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Abstract: According to the classification theorem, the Lyons group Ly is one of the 26 sporadic simple groups and has order
51765179004000000 = 28-37-56.7-11-31-37-67. Since the completion of the classification of all finite simple groups, attention
has now turned to other aspects e.g. generations of finite groups which entails determining elements which generate that finite
group. As a finite nonabelian simple group, Ly can be generated by a minimum of two of its elements. We thus endeavour in the
current study to determine some of the pairs of its elements of distinct prime orders from disctinct conjugacy classes with their
product in another conjugacy class of elements of prime order which generate Ly and we call such generations triple generations.
Triple generations of any finite group are used in the study of its symmetric genus, where the symmetric genus of a Hurwitz group
G, of which Ly is known to be a Hurwitz group, is given by 1 + ‘8%‘. If G is a finite group and [ X, mY, nZ are conjugacy classes
of elements of G, then G is said to be (I, m, n)-generated if G = (z,y) with o(z) = [, 0(y) = m and o(zy) = n. The number
of distinct ordered pairs (x, y) satisfying x € [X,y € mY such that zy = z, where z € nZ is an arbitrary class representative,
is denoted by (¢ (IX,mY,nZ) and is known as the structure constant of the group algebra CG. The structure constants can be
computed from the ordinary character table of G. We shall use the method of the structure constants to determine such generation
and/or nongeneration. Thus the object in this paper is to study some of the triple generations of Ly which will thus pave the way
towards the study of various combinations of three, four, five etc elements from distinct conjugacy classes which can generate Ly
and lead to the ultimate determination of the maximum number of elements of Ly from distinct conjugacy classes of its elements
which can generate Ly.

Keywords: (p, g, 7)-Generations, Maximal Subgroups, Primes, Structure Constants, Conjugacy Class Fusions

1. Introduction less than eight million.
Every finite nonabelian simple group can be generated by

Richard Lyons [15] established the existence of a group of ~ a minimum of two of its elements. The Lyons group Ly is a
order 51765179004000000 = 28 - 37 . 5%.7.11-.31-37-67, finite nonabelian sporadic simple group with nine conjugacy
which came to be known as the Lyons group, abbreviated as  classes of maximal subgroups which are listed in the Atlas [3]
Ly. Tts ordinary character table which was constructed by  and its prime spectrum is given by {2,3,5,7,11,31,37,67}.

Lyons himself is found in [3] and its Brauer character tables Since the completion of the classification of all finite
corresponding to the various primes dividing its order are  simple groups, attention has now turned to other aspects e.g.
found in [9]. triple generations of finite groups which entails determining

By [8], the information from the ordinary character pairs of its elements which generate that finite group. We
table showed that the group (Ly) has no faithful matrix  shall determine elements from distinct conjugacy classes of
representation of degree less than 2480 in any field of elements of Ly with product in another class, which generate
characteristic 0, nor any permutation representation of degree ~ Ly-
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Thus in the current article, we shall study the triple
generations of Ly through studying its (p, ¢, 7)-generations
for distinct primes p,q,7 € {2,3,5,7,11,31,37,67} and
satisfying p < g < r.

In [5], Ganief and Moori studied the (p, ¢, 7)-generations
for the smallest Conway Group C'oz and Moori in [10] studied
the (p,q,r)-generations for the Janko groups J; and Js.
In [13, 14], Mpono studied the triple generations and the
conjugacy class ranks of My, respectively and Seretlo in [16]
studied the group 5% - L(3,5) which is a maximal subgroup of
Ly.

For computations, we made use of the Computer Algebra
System GAP [7] which is running on a LINUX machine in
the Department of Mathematical Sciences at the University of
South Africa, without which this work would have been almost
impossible to do.

Throughout, G is a finite group and p, ¢, denote distinct
primes that divide the order of GG unless specified otherwise.
Reference to the various maximal subgroups of Ly should be
understood to mean up to isomorphism.

All the relevant tables of the partial structure constants for
both Ly and its contributing maximal subgroups together with
the partial fusions into Ly of the relevant classes of its various
maximal subgroups which will be used in each subsection, will
be placed at the end of each relevant subsection.

This work forms part of the MSc dissertation [12] of the
first author and was done under the supervision of the second
author.

2. Preliminaries

If G is a finite group and [.X, mY, nZ are conjugacy classes
of elements of G, then G is said to be (I, m,n)-generated if
G = (x,y) with o(z) = l,0(y) = m and o(zy) = n. The
number of distinct ordered pairs (z,y) satisfying € X,y €
mY such that zy = z, where z € nZ is an arbitrary class
representative, is denoted by (¢ (IX,mY, nZ) and is known as
the structure constant of the group algebra CG. The structure
constants can be computed from the ordinary character table
of (G via the formula

_ X [mY]

Cc(IX,mY,nZ) = c ) x(@)x(y)x(2)

eI x(1a)
and is independent of the choice of the representative z € nZ.
The number of such ordered pairs (z,y) which satisfy G =
(z,y) will be denoted by ¢ (IX, mY,nZ).

For H a subgroup of G containing z € nZ, the number
of distinct pairs (z,y) which satisfy x € X,y € mY
and (z,y) < H is denoted by >, (IX,mY,nT), where
nT" is the conjugacy class of H containing z € nZ. For
Hy, Hs,..., H,, subgroups of G, the number of pairs (z,y)
which generate a subgroup of some H; for 1 < i < m will be
denoted by > (Hy U Hy U - - U H,,). We thus obtain that

CL(IX,mY,nZ)

satisfies
(X, mY,nZ) = (a(IX,mY,nZ)~> (HUHyU---UH,y,)

where Hi, Hs,...,H, are the maximal subgroups of G
containing z € nZ. It thus follows that a group G admits an
(I,m,n)-generation if and only if there are conjugacy classes
of elements [X, mY, nZ of G for which ¢/, (IX, mY,nZ) > 0.
By [5], if G is an (I, m,n)-generated simple group, then we
obtain that

1 1 1
-+ —+-<1
Il m n

Theorem 2.1.[1, 11] Let G be a finite simple group
such that G is (IX,mY,nZ)-generated. Then G is
((IX,1X,...,lX), (nZ)™)-generated.

—_————

m—times

Proof Suppose that G = (z,y) such that z € [ X,y € mY

andzy = z € nZ. Let

m—1

Nz(x,xy,xyz,...,xy )

Thus N is a nontrivial normal subgroup of G so that
N = G. Furthermore we obtain that zaz¥z? ... 2" =
w(yzyyPey = (Y Ryt (Y eyt ™) =
(xy)™ = 2™. Since ¥ € IX forall 1 < i < m, the
result follows.

Corollary 2.1. [2, 4] Let G be a simple group such that G is
(2X,sY,tZ)-generated. Then G is (sY, sY, (tZ)?)-generated.

Proof This is [2, Lemma 2].

3. The (2, g, r)-Generations of Ly

For the (2, q,r)-generations of Ly, we shall consider all
q€{3,5,7,11,31,37} and all r € {5,7,11,31,37,67}.

3.1. The (2, 3,r)-Generations of Ly

For the (2,3,r)-generations of Ly, we shall consider
all » € {5,7,11,31,37,67}. The maximal subgroups
5174:456;3%74:2.45-Dg  and 37:18 have their relevant
structure constants all zero and 67:22 is the only maximal
subgroup which does not have elements of order 3. Thus they
will not have any contributions in this case.

The maximal subgroups having any contributions are
G2(5);3-McL:2;5%-L3(5); 2- A1 and 35:(2 x M) because
G2(5) contains elements of orders 5, 7 and 31, 3-McL:2
and 2-A;; contain elements of orders 5, 7 and 11, 53-L3(5)
contains elements of orders 5 and 31, and 3°:(2 x M)
contains elements of orders 5 and 11. Table 1 gives the partial
structure constants of Ly computed using GAP [7] that will
be used and Tables 2 to 6 give the various partial structure
constants for each contributing maximal subgroup.

Proposition 3.1. Ly is not (2, 3, 5)-generated.
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Proof By Table 1, we have that ¢, (24,34,54) = 0 =
Cry(24,3A,5B) = (1,(2A,3B,5A), proving that Ly
is not (24,3A4,5A),(24,3A4,5B), (24, 3B,5A)-generated.
By the same Table 1, we obtain that (1,(24,3B,5B) =
6875. The maximal subgroup 53-L3(5) contains elements
of order 5 but will not have any contributions here since
all its relevant structure constants are zero. There are four
contributing maximal subgroups viz. G3(5);3-McL:2;2-Aqq
and 3%:(2 x M) having elements of order 5. By [4], [18],
the class 5¢ of G2(5) is contained in one conjugate of Ga(5)
while 5d, 5e of G2(5) are each contained in three conjugates
of Go(5). Again by [4], [18], the class 5b of 3-McL:2
is contained in 25 conjugates of 3-McL:2, 5b of 2-Aj; is
contained in 75 conjugates of 2-A1; while 5a of 3°:(2 x M)
is contained in 125 conjugates of 35:(2x Mi1). We obtain from
Table 7 that (¢, (5)(2a, 3b, 5¢) = 625 = (g, (5)(2a, 3b,5d) =
CGo(5)(2a,3b,5¢) and by Table 8, we obtain that
Cs.men2(2a,3d,5b) = 125. By Tables 10 and 12, we obtain
that (2.4,,(20,3c,5b) = 100, (35.2xn1,)(2a, 3¢,5a) = 25
and (3s.(2x 01,,)(2a,3d,5a) = 20. Thus we obtain that
(t,(24,3B,5B) = 6875—625—3(625)—3(625)—25(125) -
75(100) — 125(25) — 125(20) = —13750 < 0. Hence by [4,
Lemma 2.2]. [17, Lemma 3.3], the result follows.

Remark 3.1. According to [6], Ly is known to be a Hurwitz
group making it to be (2,3,7)-generated and by [2] its
symmetric genus is given by 1 + %.

Proposition 3.2. Ly is

(i) not (24,34, 11)-generated

(ii) (24, 3B, 11)-generated.

Proof (i) Table 1 gives that (,(24,34,114) = 0 =
Cry(24,3A,11B), proving (i).

(i) By Table 1, we have that (,(24,3B,114) =
6974 = (r,(24,3B,11B). The maximal subgroups of
Ly containing elements of order 11 are 3-McL:2;2-Aqq
and 35:(2 x Mj;). We get that 11a and 11b of 3-McL:2
are each contained in one conjugate of 3-McL:2, 11a and
11b of 2-A;; are each contained in three conjugates of
2-Ay1, 11a and 11b of 3°:(2 x Mj;) are each contained
in three conjugates of 3%:(2 x Mj;). By Tables 8,
10 and 12, we obtain that (3.ar0r:2(2a,3d,11a) =
11, (o4, (20, 3¢, 11a) = 110, oo any) (20, 3¢, 11a) =

11 and (s5.2x01,)(20,3d,11a) = 22. Thus we
obtain that Czy(QA,SB,llA) = 6974 — 11 —
3(110) — 3(11) — 3(22) = 6534. By Tables 8,

10 and 12, we obtain that (3.p70r.2(2a,3d,110) =
11, Co.ay, (20, 3¢, 116) = 110, Cas. (20111 (20, 3¢, 110) = 11
and (s5.(2xa1,,)(2a,3d,110) = 20. Thus we obtain that
(;,(24,3B,11B) = 6974 — 11 — 3(110) — 3(11) — 3(20) =
6540. Hence Ly is (24, 3B, 11)-generated.

Proposition 3.3. Ly is

(i) not (24, 34, 31)-generated

(ii) (24, 3B, 31)-generated.

Proof (i) By Table 1, we have that (1,(24,3A4,314) =
(1y(24,3A,31B) = 0 = (,(24,34,31C) =
Cry(24,3A,31D) = (1,4(24,3A4,31E), proving (i).

(i) By Table 1, we have (;,(24,3B,314) =
(1y(24,3B,31B) = 7254 = (,(24,3B,31C) =
Cry(24,3B,31D) = (14(24,3B,31F). The maximal
subgroups of Ly containing elements of order 31 are G5(5)
and 53-L3(5). We obtain that 31a, 31b, 31c, 31d and 31le of
G2(5) are each contained in one conjugate of G2(5) and the
classes 31a, 315, 31¢, 31d, 3le, 31f, 31g, 31h, 31i and 315 of
53.L3(5) are each contained in one conjugate of 53-L3(5). By
Tables 7 and 9, we obtain that (¢, 5)(2a, 3b, 31a) = 496 and
(53.14(5)(2a, 3a,31d) = 155 = (5s.1,(5)(2a, 3a, 31h). Thus
we obtain that (7, (24, 3B,31A) = 7254496 —155—155 =
6448, proving that Ly is (24, 3B, 31 A)-generated.

By Tables 7 and 9, we obtain that (g, 5)(2a, 3b, 31b) =
496 and (5s.1,(5)(2a,3a,317) = 155. Thus we obtain that
Czy(2A, 3B,31B) = 7254 — 496 — 155 = 6603, proving that
Ly is (24, 3B, 31B)-generated. By Tables 7 and 9, we obtain
that (¢, (5)(2a,3b,31c) = 496 and (5s.1,(5)(2a,3a, 31b) =
155 = (53.14(5)(2a, 3a,31f) = (53.1,(5)(2a, 3a, 315). Thus
we obtain that (7, (24, 3B, 31C) = 7254 —496 —155—155—
155 = 6293, proving that Ly is (24, 3B, 31C)-generated.
Only G3(5) meets the 24, 3B, 31D classes of Ly and so by
Table 7 we obtain that (¢, (5)(2a,3b,31d) = 496. Thus we
obtain that C}:y(ZA, 3B,31D) = 7254 — 496 = 6758, proving
that Ly is (24, 3B, 31D)-generated.

The maximal subgroups Go(5) and 5%-L3(5) meet
the 24, 3B, 31F classes of Ly. By Tables 7
and 9, we obtain that (g,(5)(2a,3b,31le) = 496 and
(58.14(5)(2a,3a,31a) = (5.10,(5)(2a,3a,31c) = 155 =
(58.105(5)(2a,3a,31le) = (53.1,(5)(2a,3a,31g). Thus we
obtain that (7, (24, 3B,31E) = 7254 — 496 — 155 — 155 —
155 — 155 = 6138, proving that Ly is (24,3B,31E)-
generated. Thus (ii) follows and the proof is complete.

Proposition 3.4. Ly is

(i) not (24,34, 37)-generated

(ii) (24, 3B, 37)-generated.

Proof (i) By Table 1, we obtain that (7,(24,3A4,37A) =
0= (ry(24,34,37B), proving (i).

(ii) By the same Table 1, we have that (1, (24,3B,37A) =
7252 = (1,(2A,3B,37B). None of the maximal subgroups
of Ly contains elements of order 37 and therefore no
contribution from any of them (maximal subgroups). We thus
obtain that Czy(QA,?)B,?)?A) = 7252 = (zy(QA,?)B,B?B)
and (ii) follows.

