem needs solved is to select the starting

point x
0
 so that such point is in the volume where SNR

algorithm converges. The volume is defined as the sub-space

or sub-set, denoted v(a, b) or [a, b]. ���, |	 = ��, |� = ��), �)� × ��+, �+� × …× ��* , �*�
The capacity of volume is defined by following formula:

p��, |	 = ���� − ��	*
�()

Volume can be an interval v(a, b) = [a, b] in ℝ, a rectangle

v(a, b) = [a1, b1] x [a2, b2] in ℝ+ or a volume v(a, b) = [a1, b1]

x [a2, b2] x [a3, b3] in ℝd. Note that the volume is infinite

volume if any of its bound is infinite, for example: ���, |	 = ��, |� = �−∞, �)� × ��+, �+� × …× ��* , +∞�
If the volume is infinite volume, its capacity is positive

infinite, c(a, b) = +∞.

Solution volume is defined as the volume in which solution

of (1) is existent. It is easy to recognize that [a, b] is the

solution volume of function f if and only if there exist two

values x and y belonging to [a, b] such that f(x)f(y) ≤ 0

according to Bolzano-Cauchy’s theorem [6]. ��, |�	solution	volume ⇔ ∃Q, � ∈ ��, |�: ��Q	���	 ≤ 0 (5)

The aforementioned problem is solved by determining the

 Applied and Computational Mathematics 2017; 6(4-1): 72-82 79

solution volume [a, b] such that [a, b] is as small as possible.

In other words, given pre-defined volume [a, b], what we need

to do is to find out the sub-volume [a
i
, b

i
] so that it satisfies

three conditions:

1. It is in [a, b]; in other words, [a
i
, b

i
] ⊆ [a, b].

2. It is also solution volume, satisfying (5).

3. It is as small as possible. This condition helps SNR

algorithm to converge as fast as possible.

Such sub-volume is called optimal volume. Because it is

impossible to determine optimal volume by calculating

exhaustedly f(x) for all x in [a
i
, b

i
], I propose a so-called

random testing point (RTP) algorithm to find out optimal

volume. Firstly, suppose x and y are points in [a
i
, b

i
] such that

f(x) > 0 and f(y) < 0, respectively. Hence, x and y are called

positive point and negative point, respectively. Let �Z� and ��� be the number of positive and negative points,

respectively and let p
i
 be the ratio of ��� to the number of total

points �� in optimal volume [a
i
, b

i
], according to (6).

�� = ��m��m Z��m = ��m�m (6)

Where �� = �Z� + ��� is the number of total points and so,

p
i
 is the probability of occurrence of negative points in optimal

volume [a
i
, b

i
]. RTP algorithm to find out optimal volume is

based on two heuristic assumptions:

- If [a
i
, b

i
] is optimal volume, then the probability 0 < p

i
 < 1,

in other words, both �Z� > 0 and ��� > 0.

- The nearer to ½ the probability p
i
 is, the more likely it is

that [a
i
, b

i
] is optimal volume.

RTP algorithm is iterative algorithm whose input is volume

[a, b] and output is optimal volume [a
i
, b

i
]. Given volume [a, b]

= [a1, b1] x [a2, b2] x … x [an, bn] is divided into n*n

sub-volumes [a
i
, b

i
] = [�)� , �)�] x [�+� , �+�] x … x [�*� , �*�]

where i = 1,�������. RTP algorithm has finitely many iterations.

We do two tasks at each iteration:

1. Creating many enough random points in each volume [a
i
,

b
i
].

2. Counting the number of positive and negative points, �Z�

and ��� and calculating the probability p
i
 of each

sub-volume [a
i
, b

i
] based on �Z� and ��� . Which

sub-volume that has probability p
i
 being larger than 0

and smaller than 1 and nearest to ½ is chosen to be the

input for next iteration.

There are two stopped conditions of RTP algorithm:

1. The deviation between probability p
i
 and ½ or the

capacity c(a
i
, b

i
) is smaller than a small pre-defined

number δ.

2. Or, the algorithm reaches the maximum number of

iterations.

When the optimal volume is determined, the optimal

starting point x
0
 is any point in such volume. Of course, if

there is a random point c
i
 ∈ [a

i
, b

i
] such that f(c

i
) = 0, then we

have x
0
 = c

i
. In general, Table 4 shows the pseudo-code for

RTP algorithm whose input is volume [a, b] and output is

optimal starting point x
0
.

Table 4. RTP algorithm to find out optimal starting point.

