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Abstract: Let A�G� be the adjacency matrix of graph G. Suppose λ� � λ��	 � ⋯ � λ	 are the eigenvalues of A�G�. The 

energy of a graph G is denoted by ε�G�, which is defined as the sum of absolute values of its eigenvalues. It is well known that 

graph energy is found that there are many applications in chemistry. Nikiforov showed that almost all graphs have an energy 

asymptotically equal to O(�	.�). So, almost all graphs are supperenergetic, i.e., their graph energies are more than those of 

complete graphs with the same orders. This made an end to the study of supperenergetic graphs. Then the concept of a 

borderenergetic graph is proposed by Gutman et al. in 2015. If a graph G of order n satisfies it energy ε�G� � 2�n � 1�, then G 

is called a borderenergetic graph. Recently, Tao and Hou extend this concept to signless Laplacian energy. That is, a graph of 

order n is called Q-borderenergetic graph if its signless Laplacian energy is equal to that of the complete graph Kn. In this work, 

by using the graph operation of complements, we find that, for most of Q-borderenergetic graphs, it can not satisfy themselves 

and their complements are all Q-borderenergetic. Besides, a new lower bound on signless Laplacian energy of the complement of 

a Q-borderenergetic graph is established. 
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1. Introduction 

All graphs in this paper we consider are simple and 

undirected. Let G be a graph whose order is n and size is m, 

denoted vertex set and edge set by V�G�  and E�G� . The 

complete graph of order n denoted by K� . For more 

terminologies and notations, we refer to J. A. Bondy et al. [2]. 

Let A�G� be the adjacency matrix of graph G. Suppose 

λ� � λ��	 � ⋯ � λ	  are the eigenvalues of A�G� . The 

diagonal matrix of the vertex degree of G is D�G�. Denoted 

by L�G� � D�G� � A�G� is the Laplacian matrix of G and 

Q�G� � D�G� � A�G� is signless Laplacian matrix of G. 

Assume μ� � μ��	 � ⋯ � μ	  is the eigenvalues of L�G� 
and q� � q��	 � ⋯ � q	 is the eigenvalues of Q�G�. 

The energy of a graph G [16] is denoted by ε�G�, which is 

defined as follow. 

ε�G� � ∑ |λ�|�
��	 . 

More knowledge about graph energy and its applications 

can be referred to the references [3, 15, 18, 20, 22]. Laplacian 

energy and signless Laplace energy of graph G are denoted by 

LE�G� and QE�G�, respectively. That is, LE�G� � ∑ |�
��	 μ� �

d" | and QE�G� � ∑ |�
��	 q� � d" |, where d" is the average degree 

of G. For addition information on Laplacian energy and its 

generalization, we refer to the references [5, 23, 27]. 

Recently, the concept of a borderenergetic graph is 

proposed by Gutman et al [17]. If a graph G  of order n 

satisfies ε�G� � 2�n � 1�, then G is called a borderenergetic 

graph. We can find more researches on borderenergetic 

graphs in the references [8, 9, 13, 19, 24]. 

For the Laplace energy of a graph G, if it satisfies LE�G� �
LE�K�� � 2�n � 1�, then G is called L-borderenergetic [26]. 

Related researches on L-borderenergetic graphs can be seen in 

the references [7, 11, 12, 21]. 

Similarly, Hou and Tao [25] extended it to the signless 

Laplacian energy of a graph. For a graph G , if QE�G� �
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QE�K�� = 2�n − 1�	 holds, then G is Q-borderenergetic. 

Related researches on signless Laplacian energy of a graph 

and Q-borderenergetic graphs can be seen in the references [4, 

6, 10, 14]. Recently, Deng and Chang et al. [6] construct 

regular Q-borderenergetic graphs by using a regular 

Q-borderenergetic graph. Deng and Li et al. [9, 21] study the 

complementary graphs of borderenergetic graphs and 

L-borderenergetic graphs. 

Moreover, in this paper, we focus on the relationship between 

the Q-borderenergetic graphs and their complements. And we 

find that, for most of Q-borderenergetic graphs which satisfy 

the bounds of Zagreb index, they and their complements 

cannot both be Q-borderenergetic. Besides, new bounds of the 

complement of a Q-borderenergetic graph are given. 

2. Main Results 

Let G be a connected graph of order n with m edges with 

having the firt Zagreb index M	�G� = ∑ d�%���	 , where d� is 

the degree of vertex v� of graph G, where i = 1,2, . . , n. Let G) is the complement of G. Assume d*)  is the degree of v� of G), i = 1,2, . . , n. Let m)  be the size of G). It’s easy to get the 

first Zagreb index of G) is that 

M	�G)� = ∑ d"�%���	 =∑ �n − 1 − d��%���	 = ∑ ,�n − 1�% − 2�n − 1�d� + d�%-���	  

= �n − 1�% − 2�n − 1�∑ d����	 + ∑ d�%���	   

= n�n − 1�% − 4�n − 1�m +M	�G�                                  (1) 

An upper bound of QE�G� is given as follow. 