Proposition 3.5. Ly is

(i) not (24, 3A, 67)-generated

(ii) (24,3B,67)-generated.

Proof (i) Table 1 gives that (r,(24,34,67A) = 0 =
CrLy(24,3A,67B) = (1, (24,3A,67C), proving (i).

(ii) Again by Table 1, we have that (;,(24,3B,67A) =
7705 = (1,(24,3B,67B) = (1,(24,3B,67C). None of
the maximal subgroups of Ly contains elements of order 67
and so no contribution from any of them. We thus obtain
that (7, (24,3B,67A) = 7705 = (7,(24,3B,67B) =
(1,(2A,3B,67C). Hence (ii) follows and the proof is
complete.
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Table 1. Partial structure constants of Ly.
tX |CrLy(tX)| ¢y (24,3A,tX) ¢rLy(24A,3B,tX)
S5SA 2250000 0 0
5B 3750 0 6875
TA 168 0 8680
11A 66 0 6974
11B 66 0 6974
31A 31 0 7254
31B 31 0 7254
31C 31 0 7254
31D 31 0 7254
31E 31 0 7254
37A 37 0 7252
37B 37 0 7252
67A 67 0 7705
67B 67 0 7705
67C 67 0 7705
Table 2. Partial structure constants of G2(5).
tX [Ca, sy (tX)| Caq(5)(2a,3a,tX) Caqo(s5)(2a,3b,tX)
5a 375000 0 0
5b 15000 0 0
Sc 3750 0 625
5d 1250 0 625
Se 1250 0 625
Ta 21 0 546
3la 31 0 496
31b 31 0 496
3lc 31 0 496
31d 31 0 496
3le 31 0 496
Table 3. Partial structure constants of 3- M cL:2.
tX |Cs.merL:2(tX)| ¢3.mcL:2(2a,3a,tX) ¢3.MmcL:2(2a,3b,tX) ¢3.MmcL:2(2a, 3¢, tX) ¢3.MmcrL:2(2a,3d,tX)
5a 4500 0 0 0 0
5b 150 0 0 0 125
Ta 42 0 0 0 49
1la 66 0 0 0 11
11b 66 0 0 0 11
tX |Cs.meL:2(EX)] ¢3.McL:2(2b,3a,tX) ¢3.MmcL:2(2b,3b,tX) ¢3.MmcL:2(2b, 3c, tX) ¢3.MmcL:2(2b,3d,tX)
5a 4500 0 0 0 0
5b 150 0 0 0 0
Ta 42 0 0 0 0
1la 66 0 0 0 0
116 66 0 0 0 0
Table 4. Partial structure constants of 5°- L3 (5).

tX |C53.L3(5)(tX)| 453‘113(5)(2(1, 3a,tX)

5a 375000

5b 250

5c 1250
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tX |CS3.L3(5) C53‘L3(5)(2a’ 3a,tX)
5d 1250 0
3la 31 155
31b 31 155
3le 31 155
31d 31 155
3le 31 155
31f 31 155
31g 31 155
31h 31 155
314 31 155
315 31 155
Table 5. Partial structure constants of the 2-A11.

tX [C2a,, (tX)| ¢2.4,4 (2a,3a,tX) ¢2.4,4 (2a,3b,tX) ¢2.4,4 (2a,3c,tX)
5a 3600 0 0 0
5b 50 0 0 0
Ta 168 0 0 0
1la 22 0 0 0
11b 22 0 0 0
tX [C2a,, (tX)| C2.4,4(2b,3a,tX) €2.4,,(2b,3b,tX) €2.4,4 (2b,3c,tX)
5a 3600 0 0 0
5b 50 0 25 100
Ta 168 0 28 84
1lla 22 0 0 110
11b 22 0 0 110

Table 6. Fartial structure constants 0f35:(2 X Mi1).
tX |035:(2XM11)(tX)| (35:(2XM11)(2a,3a,tX) §35:<2XM11)(2a,3b, tX)
5a 30 0 0
1la 22 0 0
11b 22 0 0
tX |C’35:(2XM11)(tX)| C35:(2XM11)(2a’3C’tX) (35:(2XM11)(2a,3d, tX)
5a 30 25 20
1la 22 11 22
11b 22 11 20
tX |C35:(2XM11)(tX)| 435:(2XM11)(2b, 3a,tX) 435:(2XM11)(2b, 3b,tX)
5a 30 0 0
1la 22 0 0
11b 22 0 0
tX |Cs5:(2><M11)(tX)| §35:(2><M11)(2b’ 3¢, tX) 435:(2><M11)(2b’ 3d,tX)
5a 30 0 0
1la 22 0 0
11b 22 0 0
tX |035:(2xM11)(tX)| C35:(2><M11)(2033a7tX) CSS:(Zlel)(ZCySbth)
5a 30 0 0
1la 22 0 0
11b 22 0 0
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tX |035:(2xM11)(tX)| C35:(2><M11)(2(:, SCatX) CSS:(ZXMll)(ZC’ 3d7tX)
5a 30 0 0
1la 22 0 0
116 22 0 0

Tables 7 to 14 following here below, give the partial fusions into Ly of the relevant classes of its various maximal subgroups.

Table 7. Partial fusions of G2 (5) into Ly.

[9]Ly 2A 3A 3B 5A 5A 5B 5B 5B TA 31A 31B 31C 31D 31E
1
[Mays) 2a 3a 3b Sa 5b Sc 5d Se Ta 3la 31b 3lc 31d 3le
Table 8. Partial fusions of 3- M cL:2 into Ly.
[9]Ly 2A 2A 3A 3A 3B 3B 5A 5B 7A 11A 11B
T
[h]s-mcr:2 2a 2b 3a 3b 3c 3d Sa 5b Ta 1la 11b
Table 9. Partial fusions of 5°- L3 (5) into Ly.
[9lLy 2A 2B 5A 5B 5B 31E 31C
1
[h]53 L3(5) 2a 3a 5a 5¢ 5d 3la 31b
[9lLy 31E 31A 31E 31C 31E 31A 31B 31C
1
[h]53-L3(5) 3lc 31d 3le 31g 31h 31 31j
Table 10. Partial fusions 0_)"53j4:456 into Ly.
9]y 2A 2A 3A 3B 3B 5A 5B TA 11A 5B
1
[Rl2. 4, 2a 2b 3a 3b 3¢ Sa 5b Ta 1la 11b
Table 11. Partial fusions of5i+4:45'6 into Ly.
9]y 2A 2A 3A 3B 5A 5A 5B 5A 5B 5B
1
[h]51+4?4455 2a 2b 3a 3b Sa 5b 5¢ 5d Se 5f
Table 12. Partial fusions of 3°:(2x M1 1) into Ly.
9]y 2A 2A 2A 3A 3B 3B 3B 5B 11A 11B
1
[h]35:(2><Mll) 2a 2b 2¢ 3a 3b 3c 3d Sa 1la 11b
Table 13. Fartial fusions of 32T%:2. A5 Dg into Ly.
9]y 2A 2A 2A 3A 3B 3B 3A 3B 3B 5A
1
2a 2b 2c 3a 3b 3c 3d 3e 3f Sa

[h]32+4:24A5-D8
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Table 14. Partial fusions of 37:18 into Ly.

lg)Ly 2A 3B 3B 37A 37B
R
[h]37:18 2a 3a 3b 37a 37b
3.2. The (2,5, r)-Generations of Ly 99 = (35:2xn,)(2a,5a,11b).  We thus obtain that

We shall study here the (2,5, r)-generations of Ly for all
r € {7,11,31,37,67}. The maximal subgroup 53-L3(5)
contains elements of order 31 but will not have any
contributions here since all its relevant structure constants
are zero. The maximal subgroups having any contributions
are G2(5);3-McL:2;2-Aq; and 3°:(2x M) because G2(5)
contains elements of orders 7 and 31, 3-McL:2 and 2-Aq;
contain elements of orders 7 and 11, 3%:(2xM;j;) contains
elements of order 11.

Proposition 3.6. Ly is (2,5, 7)-generated.

Proof By Table 15, we have that (r,(24,54,7A) =
532. The maximal subgroups of Ly containing elements of
order 7 are Go(5);3-McL:2 and 2-A;,. We obtain that 7a
of G2(5) is contained in eight conjugates of G2(5), 7a of
3-McL:2 is contained in four conjugates of 3-McL:2 and
Ta of 2-Aj; is contained in one conjugate of 2-A;;. By
Tables 7, 8 and 10, we obtain that (g, 5)(2a,5b,7a) =
2].;C3.MCL:2(2CL, 5a77a) = 7 and CQ.A11(2b7 5(1, 7a) = 28.
Thus we obtain that (7, (24,54, 7A) = 532 —8(21) —4(7) —
1(28) = 308, proving that Ly is (24,54, 7A)-generated.

According to Table 15, we have that (1,(24,5B,7A) =
312200. By Table 7, we obtain that (g, (5)(2a,5¢, 7a) =
28; Cay(5)(2a,5d, 7a) = 287 and (g, (5)(2a, 5e, 7a) = 315
and by Tables 8 and 10, we obtain that (3.ps.1.:2(2a, 5b, 7a) =
476 and (2.4,,(2b,5b,7a) = 504. Thus we obtain that
(1,(24,5B,7TA) = 312200 — 8(28) — 8(287) — 8(315) —
4(476) — 1(504) = 304752, proving that Ly is (24, 5B, 7A)-
generated. Hence the result follows and the proof is complete.

Proposition 3.7. Ly is (2,5, 11)-generated.

Proof By Table 15, we have that (r,(24,54,114) =
396 = (ry(24,5A,11B). The maximal subgroups of
Ly containing elements of order 11 are 3-McL:2;2-Aqq
and 3°:(2xMy;). However none of them has a
contribution because 3-McL:2 and 2-A;; have their
relevant structure constants all zero and 3°:(2x M) does
not meet 2A,5A4,11A,11B classes of Ly. Therefore
(1,(24,5A4,11A) = 396 = (},(24,5A,11B) proving that
Lyis (2A,5A, 11)-generated.

By Table 15, we have (r,(2A4,5B,114) = 355960 =
Cry(2A,5B,11B). We obtain that 11a and 11b of 3-McL:2
are each contained in one conjugate of 3-McL:2,11a and
11b of 2-A;; are each contained in three conjugates of
2-A11,11a and 11b of 3°:(2xMj;) are each contained
in three conjugates of 3%:(2xMjy). By Tables 8,
10 and 12, we have that (3.ac0.2(2a,5b,11a) =
187 = Cg.MCng(Qa, 5[)7 11b), CQ.All (2[)7 5[)7 11a)
660 = CQ‘AH (Qb, 5b, 11b) and Cgs;(ngwu)(Qa, 50,, 11a)

(1,(24,5B,114) = 355960 — 1(187) — 3(660) —
3(99) = 353496 = (},(2A4,5B,11B), proving that Ly is
(24,58, 11)-generated. Hence the result follows.

Proposition 3.8. Ly is (2, 5, 31)-generated.

Proof By Table 15, we have that (r,(24,5A4,314) =
(1y(24,5A4,31B) = 589 = (1,(24,54,31C) =
Cry(24,5A,31D) = (r,(24,54,31F). Only one
maximal subgroup of Ly contains elements of order 31
viz. G2(5) and that 31a,31b,31ec,31d,31e of G3(5) are
each contained in one conjugate of G2(5). By Table 7,
we have that (g, (5)(2a,5b,31a) = (g,(5)(2a,5b,31b) =
31 = <G2(5) (2(1, 5b, 316) = CG2(5)(2Q; 5b, 31d) =
(@, (5)(2a,5b, 31e). Thus we obtain that (7, (24,54,31A) =
58931 = 558 = (f,(24,54,31B) = (} (24,5A,31C) =
(i, (24,5A,31D) = (24,54, 31E).

By Table 15, we have that (,(24,5B,314) =
(1y(24,5B,31B) = 346425 = (,(24,5B,31C) =
(1y(24,5B,31D) = (,(24,5B,31E). By Table 7,
we have that (g, (5)(2a,5¢,31a) = (g,(5)(2a,5¢,31b) =
93 = (a,5)(2a,5¢,31lc) = (g,5)(2a,5¢,31d) =
CGQ(;)) (2&, 56,316), CG2(5)(2(1, 5d, 31(1) = §G2(5)(2a, 5d,31b) =
217 = CG2(5)(2a,5d,3lc) = CG2(5)(2&,5d,31d) =
(6 (5) (20,50, 31e) (i (5) (20, 5e, 31a) = i, ) (2a, 5e, B1b) =
310 = (g,5)(2a,5¢e,31c) = (g,(5)(2a,5¢,31d) =
Cay(5)(2a,5¢,31e).  We obtain that (7, (24,5B8,314) =
346425 — 93 — 217 — 310 = 345805 = Czy(QA, 5B,31B) =
(;,(24,5B,31C) = ¢}, (24,5B,31D) = ¢}, (24,58, 31E).
Hence Ly is (2, 5, 31)-generated.

Proposition 3.9. Ly is (2,5, 37)-generated.

Proof By Table 15, we have that (r,(2A4,54,37A) =
629 = (1,(24,5A,37B) and (1,(24,5B,37A) =
330595 = (1,(2A4,5B,37B). There is no contribution
from any of the maximal subgroups of Ly because none
contains elements of order 37. We thus obtain that
(i,(2A,54,374) = 629 = (;,(24,54,37B) and
(t,(24,5B,374) = 330595 = (},(24,5B,37B) proving
that Ly is (2, 5, 37)-generated.

Proposition 3.10. Ly is (2,5, 67)-generated.