//Initialization

Creating many enough random points in [a, b]

N–:= the number of positive points in [a, b]

N+:= the number of negative points in [a, b]

If N– > 0 and N+ > 0 then

[a*, b*] = [a, b]

Else

[a*, b*] = Ø

End If

δ:= small pre-defined number

M:= the maximum number of iterations

k = 0

Loop

Partitioning [a, b] into n*n sub-volumes [ai, bi]

min_value = +∞

[amin, bmin] = Ø

For each [ai, bi] in [a, b]

Creating many enough random points in [ai, bi]

Counting the number of positive and negative points, �Z� and ���

Calculating pi according to (6) ��r�� = �� − 12 	or	��r�� = p���, |�	

If 0 < pi < 1 and min_value ≥ value then

min_value = value

[amin, bmin] = [ai, bi]

End If

End For

If [amin, bmin] ≠ Ø then

[a*, b*] = [amin, bmin]

[a, b] = [a*, b*]

Else

break

End If

k = k + 1

While (k < M and min_value ≥ δ)

If [a*, b*] ≠ Ø then

x0:= any point in volume [a*, b*]

End If

The essence of RTP algorithm is to narrow solution volume

according to horizontal axis; similarly, the essence of DR

algorithm is to narrow the descending region according to

vertical axis. If the descending region is also reduced

according horizontal axis, DR algorithm will converge faster.

Suppose in horizontal axis, DR algorithm begin seeking local

optimizers in given initial volume [a, b], such volume is called

searching volume, which is reduced after each iteration. If the

current local optimizer is x
*
 then, the next searching volume is

[x
*
, b] with assumption that the global optimizer leans only

forward. In other words, the next descending point z
0
 is

searched in [x
*
, b] according to horizontal axis and below f(x

*
)

according to vertical axis. Of course, the solution volume of

RTP algorithm to find out optimal starting point is [x
*
, b]. In

general, the descending region is reduced according to both

horizontal axis and vertical axis. Back the example in section

2.2, given target function,

���	 = 116 �b − 112 �d − 34�+ − 23

80 Loc Nguyen: Global Optimization with Descending Region Algorithm

Fig. 3 depicts how to find out global optimizer of target

function by the improved DR algorithm. In Fig. 3, two

descending regions are shaded areas. It is easy to recognize

that the descending areas are narrowed according to two axes.

The pseudo-code for DR algorithm is improved as seen in

Table 5 with note that the input is an arbitrary point ω
0
 and

searching volume [a, b] and the output is global optimizer z
**

with note that [a, b] can be infinite volume.

Table 5. Improved DR algorithm with optimal starting point.

//Initialization

z0 = ω0 ∈ [a, b]

z** = z* = +∞

ε:= very small pre-defined number

M:= the maximum number of iterations

i = 0

Loop

//Step 1: Searching for local optimizer

z*:= searching for local optimizer with the input zi

If z* not found then

break

Else If z* equal previous optimizer then

z** = z*

break

End If

//Step 2: Determining descending region

z0 = +∞

[a, b] = [z*, b] or [a, b] = [a, z*] if global optimizer leans only forward or

only backward, respectively. Otherwise, do nothing.

x0:= choosing optimal starting point with input [a, b] by RTP algorithm.

z0:= solution of intersection equation with inputs x*, ε, and x0 by SNR

algorithm.

If z0 = +∞ then // If no descending point is found

z** = z*

break

Else

i = i + 1

zi = z0

End If

While (i < M)

5. Conclusion

The essence of DR algorithm is to solve the linear system

equation (4) many enough times, which aims to solve

intersection equation (1). In other words, the hazard problem

of global optimization is turned back the most common

problem with note that linear equation system is always

solvable. However, that SNR algorithm to solve (1) via (4) is

a simulation of Newton – Raphson method causes a new

problem of convergence. This is the weak point of the research

that I alleviate by RTP algorithm based on partitioning

solution space and generating random testing points in order

to find out optimal starting point for fast convergence.

Currently, I cannot research out a new method better than SNR

algorithm. Therefore DR algorithm will be improved

significantly if we can predict that (1) has no solution before

solving it or we can predict the solution volume of (1). Sturm’s

theorem mentioned in section 3 is a good prediction tool but it

is only applied into the case that (1) is a polynomial. RTP

algorithm with random point generation is also not an optimal

tool. However, for my opinion, the prediction approach is

potential. In the future, I will research deeply how to

approximate (1) into simpler forms such as exponent function

and polynomial in order to apply easily prediction tools. For

example, (1) can be easily approximated by Taylor polynomial.

The smaller the searching volume is, the more accurate the

Taylor polynomial is. If the volume is one-dimension interval,

optimal degree of Taylor polynomial is equal to or larger than

the length of such interval according to [17]. Alternately,

Taylor polynomial can be also optimized by minimizing

square error according to [18]. I suggest a so-called

segmentation approach in which the solution volume is split

into many small enough segments. Later on, for each segment,

approximation methods such as feasible length and

minimizing square error are applied to approximate (1) by a

Taylor polynomial in such segment so that it is accurate to

predict solution volume of such polynomial. Final solution

volume of (1) is the best one from many polynomials over all

segments. This approach shares the same ideology of volume

partitioning with RTP algorithm. It can be more complicated

but better than RTP.