Lemma 1 [1]. If G is a connected (n, m)-graph, then 

QE�G� ≤ ε�G� + /nM	�G� − 4m%,                                   (2) 

where the equality of inequality (2) holds if and only if G is regular. 

Corollary 2. Let G be a connected (n, m)-graph. If the complement G) of G is connected, then 

QE�G)� ≤ ε�G)� + /nM	�G� − 4m%,                                   (3) 

where the equality above holds if and only if G) is regular. 

Proof By Lemma 1, it’s easy to get 

QE�G)� ≤ ε�G)� + /nM	�G)� − 4m) %,                                   (4) 

where m) = 	%n�n − 1� − m. Put m)  and (1) into (4). Then 

QE�G)� ≤ ε�G)� + 0n1n�n − 1�% − 4�n − 1�m + M	�G�2 − 4 3	% n�n − 1� − m4%  

= ε�G)� + /n�n − 1�% − 4n�n − 1�m + nM	�G� − n�n − 1�% + 4n�n − 1�m − 4m% 

= ε�G)� + /nM	�G� − 4m%. 

If G) is regular, then G is also regular. It is easy to check that nM	�G� = 4m% and QE�G)� = ε�G)�. 
For graph energy, there is a Nordhaus-Gaddum-type result below. 

Theorem 3 [9]. Let	G be a graph with n vertices. Then 

ε�G� + ε�G)� < √2n + �n − 1�√n − 1.                                (5) 

Similarly, we have 

Theorem 4. If G and its complement G) are connected graphs with order n, then 

QE�G� + QE�G)� < √2n + �n − 1�78 + 2/nM	�G� − 4m%.                       (6) 

Proof By (2) and (3), we have 

QE�G� + QE�G)� ≤ ε�G� + ε�G)� + 2/nM	�G� − 4m%.                        (7) 

Put (5) into (7) and get 

QE�G� + QE�G)� < √2n + �n − 1�78 + 2/nM	�G� − 4m%. 
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Corollary 5. If G is a Q-borderenergetic graph of order n with m edges, satisfying G and G) are connected graphs, then 

QE�G)� < 9√2 − 2:n + �n − 1�78 + 2/nM	�G� − 4m%+2. 

Proof If G is a Q-borderenergetic graph of order n with m edges, by (6), then 

2�n − 1� + QE�G)� < √2n + �n − 1�78 + 2/nM	�G� − 4m%. 

Thus, 

QE�G)� < 9√2 − 2:n + �n − 1�78 + 2/nM	�G� − 4m%+2. 

Theorem 6 [25]. If G is a Q-borderenergetic graph of order n with m edges, then 

m > 	< =n − n% +/n%�n − 1�% + 8nM	�G�?.                               (8) 

Next a main result of this work is as follow. 

Theorem 7. Suppose graphs G and its complement G) are connected. If G is a Q-borderenergetic graph of order n with m 

edges, satisfying 

/M	�G� > �78���	�@/A%� , 

where 

φ = 09√2 − 1:n� + 93 − 2√2:n< − 913 − 5√2:nE + 919 − 4√2:n% − 9n.  

Then G)	is not a Q-borderenergetic graph. 

Proof By contradiction. Suppose G) is Q-borderenergetic. Set M	�G� = x. By (6), we get 

4�n − 1� − √2n < �n − 1�78 + 2√nx − 4m%.                               (9) 

For a Q-borderenergetic graph, its order is greater than or equal to 6. Then we get 4�n − 1� − √2n > 0. Then square both 

sides of (9) and we have 

94�n − 1� − √2n:% < =�n − 1�78 + 2√nx − 4m%?%, 

and 

94�n − 1� − √2n:% < =√2/�n − 1�E + 4nx − 16m%?%. 

So, 

m% < <�J@�7@9<√%�	%:�8@9	K�<√%:��K	L .                                (10) 

By Theorem 6, we have 

m% > 		L =n − n% +/n%�n − 1�% + 8nx?%, 

and 

m% > 		L 3�n − n%�% + n%�n − 1�% + 8nx + 2�n − n%� √%% =/n%�n − 1�% + √8nx?4, 
= 116 ,92 − √2:n%�n − 1�% + 8nx − 4n�n − 1�√nx-. 

Thus, 

m% > M�J�<����	�√�J@9%�√%:�N�9<�%√%:�7@9%�√%:�8	L .                           (11) 
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Let √x � t and 

f�t� � <�Q8@�7@9<√%�	%:�8@9	K�<√%:��K

	L
, 

h�t� � M�Q8�<�
7
8���	�Q@9%�√%:�N�9<�%√%:�7@9%�√%:�8

	L
. 

Then 

h�t� � f�t� �
4nt% − 4nE%�n − 1�t + 92 − √2:n< − 95 − 2√2:nE + 914 − 5√2:n% − 919 − 4√2:n + 916 = H�t�16 . 

As /M	�G� > �78���	�@/A%� , t > �78���	�@/A%� , where 

φ = 09√2 − 1:n� + 93 − 2√2:n< − 913 − 5√2:nE + 919 − 4√2:n% − 9n. 