Proof By Table 15, we have that (r,(24,5A4,67A) =
871 = (14(24,5A4,67B) = (14(24,5A4,67C) and
Cry(24,5B,674) = 320930 = (1,(24,5B,67B) =
CrLy(2A,5B,67C). There is no contribution from any of the
maximal subgroups of Ly because none contains elements
of order 67. We thus obtain that (}, (24,54,67A) =
871 = (;,(24,54,67B) = (7,(24,5A,67C) and
(;,(2A,5B,674) = 320930 = (;,(24,5B,67B) =
(1,(2A,5B,67C) proving that Ly is (2,5, 67)- generated.
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Table 15. Partial structure constants of Ly.
tX |CLy (tX)] ¢Ly(24,5A,tX) ¢Ly(24,5B,tX)
TA 168 532 312200
11A 66 396 355960
11B 66 396 355960
31A 31 589 346425
31B 31 589 346425
31C 31 589 346425
31D 31 589 346425
31E 31 589 346425
37A 37 629 330595
37B 37 629 330595
67A 67 871 320930
67B 67 871 320930
67C 67 871 320930
Table 16. Partial structure constants of G2(5).
tX |CG2(5) (tX)| Caq(5) (2a, 5a,tX) Cay(5) (2a,5b,tX) ¢y (5) (2a,5¢c,tX)
Ta 21 0 21 28
3la 31 0 31 93
31b 31 0 31 93
3lc 31 0 31 93
31d 31 0 31 93
3le 31 0 31 93
tX |[Ca,(s) (tX)] Caqy(s)(2a,5d,tX) Caqy(s)(2a,5e,tX)
Ta 21 287 315
3la 31 217 310
31b 31 217 310
3lc 31 217 310
31d 31 217 310
3le 31 217 310
Table 17. Partial structure constants of 3-M cL:2.
tX |Cs.neL:2(EX)] ¢3.MmcL:2(2a,5a,tX) ¢3.McL:2(2a,5b,tX)
Ta 42 7 476
1la 66 0 187
11b 66 0 187
tX |Cs.nreL:2(EX)] ¢3.McL:2(2b, 5a,tX) ¢3.McL:2(2b, 5b,tX)
Ta 42 0 0
1la 66 0 0
11b 66 0 0
Table 18. Partial structure constants of 2-Aq1.
tX  |Cz.4,, (X)) €2.44, (2a,5a,tX) €2.44, (2a,5b,tX) €2.44, (2b,5a,tX) C2.4,, (2b,5b,tX)
Ta 168 0 0 28 504
1la 22 0 0 0 660
11b 22 0 0 0 660
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Table 19. Partial structure constants of 3°:(2 x Myy).

tX 1C35, 2 x naq 1) (EX)] Ca5.(2xnyp) (205 50, tX)
1la 22 99
11b 22 99

3.3. The (2,7,r)-Generations of Ly

For the (2,7,r)-generations of Ly, we shall consider
all » € {11,31,37,67}. The maximal subgroups having
any contributions are G2(5);3-McL:2 and 2-Aq; because
3-Mc¢L:2 and 2- A1; contain elements of order 11, while G5(5)
contains elements of order 31.

Proposition 3.11. Ly is (2, 7,11)-generated.

Proof By Table 20, we have that (r,(24,7A,114) =
7804071 = (r,(2A4,7A,11B). The maximal subgroups
of Ly containing elements of order 11 are 3-McL:2 and
2-A11. We have that 11a, 116 of 3-McL:2 are each contained
in one conjugate of 3-McL:2 while 11a,11b of 2-Ay; are
each contained in three conjugates of 2-A;;. By Tables 8
and 10, we obtain that (3.pr0r:2(2a,7a,11a) = 1056 =
Cg.McL;Q(QCL, 7(1, 11()) and CQ‘All (Qb, 7Cl7 11&) = bbb =
Co.ay, (2b,7a, 110). Thus (f,(24,74,114) = 7804071 —
1(1056) — 3(55) = 7802850 = (j,(2A4,7A,11B), proving
that Ly is (2, 7, 11)-generated.

Proposition 3.12. Ly is (2, 7, 31)-generated.

Proof By Table 20, we have that (r,(24,7A4,314) =
CLy(2A,7A,31B) = 7719372 = (,(24,7A,31C) =
Cry(2A4,7A,31D) = (r,(2A,7A,31E). There is only
one maximal subgroup of Ly containing elements of order

31 viz. Ga(5). We obtain that 3la,31b,31c,31d,31e
of G3(5) are each contained in one conjugate of
G2(5). By Table 7, we have that (g, (5)(2a,7a,3la) =

<G2(5) (2(1, 7(1, 31b) =
<G2(5) (2(1, 7a, 31d) =

19406 = (g,(5)(2a,7a,31c) =
Cau(5)(2a, 7a, 31e). Thus

(1,(24,74,314A) = 7719372 — 19406 =
7699966 = (7,(2A4,7A,31B) = (7,(2A4,7A,31C) =
(1,(24,7A,31D) = (7,(2A,7A,31E), thus proving that
Ly is (2,7,31)-generated.

Table 20. Partial structure constants of Ly.

X |CLy (tX)] Cry(2A,7A,tX)
11A 66 7804071
11B 66 7804071
31A 31 7719372
31B 31 7719372
31C 31 7719372
31D 31 7719372
31E 31 7719372
37TA 37 7560025
37B 37 7560025
67A 67 7511102
67B 67 7511102
67C 67 7511102

Proposition 3.13. Ly is (2,7, 37)-generated.

Proof By Table 20, we have that (r,(24,7A,37A) =
7560025 = (r,(2A,7A,37B). There is no contribution
from any maximal subgroup because none contains elements
of order 37. Thus we obtain that (7, (24,7A,374) =
7560025 = (7, (24,7A,37B) proving that Ly is (2,7,37)-
generated.

Proposition 3.14. Ly is (2,7, 67)-generated.

Proof By Table 20, we have that (r,(24,7A4,67A) =
7511102 = (14(2A4,7A,67B) = (14(2A,7A,67C). There
is no contribution from any maximal subgroup because
none contains elements of order 67. Thus we obtain that
(1,(24,7A,67A) = 7511102 = (j,(2A,7A,67B) =
(1,(24,7A,67C) proving that Ly is (2, 7, 67)-generated.

Table 21. Partial structure constants of G2(5).

tX [Ca, sy (EX)] Cay(5)(2a,7a,tX)
3la 31 19406
31b 31 19406
3lc 31 19406
31d 31 19406
3le 31 19406

Table 22. Partial structure constants of 3-M cL:2.

tX |Cs.nrer:2(tX)] ¢3.McL:2(2a,7a,tX) ¢3.McL:2(2b,7a,tX)
1la 66 1056 0
11b 66 1056 0

Table 23. Partial structure constants of 2- A11.

tX |C2.a,, (X)) ¢2.4q, (2a,7a,tX) C2.a, (2b,7a,tX)
1la 22 0 55
11b 22 0 55
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3.4. The (2,11, r)-Generations of Ly

We shall consider all » € {31,37,67}. No maximal
subgroup has any contribution here because none contains
elements of order 31 and 37.

However 67:22 is the only one containing elements of order
67 but will not have any contribution since all its relevant
structure constants are zero.

Proposition 3.15. Ly is (2,11, 31)-generated.

Proof By Table 24, we have that (1, (24,11A4,31A4)
Cry(24,11A,31B) = 19645413 = (1, (24,11A4,31C)
Cry(24,11A,31D) = (1,(2A4,11A,31E). Since there is
no contribution from any of the maximal subgroups, we thus
obtain that (7, (24,114,314) = (},(24,114,31B) =
19645413 = (7, (24,114, 31C) = Czy(QA7 11A4,31D) =
(1,(24,11A,31F) proving that Ly is (2,11, 31)-generated.

Proposition 3.16. Ly is (2,11, 37)-generated.

Proof By Table 24, we have that (1, (24,11A4,374) =
CLy(24,11A,37B) = 19767583 = (1, (24,11B,37A) =
Cry(24,11B,37B). Since there is no contribution from
any of the maximal subgroups, we thus obtain that
(i, (2A,114,374) = (;,(24,11A4,37B) = 19767583 =
(1,(24,11B,37A) = (7, (2A,11B, 37B) proving that Ly is
(2,11, 37)-generated.

Proposition 3.17. Ly is (2,11, 67)-generated.

Proof By Table 24, we have that (r,(2A4,11A4,67A)
= (1,(24,114,6TB) = (1,(24,11A,67C) =
19724130 = (1, (24,11B,67A) = (1,(24,11B,67B) =
CrLy(24,11B,67C). Since there is no contribution
from any of the maximal subgroups, we thus
obtain that (7, (24,114,67A) = (7,(2A,114,67B) =
(;,(24,114,67C) = 19724130 = (},(24,11B,67A4) =
(1,(24,11B,67B) = (7,(2A4,11B,67C) proving that Ly is
(2,11,67)-generated.

Table 24. Partial structure constants of Ly.

tX |CLy(tX)]| CrLy(2A,11A,tX) ¢rLy(2A,11B,tX)
31A 31 19645413 19645413
31B 31 19645413 19645413
31C 31 19645413 19645413
31D 31 19645413 19645413
31E 31 19645413 19645413
37A 37 19767583 19767583
37B 37 19767583 19767583
67A 67 19724130 19724130
67B 67 19724130 19724130
67C 67 19724130 19724130
Table 25. Partial fusions of 67:22 into Ly.
9]y 2A 11A 11B 11A 11A 11A 11B 11B 11B 11A 11B 67A 67B 67C
1
[R]67:22 2a 1la 11b 11c 11d 1le 11f 11g 11h 114 115 67a 67b 67c

3.5. The (2,31, r)-Generations of Ly

In this case, we shall consider all » € {37,67}. No
maximal subgroup has any contribution here since there is
none containing elements of orders 37 and 67.

Proposition 3.18. Ly is (2, 31, 37)-generated.

Proof By Table 26, we have that (1, (24,314,37A) =
Cry(24,31B,37A) = Cry(24,31C,37A4) =
Cry(24,31D,37A) = (1,(2A,31E,37TA) = 41833125 =
Cry(24,31A,37B) = CLy(24,31B,37B) =
Cry(24,31C,37B) = Cry(24,31D,37B) =
Cry(24,31FE,37B). Since there is no contribution
from any of the maximal subgroups, we thus obtain
that (7,(24,314,374) = (7,(24,31B,374) =
Cry(24,31C,37A) = (i, (24,31D,374) =
CLU(2A 31E,37A) = 41833125 = (;,(24,31A,37B) =
(1,(24,31B,37B) = (1,(24,31C, 37B) =
CL1 (24,31D,37B) = (7,(24, 31E 37B) proving that Ly
is (2 31, 37)-generated.

Proposition 3.19. Ly is (2,31, 67)-generated.

Proof By Table 26, we have that (1, (24,31A4,67A) =
(Ly(24,31B,67A) — CLy(24,31C, 67A)
CLy(24,31D,67A) - CLy(24,31E,67A) -
gLy(QA,31A,67B) = (1,(24,31B,67B) = 41833125 =

y(2A, 31C,67B) = (1,(24,31D,67B) =

Ly( )
( )

Ly(24,31E,678 = Cry(24,31A,67C) =
CLy 2A,31B,67C = Cry(24,31C,67C) =
Cry(24,31D,67C) = (r4(24,31E,67C). Since there is
no contribution from any of the maximal subgroups, we thus
obtain that (j, (24,314,674) = (7,(24,31B,674) =
(1,(24,31C,674) = (1,(24,31D,674) =

gLy(zA, 31E,67A) - (t,(24,314,67B) -
7,(24,31B,67B) = 41833125 = (j,(24,31C,67B) =
D (24,31D,67B) = (,(2A31E67B) =
(2A,31A,67C’) = (1,(24,31B,67C) =
(2A,31C, 67C) = (1,(24,31D,67C) =
CLy (24,31FE,67C) proving that Ly is (2, 31, 67)-generated.
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Table 26. Partial structure constants of Ly.

tX |CLy (tX)] Cry(24,31A,tX) CLy(24,31B,tX) ¢Ly(24,31C,tX)
37A 37 41833125 41833125 41833125
37B 37 41833125 41833125 41833125
67A 67 41833125 41833125 41833125
67B 67 41833125 41833125 41833125
67C 67 41833125 41833125 41833125
X |CLy (tX)] ¢ry(24,31D,tX) CLy(24,31E,tX)

37A 37 41833125 41833125

37B 37 41833125 41833125

67A 67 41833125 41833125

67B 67 41833125 41833125

67C 67 41833125 41833125

3.6. The (2,37, r)-Generations of Ly

We shall consider only » = 67. No maximal subgroup has
any contribution here since there is none containing elements
of order 67.

Proposition 3.20. Ly is (2,37, 67)-generated.

Proof By Table 27, we have that (1, (24,37A,67A) =
Cry(24,37A,67B) = (1,(24,37A,67C) = 34610391 =

CrLy(2A,37B,67A) = Cry(2A,37B,67B) =
Cry(24,37B,67C). Since there is no contribution
from any of the maximal subgroups, we thus obtain
that (j,(24,37A,67A) = (},(24,37A,67B) =
(1,(2A,3TA,67C) = 34610301 = (i, (24,37B,674) =
(1,(2A,37B,67B) = (7,(2A4,37B,67C) proving that Ly is
(2,37,67)-generated.

Table 27. Partial structure constants of Ly.

tX |CLy (tX)] CLy(24,37A,tX) CLy(24,37B,tX)
67A 67 34610391 34610391
67B 67 34610391 34610391
67C 67 34610391 34610391

4. The (3, g, )-Generations of Ly

We consider here all ¢ € {5,7,11,31,37} and all r €
{7,11,31,37,67).

4.1. The (3,5, r)-Generations of Ly

We shall consider all r € {7,11,31,37,67}.
The maximal subgroups having any contributions are
G2(5);3-McL:2;5% L3(5);2-A11; 3%:(2x M11) because
G4(5) contains elements of orders 7 and 31, 3-McL:2;2- A1,
contain elements of orders 7 and 11, 53-L3(5) contains
elements of order 31 and 3°:(2x M) contains elements of
order 11.

Proposition 4.1. Ly is

(i) not (34,5A,7A)-generated

(ii) (34,5B,7A),(3B,5A,7A),(3B,5B, 7A)-generated.

Proof (i) By Table 28 above, we have that
Cry(3A,5A,7A) =7 < 168 = |CL,(7A)|, proving (i).

(i1) The maximal subgroups of Ly containing elements of
order 7 are G3(5);3-McL:2;2-A1;. We get that 7a of G2(5)
is contained in eight conjugates of G2(5),7a of 3-McL:2 is
contained in four conjugates of 3-McL:2 and 7a of 2-Aj;
is contained in one conjugate of 2-A;;. By Table 28, we
have that {r,(34,5B,7A) = 10528. Only G2(5) meets

the 3A4,5B,7A classes of Ly and by Table 7, we have that
CGa(5)(3a,5¢,7a) = 21 and (g, (5)(3a,5e,7a) = 11. We
obtain that ¢, (3A4,5B,7A) = 10528 — §(21) — 8(11) =
10272, proving that Ly is (34, 5B, 7A)-generated.

By Table 28, we have that (7, (3B,54,7A) = 148197.
By Tables 7, 8 and 10, we have that (g, (5)(3b,5a,7a) =
21, Cay(5) (30,56, 7a) = 525, Cs.arera(3c,5a, 7a) = 56
and CS-A[CL:?(SCZ’ 5@, 7@) = 595;C2A11 (3b, 5a,7a) =
21,(24,,(3¢,5a,7a) = 168. We thus obtain that
(1,(3B,5A,TA) = 148197 — 8(21) — 8(525) — 4(56) —
4(595) — 1(21) — 1(168) = 141036, proving that Ly is
(3B,5A,7A)-generated.