There is a question: Can the target function be

approximated by polynomial so that it is easy to find out the

global optimizer on such target polynomial? The answer is

that such global optimizer is imprecise because the target

polynomial is an approximation of f which is much varied

when domain space of f is large enough. However it is

acceptable if we use polynomial approximation to only predict

solution volume of (1) and then, use SNR algorithm to find out

exactly the descending point z
0
.

 Applied and Computational Mathematics 2017; 6(4-1): 72-82 81

Figure 1. An example of DR algorithm.

Figure 2. An example of SNR algorithm.

Figure 3. Improved DR algorithm.

82 Loc Nguyen: Global Optimization with Descending Region Algorithm

Acknowledgements

I express my deep gratitude to Professor Le, Dung-Muu and

Professor Ta, Duy-Phuong – Vietnam Institute of Mathematics

who reviewed and gave me valuable advices to improve this

research.

Nomenclature

DR: descending region

GD: gradient descent

RTP: random testing point

SNR: simulated Newton – Raphson

References

[1] M. D. Le and Y. H. Le, “Lecture Notes on Optimization,”
Vietnam Institute of Mathematics, Hanoi, 2014.

[2] S. Boyd and L. Vandenberghe, Convex Optimization, New
York, NY: Cambridge University Press, 2009, p. 716.

[3] Y.-B. Jia, “Lagrange Multipliers,” 2013.

[4] A. P. Ruszczyński, Nonlinear Optimization, Princeton, New
Jersey: Princeton University Press, 2006, p. 463.

[5] Wikipedia, “Karush–Kuhn–Tucker conditions,” Wikimedia
Foundation, 4 August 2014. [Online]. Available:
http://en.wikipedia.org/wiki/Karush–Kuhn–Tucker_conditions.
[Accessed 16 November 2014].

[6] P. D. Ta, “Numerical Analysis Lecture Notes,” Vietnam
Institute of Mathematics, Hanoi, 2014.

[7] T. Hoang, Convex Analysis and Global Optimization,
Dordrecht: Kluwer, 1998, p. 350.

[8] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,”
in Proceedings of IEEE International Conference on Neural
Networks, 1995.

[9] Wikipedia, “Particle swarm optimization,” Wikimedia
Foundation, 7 March 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Particle_swarm_optimization.
[Accessed 8 April 2017].

[10] R. Poli, J. Kennedy and T. Blackwell, “Particle swarm
optimization,” Swarm Intelligence, vol. 1, no. 1, pp. 33-57,
June 2007.

[11] Wikipedia, “Quasi-Newton method,” Wikimedia Foundation,
4 April 2017. [Online]. Available:
https://en.wikipedia.org/wiki/Quasi-Newton_method.
[Accessed 8 April 2017].

[12] H. Jiao, Z. Wang and Y. Chen, “Global optimization algorithm
for sum of generalized polynomial,” Applied Mathematical
Modelling, vol. 37, no. 1-2, pp. 187-197, 18 February 2012.

[13] T. Larsson and M. Patriksson, “Global optimality conditions
for discrete and nonconvex optimization - With applications to
Lagrangian heuristics and column generation,” Operations
Research, vol. 54, no. 3, pp. 436-453, 21 April 2003.

[14] P. Dawkins, “Gradient Vector, Tangent Planes and Normal
Lines,” Lamar University, 2003. [Online]. Available:
http://tutorial.math.lamar.edu/Classes/CalcIII/GradientVectorT
angentPlane.aspx. [Accessed 2014].

[15] V. H. H. Nguyen, Linear Algebra, Hanoi: Hanoi National
University Publishing House, 1999, p. 291.

[16] R. L. Burden and D. J. Faires, Numerical Analysis, 9th Edition
ed., M. Julet, Ed., Brooks/Cole Cengage Learning, 2011, p.
872.

[17] L. Nguyen, “Feasible length of Taylor polynomial on given
interval and application to find the number of roots of
equation,” International Journal of Mathematical Analysis and
Applications, vol. 1, no. 5, pp. 80-83, 10 January 2015.

[18] L. Nguyen, “Improving analytic function approximation by
minimizing square error of Taylor polynomial,” International
Journal of Mathematical Analysis and Applications, vol. 1, no.
4, pp. 63-67, 21 October 2014.

[19] Wikipedia, “Sturm’s theorem,” Wikimedia Foundation, 2014.
[Online]. Available:
https://en.wikipedia.org/wiki/Sturm%27s_theorem. [Accessed
30 August 2014].