From Table 28, we have that (.,(3B,5B,7A) =
76620040. By Tables 7, 8, 10, we have that
Caa(5)(3b,5¢,Ta) = 1925,(q,(5)(3b,5d,7a) = 4900 and
CG2(5)(3b, 56,7(1) = 6300,{3.MCL;2(3C, 5b, 7a) = 364 and
C3-MeL:2(3d,5b,7a) = 50400, (2. 4,,(3b,5b,7a) = 504
and (2.4,,(3¢,5b,7a) = 1680. We thus obtain that
(t,(3B,5B,TA) = 76620040 — 8(1925) — 8(4900) —
8(6300)—4(364) —4(50400) —1(504)—1(1680) = 76309800,
proving that Ly is (3B,5B,7A)-generated and the proof is
complete.

Proposition 4.2. Ly is

(i) not (34,54,11A), (34,54, 11B)-generated

(ii) (34,5B,11),(3B,5A,11), (3B, 5B, 11)-generated
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Proof (i) From Table 28, we have that 1, (34,5A4,114) =
22 = (14(34,5A4,11B). The maximal subgroups containing
elements of order 11 are 3-McL:2;2-Aq1;3%:(2x My1). The
classes 11a,11b of 3-McL:2 are each contained in one
conjugate of 3-McL:2,11a,11b of 2-Ay; are each contained
in three conjugates of 2-Aiy,11a,11b of 3%:(2x M) are
each contained in three conjugates of 3°:(2x Mj;). Although
3-McL:2;2-A1; meet the 3A,5A4,11A,11B classes of Ly,
only 3-McL:2 has a contribution since 2-A;; has its relevant
structure constants all zero. By Table 8, we obtain that
C3~McL:2(3ba da, 11&) =22 = <3‘MCL;2(3b7 oa, 11b) so that
(i, (3A4,5A,114) = 22 — 22 = 0 = (}, (34,54, 11B), thus
proving (i).

(i) By Table 28, we have that (,(34,5B,114) =
5071 = (1,(34,5B,11B). Only 3-McL:2 and 2-Ay
meet the 3A, 5B, 11A, 11B classes of Ly and so by
Tables 8 and 10, we have that (3.p7c01.2(3b,5b,11a) =
418 = C3.n101:2(3b, 5, 11b) and (o 4,, (34, 5b, 11a) = 11 =
(2.4, (3a, 5b, 11b). Thus we obtain that (7, (34,5B,114) =
5071 — 1(418) — 3(11) = 4620 = (}, (34, 5B, 11B), proving
that Ly is (34, 5B, 11)-generated.

By Table 28, we have that {1,(3B,5A4,114) = 131824 =
Cry(3B,5A,11B).  Although 3-McL:2 and 2-A;; meet
the 3B,5A,11A4,11B classes of Ly, only 3-McL:2 has a
contribution since 2-A1; has its relevant structure constants all
zero. By Table 8, we have that (3.p701:2(3¢, 5a, 11a) = 22 =
C?,.MCL;Q(3C, 5&, 11()) and <3-McL:2(3da 5CL, lla) = 1122 =
(3-mcr:2(3d, 5a, 11b). We then get that (7, (3B,54,114) =
131824 — 22 —1122 = 130680 = Czy(?)B, 5A,11B), proving
that Ly is (3B, 5A, 11)-generated.

From Table 28, we have that (;,(3B,5B,114) =
80152600 = (r,(3B,5B,11B). From Table 8, we obtain
that <3~McL:2(3C7 5b,11a) = 0682 = C3AMCL;2(36, 5b,11b)
and C.p701:2(3d, 5b, 11a) = 34485 = C3.701:2(3d, 5b, 11b).
By Table 10, we have that (2.4,,(3b,5b,11a) = 242 =
Coay,(3b,5b,11b) and Ca.a,,(3c,5b,11a) = 2816 =
Caony, (3¢, 5b, 11D).

From Table 12, we obtain that (5.2 a1,,)(3¢, 5a, 11a) =

891 = 4.35:(2><]\411) (3C7 5CL, 11b) and C35:(2><M11)(3d7 5(1, lla) =

1782 = (35.(2xny,)(3d,5a,11b).  Thus we obtain that
(;,(3B,5B,114) = 80152600 — 1(682) — 1(34485) —
3(242) — 3(2816) — 3(891) — 3(1782) = 80100240 =
(1,(3B,5B,11B), proving that Ly is (3B,5B,11)-
generated. Hence the proof is complete.

Proposition 4.3. Ly is

(i) not (34,54, 31)-generated

(ii) (3A,5B,31),(3B,5A4,31),(3B,5B, 31)-generated

Proof (i) By Table 28, we have that (1,(3A4,54,31A4) =
Cy(34,5A4,31B) = 0 = (14(34,5A4,31C) =
Cry(3A4,5A,31D) = (1,(3A4,5A4, 31E), proving (i).

(i) The maximal subgroups containing elements of order
31 are Go(5);5%L3(5). Thus 3la,31b,31c,31d,3le of
G2(5) are each contained in one conjugate of Ga(5).
The classes 3la,31b,31c,31d,31e,31f,31g,31h,31¢,31j
of 53-L3(5) are each contained in one conjugate of
53.L3(5). By Table 28, we have that (1, (34,5B,314) =
Cry(34,5B,31B) = 4030 = (14(34,5B,31C) =

(1y(34,5B,31D) = (1,(34,5B,31E). Only Gs(5)
meets 3A,58,31A4,31B,31C,31D,31F classes of Ly.
Using Table 7, we have that (g, (3a,5e,31la) =
Caa(5)(3a,5e,31b) = 31 = (g,»)(3a,5e,3lc) =
Caa(5)(3a, Se, 31d) = (ay(5)(3a,5¢,3le). Thus we
obtain that (7, (34,5B,314) = 4030 — 31 =
3999 = CLy(?)A 5B,31B) = (7,(3A4,5B,31C) =
(1,(34,5B,31D) = (;,(34,5B,31FE). Hence Ly is
(34,58, 31)-generated.

By Table 28, we have that (;,(3B,54,314) =
Cry(3B,5A,31B) = 124651 = (1,(3B,54,310) =
(1y(3B,5A,31D) = (1,(3B,5A,31E). By Table 7, we
obtain that (g, (5)(3b,5a,31a) = (q,(5)(3b,5a,31b) =
31 = (o (3h,50,31c) = (oo (3b,5a,31d) =
CG2(5) (3b, Sa, 316) and CG2(5)(3b, 5b, 31a) = CG2(5)(3b, 5b, 31b)
= 465 = (ay5)(36,50,31¢) = Cau(s)(3b,5b,31d) =
CG2(5) (3b, 5b, 316).

From Table 9, we have that (ss.1,(5)(3a,5b,31a) =
C53 Ls(5) (3&,51),31[)) = C53.L3(5) (3&,5(),310) =
g53 La5)(30,5b,31d) = (o515 (3a,5b,31e) = 155 =

53 L3(5) (3a,5b,31f) = C53‘L3(5)(3a,5b,3lg) =
<53 L3(5) (3a,5b,31h) = C53'L3(5)(36L,5b,31i) =
(53.L4(5) (3a, 5b, 315). We thus obtain that (7, (38,54, 314) =
124651 — 31 — 465 — 155 — 155 = 123845 proving that Ly
is (3B,5A,31A)-generated, (zy(3B,5A,3lB) = 124651 —
31 — 465 — 155 = 124000 proving that Ly is (3B, 54, 31B)-
generated, (7, (3B,54,31C) = 124651 — 31 — 465 — 155 —
155 — 155 = 123690 proving that Ly is (3B,5A4,31C)-
generated, (7, (3B,54,31D) = 124651 — 31 — 465 =
124155 proving that Ly is (3B,5A4,31D)-generated and
Czy(3B,5A,31E) = 124651 — 31 — 465 — 155 —155— 155 —
155 = 123535 proving that Ly is (3B, 5A, 31 F)-generated.

By Table 28, we have that (;,(3B,5B,314) =
Cry(3B,5B,31B) = 78192850 = (1,(3B,5B,31C) =
Cry(3B,5B,31D) = (1,(3B,5B,31F). By Table 7, we
obtain that <G2(5)(3b7 50,31(1) = CG2(5)(3b7 5C,31b) =
2170 = (aus)(36,5¢,31c) = Caues(3b,5¢,31d) =
462(5) (3(), 50, 316), CGQ(S) (31), 5d, 31a) = CG2(5) (3?)7 5d,31b) =
4030 = (g,(5)(3b,5d,31c) = (a,(5)(3b,5d,31d) =
CG2(5) (Sb, 5d, 316) and CG2(5) (3b, 56, 31a) = §G2(5) (Sb, 56, 31b)
= 6975 = (au(5)(3b,5€,31c) = (g,5)(3b, 5e,31d) =
Caa(5)(3D, Be, 31e).

By Table 9, we obtain that (s3.1,(5)(3a,5¢,3la) =
C53 L3(5) (3a 56 31b) = C534L3(5 (3a 56 316) =
(58.14(5) (3a, 5¢, 31d) = (58.1,5(5)(3a, 5¢, 31e) =
C53 Ls(5) 3&,5C,31f) = C53 L3(5)(3a75c,319) =
53 L3(5) 3a,5c,31h) = 53 Ls( 5)(3@, 50,3”) =

(

(

)(

<53 L3(5) (3@,50,31j) = 310 = C53.L3(5)(3a,5d,31a) =
C53 L3(5 (3a,5d,31b) = C53‘L3(5)(3a,5d,310) =
<53 L3(5) (3(1, 5d7 31d) == C53.L3(5) (3a, 5d7 316)

C53 Ls(5) (3&,5d,31f) = C53 L3(5) (3@,5d,3lg) S
C53.15(5) (3a75d,31h) (3a,5d,31i)
C5%.15(5) (3a,5d731j).

Thus, we obtain that (7, (3B,5B,314) = 78192850 —
2170 — 4030 — 6975 — 310 — 310 — 310 — 310 =
78178435 proving that Ly is (3B,5B,31A)-generated,
(1,(3B,5B,31B) = 78192850 — 2170 — 4030 — 6975 —

53 L3(5
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310 — 310 = 78179055 proving that Ly is (38,58, 31B)-
generated, (7, (3B,5B,31C) = 78192850 — 2170 — 4030 —
6975—310—310—310—310—310—310 = 78177815 proving
that Ly is (3B,5B,31C)-generated, (;,(3B,58,31D) =
78192850 — 2170 — 4030 — 6975 = 78179675 proving that
Ly is (3B,5B,31D)-generated and (7, (3B,5B,31F) =
78192850 — 2170 — 4030 — 6975 — 310 — 310 — 310 — 310 —
310 — 310 — 310 — 310 = 78177195 proving that Ly is
(3B, 5B, 31E)-generated. Hence the proof is complete.

Proposition 4.4. Ly is

(i) not (3A,5A, 37)-generated

(ii) (34,5B,37),(3B,5A4,37), (3B, 5B, 37)-generated

Proof (i) By Table 28, we have that (1,(3A4,54,37A) =
0= (ry(34,5A,37B), proving (i).

(i) By Table 28, we have that (r,(3A4,5B,37TA) =
8658 = (1,(34,5B,37B),(r,(3B,54,37A) = 141192 =
Cry(3B,5A,37B) and (1,(3B,5B,37TA) = 78319010 =
Cry(3B,5B,37B). There is no contribution from any
maximal subgroup because none contains elements of
order 37. Thus we obtain that (7, (34,5B,374) =

8658 = (7,(34,5B,37B), (7,(3B,54,37TA) = 141192 =
(1,(3B,5A,37B) and CLy(?)B 5B, 37A) = 78319010 =
CLy(?)B 5B, 37B), proving (ii).

Proposition 4.5. Ly is

(i) not (34,54, 67)-generated

(ii) (34,5B,67),(3B,5A,67), (3B, 5B, 67)-generated

Proof (i) By Table 28, we have that (1,(3A4,54,67A) =
0=(ry(34,5A,67B) = (,(34,5A4,67C), proving (i).

(i) By Table 28, we have that (,(34,5B,67TA) =
7169 = (1y(3A,5B,67B) = (1,4(34,5B,67C),
Cry(3B,5A,67A) = 140231 = (r,(3B,54,67TB) =
Cry(3B,5A,67C) and (1,(3B,5B,67TA) = 78319010 =
Cry(3B,5B,67B) = (14(3B,5B,67C). There is no
contribution from any maximal subgroup because none
contains elements of order 67. Thus we obtain that
CLy (34,5B,67TA) = 7169 = Czy(SA,5B,67B) =
CL (34,5B,670),(1,(3B,5A,674) = 140231 =
CLJ(3B 5A,67B) = CLy(SB 5A,67C)and (7, (3B,5B,67A) =
78319010 = ¢}, (3B,5B,67B) = (;,(3B,5B,67C) hence
(i1) follows and the proof is complete.

Table 28. Partial structure constants of Ly.

tX |CLy(tX)]| ¢rLy(3A,5A,tX)

¢rLy(3A,5B,tX)

CLy(3Ba5A’tX) CLy(SBa 5BatX)

TA 168 7 10528 148197 76620040

11A 66 22 5071 131824 80152600

11B 66 22 5071 131824 80152600

31A 31 0 4030 124651 78192850

31B 31 0 4030 124651 78192850

31C 31 0 4030 124651 78192850

31D 31 0 4030 124651 78192850

31E 31 0 4030 124651 78192850

37TA 37 0 8658 141192 78319010

37B 37 0 8658 141192 78319010

67A 67 0 7169 140231 78319010

67B 67 0 7169 140231 78319010

67C 67 0 7169 140231 78319010
Table 29. Partial structure constants of G2 (5).

tX |CG2(5) (tX)| Cca(5) (3a, 5a,tX) Ccy(5) (3a,5b,tX) Caa(5) (3a,5¢c,tX)

Ta 21 0 0 21

3la 31 0 0 0

31b 31 0 0 0

3lc 31 0 0 0

31d 31 0 0 0

3le 31 0 0 0

tX [Cay(s) (tX)] Caq(s)(3a,5d,tX) Cao(s)(3a, 5e,tX)

Ta 21 0 11

3la 31 0 31

31b 31 0 31

3lc 31 0 31

31d 31 0 31

3le 31 0 31
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tX |Cay(s) (EX)] Cay(s) (3b,5a,X) Cay (s (3b, 5b, £X) Cay(5)(3b,5¢,tX)
Ta 21 21 525 1925
3la 31 31 465 2170
31b 31 31 465 2170
3le 31 31 465 2170
31d 31 31 465 2170
3le 31 31 465 2170
tX |Cay (s (£X)] ey (5)(3b,5d,tX) ey (5) (3D, 5e, tX)

Ta 21 4900 6300
3la 31 4030 6975
31b 31 4030 6975
3le 31 4030 6975
31d 31 4030 6975
3le 31 4030 6975
Table 30. Partial structure constants of 3-M cL:2.
tX |Cs.meL:2(tX)] ¢3.MmcL:2(3a, 5a,tX) ¢3.MmcL:2(3a, 5b,tX)
Ta 42 0 0
1la 66 0 0
116 66 0 0
tX |Cs.meL:2(EX)] ¢3.MmcL:2(3b,5a,tX) ¢3.MmcL:2(3b, 5b,tX)
Ta 42 7 280
1la 66 22 418
11b 66 22 418
tX |Cs.veL:2(EX)] ¢3.MmcL:2(3¢,5a,tX) ¢3.MmcL:2(3c, 5b,tX)
Ta 42 56 364
1la 66 22 682
11b 66 22 682
tX |Cs.nrer:2(tX)] ¢smecr:2(3d, 5a,tX) ¢smecr:2(3d, 5b,tX)
Ta 42 595 50400
1la 66 1122 34485
116 66 1122 34485
Table 31. Partial structure constants of 5°- L3 (5).
tX ICy8.1., 5y (X)) C53.1.4(5) (33,50, £X) C53.1.45) (33 55, £X)
3la 31 0 155
31b 31 0 155
Hle@ 31 0 155
31d 31 0 155
3le 31 0 155
31f 31 0 155
3lg 31 0 155
31h 31 0 155
314 31 0 155
315 31 0 155
tX 1Cy8.1. 5) (X)) Cs3.1.4(5) (30, 5¢,£X) C53.1.4(5) (33, 5d, tX)
3la 31 310 310
31b 31 310 310
3lc 31 310 310
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tX ICy3.1.4 (5 (EX)] C58. 14 (s) (305 B¢, X)) C53. 1.4 (s (305 5, tX)
31d 31 310 310
3le 31 310 310
31f 31 310 310
31g 31 310 310
31h 31 310 310
314 31 310 310
315 31 310 310

Table 32. Fartial structure constants of 2-A11.

tX |C2.a,, (EX)] ¢2.4,, (3a,5a,tX) ¢2.4,,(3a,5b,tX)
Ta 168 7 0

1la 22 0 11

11b 22 0 11

X |C2.a,, (X)) C2.a,, (8b,5a,tX) C2.a,, (8b,5b,tX)
Ta 168 21 504

1la 22 242

11b 22 242

tX |C2.4,, (tX)] ¢2.4,4 (3¢,5a,tX) ¢2.4,, (3¢,5b,tX)
Ta 168 168 1680

1la 22 0 2816

116 22 0 2816

Table 33. Partial structure constants of 3°:(2x M11).

tX 1C55, (2 ary ) (EX)] Ca5. (2 a1y ) (305 50, EX) Ca5. (2 nry ) (303 50, X))
1la 22 0 0

116 22 0 0

tX G35, (23 azy gy X)) €35, (ax nryy) (3C5 55 £X) €35, ax nryq) (39 By £X)
1la 22 891 1782

11b 22 891 1782

4.2. The (3,7, r)-Generations of Ly

We consider all r» €  {11,31,37,67}. The
maximal subgroups having any contributions are
G2o(5);3-McL:2;2-Aqq because 3-McL:2 and 2-A;; contain
elements of order 11, while G2(5) contains elements of order
31

Proposition 4.6. Ly is (3,7, 11)-generated

Proof The maximal subgroups containing elements of order
11 are 3-McL:2;2-A1;. The classes 11a,11b of 3-MecL:2
are each contained in one conjugate of 3-McL:2,11a,11b
of 2-A;; are each contained in three conjugates of
2-A;;. By Table 34, we have that (1, (34,7A,114) =
104940 = (1,(34,7A,11B). Only 3-McL:2 meets the
3A,7TA,11A,11B classes of Ly and by Table 8, we have
that (3.a7c1:2(3b, 7a, 11a) = 1452 = (3.p701:2(3b, Ta, 11b).
We thus obtain that (7, (3A,7A,114) = 104940 —
1452 = 103488 = (j,(3A4,7A,11B), proving that Ly is
(3A,7A,11)-generated.

By Table 34, we have that (,(3B,7A4,114) =

1767039153 = (1, (3B, 7A,11B). By Table 8, we have that
C3-mer2(3c,7a,11a) = 2904 = (3.p012(3¢, 7Ta, 11b) and
Ca.mer2(3d,7a,11a) = 132264 = (3.pc12(3d, 7a, 11b).
By Table 10, we have that (2.4,,(3¢,7a,11la) = 693 =
(2.4, (3¢, 7a, 11b). Thus we obtain that ¢}, (3B, 7A,114) =
1767039153 — 1(2004) — 1(132264) — 3(693) =
1766901906 = (;,(3B,7A,11B), proving that Ly is
(3A4,7A, 11)-generated.

Proposition 4.7. Ly is (3,7, 31)-generated.

Proof By Table 34, we have that (r,(34,74,314) =
(Ly(3A,7A,31B) = 114390 = (1,(34,7A,31C) =
(1y(3A,7A,31D) = (1,(3A,7A,31E).  The only
maximal subgroup containing elements of order 31
is Ga(5). Thus 3la,31b,31c,31d,3le of Ga(5)
are each contained in one conjugate of G2(5).
By Table 7, we have that (g,(5)(3a,7a,3la) =
Caa(5)(3a,7a,31b) = 806 = (g,5(3a,7a,31lc) =
Caa(5)(3a,7a,31d) = (g,(5)(3a,7a,3le). Thus we
obtain that (7, (34,74,314) = 114390 — 806 =
113584 = (7,(3A,7A,31B) = (7,(3A,7A,31C) =
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(1,(3A,7A,31D) = (;,(34,7A,31E), proving that Ly is
(3A,7A,31)-generated.

By Table 34, we have that (;,(3B,7A4,314) =
Cry(3B,7A,31B) = 1761121098 = (1,(3B,7A,31C) =
(1y(3B,7A,31D) =  (1,(3A,7B,31E). By
Table 7, we have that (g,(5(3b,7a,31a) =
Con(s)(3b,7a,31b) = 387376 = (g5 (3b,7a,31c) =
CGo(5)(3b,7a,31d) = (g,(5)(3b,7a,31e). We thus obtain
that Czy(3B,7A731A) = 1761121098 — 387376 =
1760733722 = (},(3B,7A,31B) = (;,(3B,74,31C) =
(1,(3B,7TA,31D) = (7,(3B,7A,31E), proving that Ly is
(3B, 7A, 31)-generated.

Proposition 4.8. Ly is (3,7, 37)-generated.

Proof By Table 34, we have that (r,(34,74,37TA) =
135050 = (1, (3A4,7A,37B), and ., (3B,7A,37A) =
1750265353 = (1, (3B, 7A,37B). There is no contribution

from any maximal subgroup because none contains elements

of order 37. Thus we obtain that (j, (34,7A4,374) =
135050 = (7,(3A,7A,37B) and (;,(3B,7A,37A) =
1750265353 = (7, (3B,7A,37B) proving that Ly is

(3,7,37)-generated.

Proposition 4.9. Ly is (3,7, 67)-generated.

Proof From Table 34, we have that (1, (34,7A4,67A) =
133330 = (1, (3A,7A,6TB) = (,(34,7A,67C) and
Cry(3B,TA,67A) = 1749468088 = (1, (3B,7A,67B) =
CLy(3B,7A,67C).  There is no contribution from any
maximal subgroup because none contains elements of
order 67.  Thus we obtain that (7, (34,74,67A) =
133330 = (},(3A4,7A,67B) = (;,(34,74,67C) and
(i,(3B,TA,6TA) = 1749468088 = (;,(3B,7A,67B) =
(1,(3B,7A,67C) proving that Ly is (3, 7, 67)-generated.

Table 34. Partial structure constants of Ly.

tX |CLy(tX)| CrLy(8A,7A,tX) $Ly (8B, TA,tX)
11A 66 104940 1767039153

11B 66 104940 1767039153

31A 31 114390 1761121098

31B 31 114390 1761121098

31C 31 114390 1761121098

31D 31 114390 1761121098

31F 31 114390 1761121098

37TA 37 135050 1750265353

37B 37 135050 1750265353

67A 67 133330 1749468088

67B 67 133330 1749468088

67C 67 133330 1749468088

Table 35. Partial structure constants of G2 (5).

tX [Ca, ) (tX)| Caa(5)(3a,7a,tX) Cay(5)(8b, Ta, tX)
3la 31 806 387376

31b 31 806 387376

3lc 31 806 387376

31d 31 806 387376

3le 31 806 387376

Table 36. Partial structure constants of 3-M cL:2.

tX |Cs.nmer:2(tX)] ¢s.mcr:2(8a,7a,tX) ¢s.mecr:2(8b, Ta, tX)
1la 66 0 1452

11b 66 0 1452

tX |Cs.nmer:2(tX)] ¢s.mcr:2(8¢, Ta, tX) ¢s.mecr:2(8d, 7a, tX)
1la 66 2904 132264

11b 66 2904 132264

Table 37. Fartial structure constants of 2-A11.
tX [C2.a,, (tX)| ¢2.4,,(3a,7a,tX) C2.4,,(3b,7a,tX) €2.4,, (3¢, 7a,tX)

11a 22 0
11b 22 0

0 693
0 693
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4.3. The (3,11, r)-Generations of Ly

We shall consider all » € {31,37,67}. No maximal
subgroup has any contribution here since there is none
containing elements of orders 31, 37 and 67.

Proposition 4.10. Ly is (3,11, 31)-generated.

Proof By Table 38, we have that (r,(34,11A4,314) =
Cry(34,11A,31B) = Cry(34,11A4,31C) =
Cry(3A,11A,31D) = (ry(3A,114,31E) = 294810
(LU(SA, 11B,314) = (Ly(34,11B,31B) =

Cry(34,11B,31C) = CrLy(34,11B,31D)

(ry(3A,11B,31E)  and  (1,(3B,114,31A4)
Cry(3B,11A,31B) = Cry(3B,11A,31C) =
y(3B, 11A4,31D) = (1,(3B,11A,31F) = 4485289467 =

Ly )

( )

)

Ly(3B,115,314A = Cry(3B,11B,31B) =
CLy 3B,11B,31C = CrLy(3B,11B,31D) =
Cry(3B,11B,31E). Since there is no contribution
from any of the maximal subgroups, we thus obtain
that (1,(3A,114,314) = (7,(34,114,31B) =

1y (34,114, 31C) = Czy(?)A, 11A4,31D) =
(3A,11A,31E) = 294810 = ¢z, (34,11B,314) =
(SA,llB,?)lB) = CLU(SA 11B,31C) =
(3A,1lB,31D) = (1,(3A,11B,31F)  and
CLy(3B,11A,31A) = CLy(SB 11A 3lB) =
1,(3B,114,31C) = (1,(3B,114,31D) =
(3B7 114, 31F) = 4485289467 = (1,(3B,11B ,31A) =
(SB7 11B,31B)
(33,11B,31D)
11 31)-generated.

- ¢,B8B11B 310) =
1y(3B,11B, 31E) proving that Ly is
(3

Proposition 4.11. Ly is (3,11, 37)-generated.

Proof By Table 38 , we have that (r,(34,114,374) =
Cry(34,11A,37B) = 274096 = (,(3A,11B,374) =
CrLy(3A,11B,37B and  (r,(3B,11A4,37A) =
(1y(3B,11A,37B) = 4487698476 = (,,(3B,11B,37A) =
CrLy(3B,11B,37B). Since there is no contribution
from any of the maximal subgroups, we thus obtain
that (},(34,114,374) = (;,(34,114,37B) =
274096 = (},(3A4,11B,374) = (;,(34,11B,37B) and
(t,(3B,114,37A) = (; (3B, 114, 37B) = 4487698476 =
(1,(3B,11B,37A) = (;,(3B,11B, 37B) proving that Ly is
(3,11, 37)-generated.

Proposition 4.12. Ly is (3,11, 67)-generated.

Proof By Table 38, we have that (1, (34,114,67A) =
CLy(3A,11A4,67B) = (1,(3A4,114,67C) = 276777 =
CLy(34,11B,67A) - (Ly(3A,11B,67B) =
CLy(SA,llB,67C’ and  (1,(3B,114,67A) -

Ly(
(

S —

)

1y(3B,114,67B) = (1, (3B, 114,67C) = 4489529166 =
gLy 3B,11B,67A) - cLy(3B, 11B, 67B) -
Cry(3B,11B,67C). Since there is no contribution
from any of the maximal subgroups, we thus obtain
that Cf,(34,114,674) = (},(34,114,67B) =
gLy(3A 114,67C) = 276777 = (;,(34,11B,674) =

7,(34,11B,67B) = (;,(3A,11B,67C)  and
(3B, 114,67A) = gzy(sB, 114, 67B) -
7 (3B,114,67C) = 4489529166 = C} (3B, 11B,674) =
(3B 11B,67B) =
11 , 67)-generated.

(1,(3B,11B 670) proving that Ly is
(3

Table 38. Partial structure constants of Ly.

tX |CLy (tX))] Cry(3A,11A,tX)

CLy(3A,11B,tX)

¢Ly(3B,11A,tX) ¢Ly(3B,11B,tX)

31A 31
31B 31
31C 31
31D 31
31E 31
37TA 37
37B 37
67TA 67
67B 67
67C 67

294810
294810
294810
294810
294810
274096
274096
276777
276777
276777

294810
294810
294810
294810
294810
274096
274096
276777
276777
276777

4485289467
4485289467
4485289467
4485289467
4485289467
4487698476
4487698476
4489529166
4489529166
4489529166

4485289467
4485289467
4485289467
4485289467
4485289467
4487698476
4487698476
4489529166
4489529166
4489529166

4.4. The (3,31, r)-Generations of Ly

We shall consider all » € {37,67}. No maximal subgroup
has any contribution here since none contains elements of
orders 37 and 67.

Proposition 4.13. Ly is (3,31, 37)-generated.

Proof By Table 39, we have that (1, (34,314,37A) =
Cry(3A4,31A4,37B) = CrLy(3A4,31B,37A) =
Cry(34,31B,37B) = (14(34,31C,37A4) = 629000 =
CLy(3A,?>1C7 37B) = Cry(34,31D,37A)

Cry(34,31D,37B) = Cry(34,31E,37A) =

CrLy(3A,31E,37B) and  (r,(3B,314,37A) =
Cry(3B,31A,37B) = CLy(3B,31B,37A) =

CLy(SB,3lB,37B) = (1y(3B,31C,37TA) = 9549237500 =
Cry(3B,31C,37B) = Cry(3B,31D,37A) =
Cry(3B,31D,37B) =
Cry(3B,31E,37B). Since
from any of the maximal
that (1,(34,31A4,374) =
3A,31B,37A) =

CLy(3B,31E,37A) =
there is no contribution
subgroups, we obtain
Czy(BA,31A737B) =
Czy(3A,3lB,37B) =

Ty
CLy(SA,3lC,37A) = 629000 = (},(34,31C,37B) =
cLy(3A, 31D,37A) = (;,(34,31D,37B) =
7, (34,31, 374) = (i,(34,31E,37B)  and
CLy(?)B, 31A,37A) = (i,(3B,314,37B) =
7,(3B,31B,374) = (;,(3B,31B,37B) =
CLy(SB, 31C,374) = 9549237500 = (},(3B,31C,37B) =
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(1,(3B,31D,37A) = (1,(3B,31D,37B) = (1y(3B,31E,67A) = CrLy(3B,31E,67B) =
(1,(3B,31E,37A) = (;,(3B, 31E 37B) proving that Ly  (r,(3B,31E,67C). Since there is no contribution from any of
is (3,31, 37) generated. the maximal subgroups, it follows that ¢}, (34,314,67A4) =
Proposition 4.14. Ly is (3, 31, 67)-generated. (;,(34,314,67B) = (;,(3A,314,67C) =
Proof By Table 39, we get that (r,(34,314,67A4) = {Ly(SA 31B,67A) = Ly (3A 31B,67B) =
CrLy(3A,31A,67B) = Cry(3A4,31A,67C) = (1,(34,31B,670C) = CL (34,31C,67A) =
Cry(3A4,31B,67A) = Cry(34,31B,67B) = 619750 = (7,(34,31C,67B) = (j,(34,31C,67C)
Cry(34,31B,67C) = Cry(34,31C,67A) = Czy(SA,?)lD,G?A) = CLy(?)A 31D,67B) =
619750 = (1,(34,31C,67B) = (1,(34,31C,67C) = (;,(34,31D,67C) - (1, (3A,31E,674) -
Cry(34,31D,67A) = (1,(34,31D,67B) = (;,(34,31E,67B) - (;,(34,31E,67C)  and
Cry(34,31D,67C) = Cry(3A,31E,67A) = CL (3B,31A,67A) = (1,(3B,314,67B) =
CLy(3A,31E,67B) = Cry(34,31E,67C") and CL (3B,31A4,67C) = (1,(3B,31B,67A) =
Cry(3B,31A,67A) = Cry(3B,31A,67B) = (;,(3B,31B,67B) = (1,(3B,31B,67C) =
Cry(3B,31A4,67C) = Cry(3B,31B,67A) = Czy(BB,3lC,67A) = 9544150000 = (7, (3B,31C,67B) =
Cry(3B,31B,67B) = Cry(3B,31B,670) = (7,(3B,31C,67C) = (1,(3B,31D,67A) =
CLy(3B,31C, 67A) = 9544150000 = (1, (3B,31C,67B) =  (;,(3B,31D,67B) = cL (3B,31D,67C) =
Cry(3B,31C,67C) = Cry(3B,31D,67A) = CL (3B,31E,67A) = CL (3B,31E,67B) =
Cry(3B,31D,67B) = Cry(3B,31D,67C) = CLJ(3B, 31F,67C) proving that Ly is (3, 31, 67) -generated.

Table 39. Partial structure constants of Ly.

tX |CLy (tX)] ¢Ly(34,31A,tX) ¢Ly(34,31B,tX) ¢Ly(34,31C,tX)
374 37 629000 629000 629000
37B 37 629000 629000 629000
67A 67 619750 619750 619750
67B 67 619750 619750 619750
67C 67 619750 619750 619750
tX |CLy (X)) ¢Ly(34,31D,tX) ¢Ly(3A,31E, tX)
374 37 629000 629000
378 37 629000 629000
67A 67 619750 619750
67B 67 619750 619750
67C 67 619750 619750
tX |CLy (X)) ¢Ly(3B,31A,tX) ¢Ly(3B,31B,tX) ¢Ly(3B,31C,tX)
374 37 9549237500 9549237500 9549237500
37B 37 9549237500 9549237500 9549237500
67A 67 9544150000 9544150000 9544150000
67B 67 9544150000 9544150000 9544150000
67C 67 9544150000 9544150000 9544150000
tX |CLy (X)) ¢Ly(3B,31D,tX) ¢Ly(3B,31E,tX)
374 37 9549237500 9549237500
378 37 9549237500 9549237500
67A 67 9544150000 9544150000
678 67 9544150000 9544150000
67C 67 9544150000 9544150000
4.5. The (3,37, r)-Generations of Ly Cry(3A,37B,67A) = Cry(3A,37B,67B) =

CLy(3A,37B,67C), (L, (3B,37A,67TA) = (1,(3B,37A,67B) =

7968417236 = (1, (3B,37A, 67C’) and (1.,(3B, 378, 67A)

Cry(3B,37B,67B) = 7971283460 = (1,(3B,37B,67C).
Since there is no contribution from any of the maximal
subgroups, ~we obtain that (7, (3A4,37A,67A) =
(1,(3A4,37A,67B) = (7,(3A,37A,67C) = 563537 =
CLJ(?)A 37B,67A) = (1,(34,37B,67B) =

We shall only consider » = 67 in this case. No
maximal subgroup has any contribution here since there is
none containing elements of order 67.

Proposition 4.15. Ly is (3,37, 67)-generated.

Proof By Table 40, we obtain that (r,,(34,37A,67A)
CrLy(3A,37A,67B) = (1,(34,37A,67C) = 563537
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(i, (34,37B,670),¢;,(3B,37A,67A) =
7968417236 = (7, (3B, 37A,67C) and f,, (31, 37B, 6TA) =

C;,(3B,37A,67B) < (3B, 37B,67B)

= 7971283460 =
proving that Ly is (3, 37, 67)-generated.

¢;,(3B,37B,67C)

Table 40. Partial structure constants of Ly.

tX  |Op, (tX)| ¢Ly(3A,37A,tX)

¢Ly(3A,37B,tX)

¢Ly(3B,3TA,tX) ¢y (3B,37B,tX)

67TA 67 563537 563537
67B 67 563537 563537
67C 67 563537 563537

7968417236 7971283460
7968417236 7971283460
7968417236 7971283460

5. The (5, g, )-Generations of Ly

We shall consider all ¢ €
{11,31,37,67}.

{7,11,31,37},r €

5.1. The (5,7, r)-Generations of Ly

We shall consider all » € {11,31,37,67}.  The
maximal subgroups having any contributions are
Go(5);3-McL:2;2-Aqq because 3-McL:2 and 2-A;; contain
elements of order 11, while G2(5) contains elements of order
31.

Proposition 5.1. Ly is (5,7, 11)-generated.

Proof By Table 41, we have that (r,(54,7A,114) =
139215681 = (r,(5A,7A,11B). The maximal subgroups
containing elements of order 11 are 3-McL:2;2-A1; only.
However only 3-McL:2 has contributions here since 2-Aj;
has its relevant structure constants all zero. We obtain that
11a,11b of 3-McL:2 are each contained in one conjugate of
3-McL:2. By Table 8, we obtain that {3.p7.1,.2(5a, 7Ta, 11a) =
57024 = (3.pmcr2(ba, 7a,11b). From this we obtain that
(1, (BA,TA, 11A) = 139215681 — 57024 = 139158657 =
(1,(5A,7A, 11B) proving that Ly is (5A, TA, 11)-generated.

By Table 41, we have (,(5B,7A4,11A) =
81836325450 = (1, (5B, 7A,11B). We have that 3-McL:2
and 2-A;; meet the 5B,7A,11A,118B classes of Ly.
However 1la,11b of 2-A;; are each contained in three
conjugates of 2-A;;. By Tables 8 and 10, we obtain that
C3-]LIcL:2(5b7 7@,11@) = 1710720 = C3»McL:2(5b; 7&,11())
and (2.4,, (5b, 7a,11a) = 4026 = (a.4,, (5b, 7a, 11b). From
this we obtain that (7, (5B,7A,114) = 81836325450 —
1(1710720) —3(4026) = 81834602652 = (7, (5B,7A,11B),
proving that Ly is (5B, 7A, 11)-generated.

Proposition 5.2. Ly is (5, 7, 31)-generated.

Proof Using Table 41, we have that ¢, (5A4,7A,314) =
Cry(bA,7TA,31B) = 136944918 = (r,(54,7A,31C) =

Caa(5)(5a,7a,31b) = 806 = (g,(5)(5a,7a,3lc) =
Cas(5)(5a, Ta, 31d) = (G, (5)(ba, 7a,31le)  and
Caa(5)(50,7a,31a) = (a,(5)(5b,7a,31b) = 18600 =
CG2(5) (5b, 7(1, 310) = CG2(5)(5ba 7(1, 31d) = <G2(5)(5b7 7a, 316),
thus rendering (j,(54,7A,314) = 136944918 —
806 — 18600 = 136925512 = (j,(5A,7A,31B)
(1,(5A,7A,31C) = (7, (54,7A,31D) = (7, (54, 7A, 31E

By Table 41, we have that (r,(5B, 7A 31A)
Cry(5B,7A,31B) = 82166950800 = (1,(5B,7A4,31C)
Cry(5B,7A,31D) = (1,(5B,7A,31E). By Table
we have that (g, (5)(5¢,7a,31a) = (g,(5)(5¢, 7a,31b)
75950 = (a5 (5¢,7a,31c) = (q,)(5¢,7a,31d) =
CGQ(E)) (50, 7a,3le), <G2(5)(5d7 7Cl7 31&) = CG2(5)(5d, 7a,3lb)
= 150350 = (@, (5)(5d,7a,31c) = (g,(5)(5d, 7a,31d) =
CGo(5)(5d, Ta, 31e) and (g, (5)(5d, Ta, 31a) = (q, (5)(5d, Ta, 31b)
= 218550 = (g,(5)(5d, 7a,31c) = (g,(5)(5d,7a,31d) =
CGo(5)(5d, Ta,31e),  rendering Czy(SB,7A,31A) =
82166950800 — 75950 — 150350 — 218550 =
82166505950 = (7, (5B,7A,31B) = (;,(5B,7A,31C) =
(1,(5B,7A,31D) = (7, (5B,7A,31E). Hence the proof is
complete.

Proposition 5.3. Ly is (5, 7, 37)-generated.

Proof By Table 41, we have that (r,(5A4,7A,37A) =
132934747 = (1,(bA,7A,37B) and (r,(5B,7A,37TA) =
82809311500 = (1,(5B,7A,37B). There is no contribution
from any maximal subgroup because none contains elements
of order 37. Thus we obtain that (7, (54,7A,37T4) =
132934747 = (;,(5A,7TA,37B) and (7, (5B,7A,374) =
82809311500 = (7,(5B,7A,37B) proving that Ly is
(5,7,37)-generated.

Proposition 5.4. Ly is (5,7, 67)-generated.

Proof By Table 41, we have that (r,(5A4,7A,67A) =
132495314 = (1,(5A,7A,67B) = (r,(5A4,7A,67C) and
Cry(5B,TA,67A) = 82829855500 = (1, (5B,7A,67B) =
CrLy(bB,7A,67C). There is no contribution from any
maximal subgroup because none contains elements of

&

|

CLy(BA,7TA,31D) = (1,(5A,7TA,31E).  The only order 67. Thus we obtain that (j, (54,7A,67A) =
maximal subgroup containing elements of order 31 132495314 = Czy(5A77A767B) = Czy(5A,7A767C) and
is Ga(5). However 3la,31b,31¢,31d,3le of Ga(5) (i, (5B, TA,67TA) = 82829855500 = (;,(5B,7A,67B) =
are each contained in one conjugate of Gi(5). (j (5B,7A,67C) proving that Ly is (5,7, 67)-generated.
By Table 7, we have that (g,(5(5a,7a,31a) = '
Table 41. Partial structure constants of Ly.
tX |CLy (#X)] Cry(BA,TA,tX) ¢y (5B,TA,tX)
11A 66 139215681 81836325450

11B 66

139215681 81836325450
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tX |CLy(tX)]| CLy(BA,TA,tX) ¢rLy (5B, TA,tX)
31A 31 136944918 82166950800
31B 31 136944918 82166950800
31C 31 136944918 82166950800
31D 31 136944918 82166950800
31E 31 136944918 82166950800
37A 37 132934747 82809311500
37B 37 132934747 82809311500
67A 67 132495314 82829855500
67B 67 132495314 82829855500
67C 67 132495314 82829855500

Table 42. Partial structure constants of G2(5).
tX [Ca, 5y (tX)] Cay(5) (Ba, Ta, tX) Cay(5)aq(5) (Bb, Ta, tX) Cay(5) (8¢, Ta, tX)
3la 31 806 18600 75950
31b 31 806 18600 75950
31c 31 806 18600 75950
31d 31 806 18600 75950
3le 31 806 18600 75950
tX |[Cay(s) (EX)] Caqo(s)(8d, Ta,tX) Caq(s)(Be, Ta, tX)
3la 31 150350 218550
31b 31 150350 218550
3lc 31 150350 218550
31d 31 150350 218550
3le 31 150350 218550

Table 43. Partial structure constants of 3- M cL:2.

tX |Cs.nmeL:2(tX)| ¢3.MmcL:2(5a, 7a,tX) ¢3.McL:2(5b, 7a,tX)
1la 66 57024 1710720
11b 66 57024 1710720

Table 44. Fartial structure constants of 2-A11.
tX |C2.4,, (tX)| C2.4,4 (5a,7a,tX) C2.4,,(8b,7a,tX)
1la 22 0 4026
11b 22 0 4026

5.2. The (5,11, r)-Generations of Ly

We shall consider all » € {31,37,67}. No maximal
subgroup has any contribution here since there is none
containing elements of orders 31, 37 and 67.

Proposition 5.5. Ly is (5,11, 31)-generated.

Proof Using Table 45, we have that (1, (54,114,314) =
CrLy(bA,11A,31B) = Cry(bA,11A4,31C) =
Cry(5A,11A,31D) = (1,(5A,114,31E) = 348203997
Cry(bA,11B,31A) = Cry(bA,11B,31B)
Cry(5A,11B,31C) = Cry(5A,11B,31D)
Cry(5A,11B,31E)  and  (r,(5B,11A,31A) =

( )
( )

CLy(5B,114,31B = (1, (5B,11A4,31C) =
(ry(5B,114,31D = CLy(5B,114,31E) =

209102876325 = (1, (5B,11B,31A)
Cry(5B,11B,31C) =

CrLy(5B,11B,31E). Since
from any of the maximal
that (1,(54,11A,314) =

= (1y(5B,11B,31B) =
Cry(5B,11B,31D) =
there is no contribution

subgroups, we obtain
(1,(5A,11A,31B) =

7, (5A4,114,310) - ¢ty (54,114,31D) =
CLT (5A,114,31E) = 348203997 = CLy(5A,1lB,31A) =
;,(5A,11B,31B) = (;,(54,11B,31C) =
(5A 11B,31D) = (LU(E)A 11B,31E) and
( B,114,314) = ¢,06B114 31B) =
( B,114,31C) = (,(5B,114,31D) =
CLy(SB, 114,31 E) = 209102876325 — (LJ(5B 11B,31A) =
¢;,(6B,11B,31B) =  (},(5B,11B,31C) =
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¢;,(5B,11B,31D) = (;,(5B,11B,31E) proving that Ly is
(5,11, 31)-generated.

Proposition 5.6. Ly is (5,11, 37)-generated.

Proof By Table 45, we have that (1, (54,114,37A) =
CLy(5A,11A4,37B) = 351751378 = (1, (5A, 11B,374) =
(1y(5A,11B,37B)  and  (1,(5B,114,37A) =
Cry(5B,11A,37B) = 208778152675 = (1, (5B,11B,37A)
= (ry(5B,11B,37B).  Since there is no contribution
from any of the maximal subgroups, we obtain
that (7,(54,114,374) = (7,(54,114,37TB) =
351751378 = (},(5A,11B,374) = (i, (5A,11B,37B)
and (;,(5B,114,374) = (i, (58,114, 37B)  —
208778152675 = (7, (5B,11B,37A) = (Ly(5B, 11B,37B)
proving that Ly is (5, 11, 37)-generated.

Proposition 5.7. Ly is (5,11, 67)-generated.

Proof By Table 45, we get that (r,(5A,114,67A) =
Cry(bA,11A,67B) 1y(bA,11A,67C) = 351043686 =
Cry(bA,11B,67A) = Cry(5A,11B,67B) =
Cry(5A,11B,67C)  and (1, (5B,11A,67A) =
CrLy(bB,11A,67B) = CrLy(5B,11A,67C) =
208734902100 = (1, (5B,11B,67A) = (1,(5B,11B,67B)
= (ry(5B,11B,67C).  Since there is no contribution
from any of the maximal subgroups, we thus obtain
that (j,(54,114,674) = (;,(5A,11A,67B) =
(1,(5A,11A,67C) = 351043686 = (7, (5A,11B,67A) =
(1,(5A,11B,67B) = (LU(5A 11B 670) and
(1,(5B,114,67A) = (1,(5B,114 67B) =
(1,(5B,114,67C) = 208734902100 = CLy(SB7 11B,67A)
=(;,(5B,11B,67B) = (;,(5B,11B,67C) proving that Ly
is (5,11, 67)-generated.

Table 45. Partial structure constants of Ly.

tX  |CLy(tX)] Cry(5A,11A,tX) ¢Ly(5A,11B,tX) ¢Ly(3B,11A,tX) ¢Ly(5B,11B,tX)
314 31 348203997 348203997 209102876325 209102876325
3B 31 348203997 348203997 209102876325 209102876325
31C 31 348203997 348203997 209102876325 209102876325
31D 31 348203997 348203997 209102876325 209102876325
31E 31 348203997 348203997 209102876325 209102876325
37A 37 351751378 351751378 208778152675 208778152675
37B 37 351751378 351751378 208778152675 208778152675
67A 67 351043686 351043686 208734902100 208734902100
67B 67 351043686 351043686 208734902100 208734902100
67C 67 351043686 351043686 208734902100 208734902100

5.3. The (5,31, r)-Generations of Ly

445187954375 = (7, (5B, 31C, 37B)

¢;,(5B,31D,37B)

(t,(5B,31E,374)

= (;,(5B,31D,374) =

We shall consider all » € {37,67}. No maximal subgroup
has any contribution here since there is none containing
elements of orders 37 and 67.

Proposition 5.8. Ly is (5,31, 37)-generated.

Proof By Table 46, we obtain that (1, (54,31A4,37A)
CLy(5A,314,37B) - (Ly(5A,31B,37A) -
Cry(5A,31B,37B) Ly(bA,31C, 37TA) = 741364375 =
CLy(5A,3lC7 37B) = Cry(5A,31D,37A)

Cry(5A,31D,37B) = Cry(bA,31E,37A) =

(1y(5A,31E,37B)  and  (,(5B,31A,37A) =
(Ly(5B,31A,37B) - CLy(5B,31B,37A) -
(1,(5B,31B,37TB) =  (.,(5B,31C,37A) =
445187954375 = (1, (5B,31C,37B) =
Cry(5B,31D,37B) = CrLy(5B,31E,37A)
Cry(5B,31E,37B). Since no maximal subgroup
contributes here, we thus obtain that (7,(5A4,31A4,374) =
CL (5A,31A,37B) = Ly (5A 31B, 37A) =

1,(54,31B,37B) 7y (54, 310 37A) = 741364375
(5A,31C7 37B) = (1,(5A,31D,37A)
CLy(E)A, 31D,37B) = Czy(E)A, 31E,37A)
5A,31E,37B) and  (},(5B,314,374) -
)
)

Ty
(5B, 314,378 = (;,(5B,31B,37A) =
CLy(5B, 31B,37B - (;,(5B,31C,374)

(1y(5B,31D,37A) =

(1, (5B, 31E,37B) proving that Ly is (5, 31, 37)-generated.

Proposition 5.9. Ly is (5, 31, 67)-generated.

Proof From Table 46, we get that (1, (54,314,674) =
CLy(5A,B1A,67TB) = (1, (5A,314,67C) =
CLy(5A,31B,67A) CLy(5A,31B,67B) =
(Ly(5A,31B,67C) =  (1,(5A4,31C,674) =
742150625 = (1,(5A,31C,67B) = (1,(54,31C,67C) =
CLy(5A,31D,67A) = (Ly(5A,31D,67B) =

CLy(5A,31D,67C) = (Ly(5A,31E, 6TA) =
gLy(5A, 31E,67B) = CLy(5A,31E,67C)  and
(Ly(5B,314,67A) = (1y(5B,31A,67B) =
(L, (5B, 314,67C) = (y(5B,31B,67A) =
(L,(5B,31B,67B) = (.,(5B,31B,67C) =
(L, (5B, 31C, 6TA) = 445291924375 = (1, (5B, 31C, 67B)
gLy(5B, 31C,67C) = (1,(5B,31D,67A) =
(1,(5B,31D,67B) =  (,(5B,31D,67C) =
( (1, (5B, 31E,67B) =

(1y(5B,31E,67A) -
CrLy(5B,31E,67C). Since no maximal subgroup
contributes here, we obtain that (7, (54,314,674) =
¢, (5A4,314,67B) =  (;,(5A,314 67C) =
(;,(5A,31B,674) =  (;,(5A,31B,67B) =
G (AB1B,6TC) =  (1o(54,31C,674) =
742150625 = (},(5A,31C,67B) = (},(5A,31C,67C) =
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5A,31D,67A)
5A,31D,67C)
5A,31E,67B)
5B,31A,67A)

Tyl

(

E

(5B, 314, 67C
CLU(

)
5B,31B,67B)

(i, (54,31D,67B)
gL (5A, 31E,67A)
gLy(5A 31E,67C)
(i, (5B,314,67B)

(5B,31B,67A)
¢;,(5B,31B,67C)

CL,,

Table 46. Partial structure constants of Ly.

= (;,(5B,31C,67A) = 445291924375 = ¢} (5B, 31C, 67B)

(;,(5B,31C,67C) =

and  C,(5,31D,67B) =
- czy(5B, 31E,67A) -
= (;,(5B,31E,67C) proving that Ly is (5, 31, 67)-generated.

¢;,(5B,31D,67A)
gzy(5B, 31D,67C)
(i, (5B,31E,67B)

tX |CLy (tX)] CLy(5A,31A,tX) CLy(5A,31B,tX) CLy(5A,31C,tX)
37A 37 741364375 741364375 741364375
37B 37 741364375 741364375 741364375
67A 67 742150625 742150625 742150625
67B 67 742150625 742150625 742150625
67C 67 742150625 742150625 742150625
tX |CLy (tX)] ¢y (5A,31D,tX) Cry(5A,31E,tX)

37A 37 741364375 741364375

37B 37 741364375 741364375

67A 67 742150625 742150625

67B 67 742150625 742150625

67C 67 742150625 742150625

tX |CLy (tX)] CLy(5B,31A,tX) ¢Ly(5B,31B,tX) ¢Ly(5B,31C,tX)
37A 37 445187954375 445187954375 445187954375
37B 37 445187954375 445187954375 445187954375
67A 67 445291924375 445291924375 445291924375
67B 67 445291924375 445291924375 445291924375
67C 67 445291924375 445291924375 445291924375
tX |CLy (tX)] ¢Ly(5B,31D,tX) ¢Ly(5B,31E,tX)

37A 37 445187954375 445187954375

37B 37 445187954375 445187954375

67A 67 445291924375 445291924375

67B 67 445291924375 445291924375

67C 67 445291924375 445291924375

5.4. The (5,37, r)-Generations of Ly

We shall only consider » = 67 here. No maximal subgroup
has any contribution here since there is none containing

elements of order 67.
Proposition 5.10. Ly is (5,37, 67)-generated.

Proof According to Table 47, (r,(5A,37A,67A)
(ry(5A,37TA,67B) = (1, (5A,37A,67C) = 611815123 =

CLy(5A,37B,67A)
(Ly(5A,37B,67C)

and

(Ly(5A,37B,67B)
(Ly(5B,37A,67A)

Table 47. Partial structure constants of Ly.

(L, (5B,37A,67B) =

374586995225 = (r,(5B,37B,67A) =
= (.,(5B,37B,67C).
contributes here,
¢, (54, 37A,67B) = Cj,(5A,37A,67C) = 611815123
(i,(5A,37B,674) =

C;. (54,37B,67C)

C; (5B,3TA,67TB) =
= 374586995225 = CL (5B,37B 67A)
=(;,(5B,37B 670) proving that Ly is (5, 37 67)-generated.

and

Since no maximal
we obtain that (j, (54,37A,67A)

Cry(bB,37A,67C)
(1Ly(5B,37B,67B)
subgroup

(i, (5A,37B,67B)
qy(5B, 374, 67A)
(3, (5B,37A,67C)

Chy (5B,37B,67B)

tX  |CLy(tX)] ¢Ly(5A,37A,tX) ¢Ly(5A,37B,tX) ¢Ly(5B,37TA,tX) ¢Ly(5B,37B,tX)
67A 67 611815123 611815123 374586995225 374586995225
67B 67 611815123 611815123 374586995225 374586995225
67C 67 611815123 611815123 374586995225 374586995225
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6. The (7, g, r)-Generations of Ly

We shall consider all g € {11,31,37},r € {31,37,67}.

6.1. The (7,11, r)-Generations of Ly

We shall consider all » € {31,37,67} but we notice that
no maximal subgroup has any contribution here since there is
none containing elements of orders 31, 37 and 67.

Proposition 6.1. Ly is (7,11, 31)-generated.

Proof By Table 48, we have that (r,(7A,11A4,314) =
Cry(TA,114,31B) = Cry(TA,114,310) =
Cry(7TA,11A,31D) = Cry(7TA,11A,31F) =
4668576991056 = (1, (7A,11B,31A) = (1,(7A,11B,31B)
= (ry(7A,11B,31C) = Cry(7A,11B,31D) =
Cry(7A,11B,31E). Since there is no contribution from any of
the maximal subgroups, we obtain that (7, (7A,114,314) =
(1, (TA,11A,31B) = (1, (TA, 11A 310) =
CL (TA,11A,31D) = CL (TA,11A,31FE) =
4668576991056 = (7, (TA11B 31A) = CL(?A, 11B,31B)

= (;,(TA11B31C) = (;,(TA,11B,31D) =
(Ly(7A 11B,31FE) proving that Ly is (7,11 31) -generated.

Proposition 6.2. Ly is (7,11, 37)-generated.

Proof By Table 48, we have that (1, (7A,114,37A) =
Cry(7TA, 11B,37TA) = 46648066712182 = (1, (TA, 114, 37B)
= (ry(7A,11B,37B).  Since there is no contribution
from any of the maximal subgroups, we obtain
that (j,(7A,114,374) = (;,(TA,11B,374) =
46648066712182 = (j (74, 11A4,37B) = (; (74, 11B,37B)
proving that Ly is (7, 11, 37)-generated.

Proposition 6.3. Ly is (7,11, 67)-generated.

Proof By Table 48, we have that (1, (7A,114,67A) =
CLy(TA11A,67TB) = (1,(TA114,67C) =
4664812116078 = (1, (7A, 11B,67A) =1, (7A, 11B, 67B) =
Cry(7TA,11B,67C). Since there is no contribution from any of
the maximal subgroups, we obtain that (7, (7A,114,674) =
G, (TATIA,67B) =  (,(TA 114 670) =
4664812116078 = (7, (TA,11B,67A) = ¢}, (TA, 11B, 67B)
=(1,(7A,11B,67C) proving that Ly is (7, 11, 67)-generated.

Table 48. Partial structure constants of Ly.

tX |CLy(tX)]| CrLy(7TA,11A,tX) ¢Ly(7A,11B,tX)
31A 31 4668576991056 4668576991056
31B 31 4668576991056 4668576991056
31C 31 4668576991056 4668576991056
31D 31 4668576991056 4668576991056
31E 31 4668576991056 4668576991056
37A 37 46648066712182 46648066712182
37B 37 46648066712182 46648066712182
67A 67 4664812116078 4664812116078
67B 67 4664812116078 4664812116078
67C 67 4664812116078 4664812116078

6.2. The (7,31, r)-Generations of Ly

We shall consider all » € {37,67} here. No maximal
subgroup has any contribution here since there is none
containing elements of orders 37 and 67.

Proposition 6.4. Ly is (7,31, 37)-generated.

Proof By Table 49, we have that (1, (7A,314,37A) =
CLy(7A,31B,37A) - CLy(TA,31C, 37A) -
CrLy(7A,31D,37A) = CrLy(TA,31E,37A) =
9939550500000 = (1,,4(7A,31A,37B) = CLJ(7A 31B,37B) =
Cry(7A,31C,37B) = Cry(7A,31D,37B) =
Cry(TA,31E, 37B). Since there is no contribution from any of
the maximal subgroups, we obtain that (7, (7A,31A4,374) =
¢t,(7A,31B,374) = (;,(TA31C,374)

CL (7TA,31D,37A) = (1, (TA,31E,37A4) =

9939550500000 = (1, (TA,31A, 37B) CLy(7A 318, 37B)

(1,(7A,31C,37B) = (1,(7A,31D,37B) =

Czy(7A7 31FE,37B) proving that Ly is (7,31, 37)-generated.
Proposition 6.5. Ly is (7,31, 67)-generated.

Proof By Table 49, we have that (1, (7A,31A4,67A)
(1y(TA,31A,67B) = CLy(7A731A,67C)
(Ly(7A,31B,67A) - (Ly(7A,31B,67B)
CrLy(7A,31B,67C) = Cry(TA,31C,67A) =
9939550500000 = (1, (7A,31C,67B) = (1,(A,31C,67C) =
Cry(TA,31D,67A) = Cry(TA,31D,67B) =
Cry(7TA,31D,67C) = Cry(TA,31E,67A) =
Cry(TA,31E,67TB) = (1y(7TA,31E,67C). Since
there is no contribution from any of the maximal
subgroups, ~we have that (j, (7A,314,67A) =
(1,(TA,31A,67B) = (1, (TA, 314, 67C)
(1,(TA,31B,67A) = CLq (7A,31B,67B)

(i, (7A,31B,67C) = G (TA,31C,674)
9939550500000 = CLy(7A,310 67B) = CL (A,31C,67C
(1,(7TA,31D,67A) = (1, (T4, 31D 67B)
(1,(7A,31D,67C) = (L (TA,31E,67A)

CLy (7A,31E,67B) = (7, (74, 31E 67C) proving that Ly
is (7, 31, 67)-generated.

II\’/II
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Table 49. Partial structure constants of Ly.

tX |CLy (tX)] Cry(7TA,31A,tX) CLy(7A,31B,tX) CLy(7A,31C,tX)
37A 37 9939550500000 9939550500000 9939550500000
37B 37 9939550500000 9939550500000 9939550500000
67A 67 9939550500000 9939550500000 9939550500000
67B 67 9939550500000 9939550500000 9939550500000
67C 67 9939550500000 9939550500000 9939550500000
X |CLy (tX)] ¢ry(7A,31D,tX) Cry(7A,31E,tX)

37A 37 9939550500000 9939550500000

37B 37 9939550500000 9939550500000

67A 67 9939550500000 9939550500000

67B 67 9939550500000 9939550500000

67C 67 9939550500000 9939550500000

6.3. The (7,37, r)-Generations of Ly

We shall only consider » = 67. However no maximal
subgroup has any contribution here since there is none that
contains elements of order 67.

Proposition 6.6. Ly is (7,37, 67)-generated.

Proof By Table 50, we have that (1, (7A,37A,67A) =
Cry(TA,37A,67B) = Cry(TA,37A,670) =

8341173788256 = (1, (7A,37B,67A)
Cry(7A,37B,67C). Since there is no contribution from any of

= (1, (TA,37B,67B) =

the maximal subgroups, we obtain that (7, (7A,37A4,67A) =

(i, (TA,37A,67B)

8341173788256 = (},(TA, 37B, 67A)

(i, (TA,37A,67C)

= (;,(TA,37B,67B) =

(1,(TA,37B,67C) proving that Ly is (7, 37, 67)-generated.

Table 50. Partial structure constants of Ly.

tX |CrLy (tX)] CLy(TA,37A,tX) CLy(TA,37B,tX)
67A 67 8341173788256 8341173788256
67B 67 8341173788256 8341173788256
67C 67 8341173788256 8341173788256

7. The (11, g, r)-Generations of Ly

We shall consider here all ¢ € {31,37},r € {37,67}.

7.1. The (11, 31, r)-Generations of Ly

We shall consider here all » € {37,67}. However we
observe that no maximal subgroup has any contribution here
since there is none containing elements of orders 37 and 67.

Proposition 7.1. Ly is (11, 31, 37)-generated.

Proof By Table 51, we have that (r,(114,314,37A4) =
Cry(11A4,31B,37A) = Cry(11A4,31C,37A)
Cry(114,31D,37A) = (1,(114,31E,374)
gLy(uA, 314,37B) (1y(114,31B,37B)

Cry(11A4,31C,37B) = Cry(11A,31D,37B)
y(llA, 31E,37B) = 25301095453125

Ly( )
Ly( )
Ly(
(

1y(11B,31A,37A = Cry(11B,31B,37A)

Ly(11B,31C,37A = Cry(11B,31D,37A) =

Ly(11B,31E,37A) = CrLy(11B,31A,37B)
CLJ 11B,31B,37B) = Cry(11B,31C,37B) =
Cry(11B,31D,37B) = (r,(11B,31E,37B). Since there
is no contribution from any of the maximal subgroups, we
obtain that (7, (114,314,374) = (;,(114,31B,374) =
(1, (114,31C, 37A) = (1, (11A,31D, 37A) =
CLU(HA 31E,37A) = QLy(llA 31A,37B) =

(1,(11A,31B,37B)
Czy(llA,31D737B)
25301095453125
(¢1,(11B,31B,37A)
CL (11B,31D,37A)
CLT (11B,31A,37B)
Czy(llB731C, 37B)
Czy(llB,31E,37B)
generated.

proving

(1, (114,31C, 37B)
(1, (11A,31E,37B)
CLy (11B,31A4,37A)
Q‘L (11B,31C,37A)
(1,(11B,31E,37A)
CL1 (11B,31B,37B)
(Zy(llB,31D,37B)
that Ly is

Proposition 7.2. Ly is (11, 31, 67)-generated.
Proof By Table 51, we have that ¢, (11A4,31A4,67A) =

CLy(114,314,67B)
CLy(114,31B,67A)
CLy(11A,31B,67C)
gLy(11A,31C, 67B)
CLy(114,31D,67A)
CLy(114,31D,67C)
(Ly(114,31E,67B)
25300674000000
CLy(11B,31A,67B)
CLy(11B,31B,67A)
CLy(llB731B,67C’)
CLy(11B,31C, 67B)
(1y(11B,31D,67A)
(Ly(11B,31D,67C)

CLy(114,314,67C)
gLy(nA, 31B,67B)
CLy(11A,31C,67A)
Cry(114,31C,67C)
CLy(114,31D,67B)
CLy(11A,31E,67A)
,(114,31E,67C)
1B,314,67A)

11B,314,67C
11B,31B,67B

CLU

Cry(

1
CLy( )
CLy( )

y(113,310, 67A)

y(llB,3lC, 67C)

7;,(1lB,E’>1D,67B)
{Ly(llB7 31FE, 67A)

(11,31, 37)-



CLy(11B,31E,67B) = (1,(11B,31E,67C).

is no contribution from any of the maximal subgroups, we
obtain that (7, (114,314,67A4) = (;,(114,314,67B) =

gL (114,314, 67C)
7, (114,31B,67B)
(11A,31C, 674)
gL( (114,31C,67C)
(Ly(llA,SlD,67B)
¥,(114,31E,67A)
gLy(llA,SlE,67C)
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Since there (113,31A,67A) = (11B,31A,67B) =
CLz (11B,31A4,67C) = CL( (11B,31B,67A)

(1lB7 31B,67B) = (1lB, 31B,67C) =

CL (114,31B,67A) = (1lB7 31C,67A) = (11B7 31C,67B) =

(11A, 31B,67C) = (1lB7 31C,67C) = (1lB, 31D,67A) =

(11A, 31C,67B) = (llB7 31D,67B) = (llB, 31D,67C) =

(11A,31D, 67A) (llB7 31E,67A) = (llB, 31E,67B) =

(Lq (11A,31D,67C) = CLy(llB7 31F,67C) proving that Ly is (11,31,67)-
(11A7 31E,67B) =  generated.

25300674000000 =

Table 51. Partial structure constants of Ly.

tX |CrLy(tX)|

CLy(11A,31A,tX)

¢ry(11A4,31B,tX)

CLy(11A,31C,tX)

¢Ly(11A4,31D,tX)

37TA 37
37B 37
67A 67
67B 67
67C 67

25301095453125
25301095453125
25300674000000
25300674000000
25300674000000

25301095453125
25301095453125
25300674000000
25300674000000
25300674000000

25301095453125
25301095453125
25300674000000
25300674000000
25300674000000

25301095453125
25301095453125
25300674000000
25300674000000
25300674000000

tX |CLy(tX)]|

Cry(11A4,31E,tX)

37TA 37
37B 37
67TA 67
67B 67
67C 67

25301095453125
25301095453125
25300674000000
25300674000000
25300674000000

X [Cry (tX)

¢Ly(11B,31A,tX)

¢Ly(11B,31B,tX)

¢Ly(11B,31C,tX)

¢Ly(11B,31D,tX)

37A 37
37B 37
67A 67
67B 67
67C 67

25301095453125
25301095453125
25300674000000
25300674000000
25300674000000

25301095453125
25301095453125
25300674000000
25300674000000
25300674000000

25301095453125
25301095453125
25300674000000
25300674000000
25300674000000

25301095453125
25301095453125
25300674000000
25300674000000
25300674000000

tX |CLy(tX)]|

¢Ly(11B,31E, tX)

37A 37
37B 37
67TA 67
67B 67
67C 67

25301095453125
25301095453125
25300674000000
25300674000000
25300674000000

7.2. The (11, 37,67)-Generations of Ly

We observe that no maximal subgroup has any contribution
here since there is none containing elements of order 67.

Proposition 7.3. Ly is (11,37, 67)-generated.

Proof By Table 52, we have that (r,, (11A4,37A,67A)
Cry(11A,37A,67B)

CLy(11A,37B,67A)
CLy(114,37B,67C)
(Ly(11B,37A,6TA)
(Ly(11B,37A,67C)

(Ly(114,374,67C)
(Ly(114,37B,67B)
21189314475000
(Ly(11B,37A,67B)
CLy(11B,37B,67A)

Cry(11B,37B,67B) = (r,(11B,37B,67C). Since there is

no contribution from any of the maximal subgroups, we thus

obtain that (7, (114,374,67A) = (7,(114,37A4,67B) =

(i, (114,374,67C)
(i, (114,37B,67B)
21189314475000

(i, (11B,37A,67B)

¢;,(11B,
¢;,(11B,

generated.

37B,67TA) =
37B,67C) proving

Table 52. Partial structure constants of Ly.

Cly (11A 378 67A)
CL (11A,37B,67C’)
CLy (1lB,S7A,67A)
Czy(llB,?ﬂA,G?C)
Czy(llB737B,67B)
that Ly is

(11,37,67)-

tX |CLy(tX)]|

Cry(11A,37A,tX)

¢ry(11A4,37B,tX)

¢ry(11B,37A,tX)

¢Ly(11B,37B,tX)

67A 67
67B 67
67C 67

21189314475000
21189314475000
21189314475000

21189314475000
21189314475000
21189314475000

21189314475000
21189314475000
21189314475000

21189314475000
21189314475000
21189314475000
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8. The (31, g, r)-Generations of Ly

For the (31, ¢, )-generations of Ly, we shall consider ¢ =

37,7 = 67 only.

8.1. The (31,37,67)-Generations of Ly

We observe that no maximal subgroup has any contribution

here since there is none containing elements of order 67.

Proposition 8.1. Ly is (31, 37, 67)-generated.
Proof By Table 53, we have that (1, (314,37A4,67A) =

CLy(31A,37A,67B)

(Ly(31B,37A,67A

CLy(SlB, 37A,67C
(1y(31C,37A,67B

CLy(31A,37A,67C)
(1y(31B,37A,67B)
(1, (31C, 3TA,67A)
(1y(31C,37A,67C)
(1y(31E,37A,67B)

(Ly(31E,37A,67C

(Ly(31A,37B,67A )

gLy(:nA, 37B,67C) =  (1,(31B,37B,67A)

(1,(31B,37B,67B) = CLy(SlB,37B,67C)
Ly( )
Ly(

- 45130930953125
= (1,(31A4,37B,67B

)

)
CLy(31E,37A,67TA) =

)

)

(1,(31C,37B,67A) = 1,(31C,37B,67B
(Ly(31C,37B,67C) Ly(31E,37TB,67TA) =
(Ly(31E,37B,67TB) = CLy(BlE, 37B,67C) and

CLy(SlD,37A,67A) = (,,(31D,37A,67B) =
Cry(31D,37A,67C) = 53865046312500 =
(14(31D,37B,67TA) =  (,,(31D,37B,67TB) =
Cry(31D,37B,67C). Since there is no contribution
from any of the maximal subgroups, we obtain
that (;,(314,374,674) = (;,(314,37A,67B) =
7, (314,374, 670) = ¢ (318,374, 674) =
CLy(3lB737A,67B) = CLy(?)lB 37A4,67C)
7,(31C,374,674) = +,(31C,374,67B)
(310 37A,67C) = (31E 37A,67A)
gL (31E,37A,67TB) = gL (31E,37A,670)

45130930953125 = : (31A 37B,67A) =
(Ly(31A,37B,67B) = gh (31A,37B,67C) =
7,(31B,37B,674) = g;y(313,373,673) =
(31B, 37B,67C) =  (;,(31C,37B,674) =
(310, 37B,67B) =  (;,(31C,37B,67C) =
(31E, 37B,67TA) =  (;,(31E,37TB,67B) =
gL( (31E,37B,67C) and  (j,(31D,37A,67A) =
(;,(31D,3TA,6TB) =  (;,(31D,37A4,67C) =

53865046312500 = Cz (31D,37B,67A) =
(1,(31D,37B,67B) = CLy(SlD 37B, 670) proving that
Ly is (31,37, 67) -generated.

Table 53. Fartial structure constants of Ly.

tX |CLy (tX)] Cry(31A,37A,tX) ¢y (31B,37A,tX) ¢y (31C,37A,tX)
67A 67 45130930953125 45130930953125 45130930953125

67B 67 45130930953125 45130930953125 45130930953125

67C 67 45130930953125 45130930953125 45130930953125

tX |CLy (tX)] ¢y (31D, 37A,tX) ¢y (31E,37A,tX)

67A 67 5386504631250 45130930953125

67B 67 5386504631250 45130930953125

67C 67 5386504631250 45130930953125

tX |CLy (tX)] ¢y (31A,37B,tX) ¢y (31B,37B,tX) ¢y (31C,37B,tX)
67A 67 45130930953125 45130930953125 45130930953125

67B 67 45130930953125 45130930953125 45130930953125

67C 67 45130930953125 45130930953125 45130930953125

tX |CLy (tX)] ¢Ly(31D,37B,tX) ¢Ly(31E,37B,tX)

67A 67 5386504631250 45130930953125

67B 67 5386504631250 45130930953125

67C 67 5386504631250 45130930953125

9. Conclusion

Every finite nonabelian simple group can be generated by
a minimum of two of its elements. According to [10], given
a finite nonabelian simple group G with ¢, m,n dividing the
order of GG such that % + % + % < 1, does it follow that G is
(¢, m,n)-generated?

In the current article, we studied and determined the various
pairs of elements of Ly from distinct conjugacy classes of
elements of distinct prime orders which generate Ly and this
study is not in any way exhausted.

Also the study of various combinations of three, four,
five etc elements from distinct conjugacy classes which can
generate Ly can still be undertaken. The most challenging and
possibly daunting study though would be to find the maximum
number of elements of Ly from distinct conjugacy classes of
its elements which can generate Ly.

As to whether the technique of structure constants which
was used in the present study would suffice for the
determination of the maximum number of elements of Ly
which can generate Ly, still remains to be seen.
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