Then T�U� > 0, which is a contradiction. 

Indeed, there are graphs satisfying the conditions given in 

theorem 7. Below we will give two examples to verify this fact 

by constructing graphs. 

 

Figure 1. Two 4-regular graphs 	VK	 and V̅K	. 

Example 1. The 4-regular graph G)K	 is the complement of GK	, see Figure 1. By direct computation, we have 

QSY�GK	�=Z2,2,2,2,5,5,5,5,8[, 

QSY�G)K	�=Z2,2,2,2,5,5,5,5,8[. 
It is easy to get that G)K	 is a Q-borderenergetic graph. But it 

satisfies 

/M	�GK	� = 12 < �78���	�@√∆%� ≈ 20.3. 

By Theorem 8 and Lemma 9, another example will be 

constructed by using the join of two graphs. The join of two 

graphs G	 and G% is the graph G		∇	G% in with the vertex set V�G	� ∪ V�G%� and the edge set consisting of all the edges of G	 and G% together with the edges joining each vertex of G	 

with every vertex of G%. 

Theorem 8 [6]. Let G be a k-regular Q-borderenergetic 

graph with n vertices. Then G∇K)��` is Q-borderenergetic. 

Lemma 9 [6]. Let G�a� be a k-regular Q-borderenergetic 

graph of order n with signless Laplacian eigenvalues 2k = μ	 ≥ μ% ≥ ⋯ ≥ μ��	 ≥ μ� . Then for any G�d�ϵH�s ≥1�, then signless Laplacian spectrum of G�d� is the following: 

Spesi�Gd� = jμ% + s�n − k�, μE + s�n − k�,⋯ , μ� + s�n − k�, n + �s − 1��n − k�,⋯ , n + �s − 1��n − k�kllllllllllllmllllllllllllno���`�	� , n + �s − 2��n −
k�, 2n + 2�s − 1��n − k�p.                                 (12) 

 

Figure 2. Two regular Q-borderenergetic graphs V	a and V%% with 10 and 22 vertices, respectively. 
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Example 2. The graph G	a  is a 6-regular Q-borderenergetic graph. By using Theorem 8, repeatedly, a regular 

Q-borderenergetic graph G%% is obtained. Through direct calculation, the spectrum of Q�G	a� is as follow. 

QSY�G	a� = Z3,4,4,4,6,6,7,7,7,12[. 
From Lemma 9, we obtain the spectrum of QSY�G%%� is 

QSY�G%%� = r36,19,19,19, 18,⋯18klmln		 , 16,16,16,15,14,14,14s. 

Obviously, the complement G)%% of G%% is a 3-regular graph with order 22. Then the spectrum of Q�G)%%� is 

QSY�G)%%� = r6,6,6,6,4,4,4,5, 2,⋯ ,2kmn		 , 1,1,1s. 

Thus,	QE�G)%%� = 34 ≠ 42 and G)%% is not a Q-borderenergetic graph. It is easy to check that 

/M	�G%%� ≈ 84.43 > �78���	�@/A%� ≈82.33. 

Then some lower bounds of the complement of a Q-borderenergetic graph are shown. 

Theorem 10 [14]. Let G be a connected graph of order n ≥ 3 with m edges, maximum degree ∆ and minimum degree δ. 

Then 

QE�G� ≥ ∆ + δ + /�∆ − δ�% + 4∆ − <v� ,                               (13) 

with equality if and only if G ≅ K	,��	. 

Corollary 11. Let G be a connected graph of order n ≥ 3 with m edges, maximum degree ∆ and minimum degree δ. Then 

QE�G� + QE�G)� ≥ 2/�∆ − δ�% + 21n − 1 − �∆ + δ�2. 
Proof According to Theorem 6, if G) is the complement of G, then G) has the maximum degree n − 1 − δ and the minimum 

degree n − 1 − ∆. Let m)  be the size of G). Then 

QE�G)� ≥ �n − 1 − δ� + �n − 1 − ∆� + /1�n − 1 − δ� − �n − 1 − ∆�2% + 4�n − 1 − δ� − <v)� , 

= 2�n − 1� − �∆ + δ� + /�∆ − δ�% + 4�n − 1 − δ� − 4m)n . 
Then we get 

QE�G� + QE�G)� ≥ ∆ + δ + /�∆ − δ�% + 4∆ − <v� + 2�n − 1� − �∆ + x� +	/�∆ − δ�% + 4�n − 1 − x� − <v)� , 

≥ 2�n − 1� + /�∆ − δ�% + 4∆ +	/�∆ − δ�% + 4�n − 1 − x� − <�v@v) �� , 

≥ /�∆ − δ�% + 4∆ + /�∆ − δ�% + 4�n − 1 − x� 
≥ 2/�∆ − x�% + 21� − 1 − �∆ + x�2. 

Corollary 12. Let G be a connected graph of order n ≥ 3 with m edges, maximum degree ∆ and minimum degree δ. If G is a Q-borderenergetic graph, then 

QE�G)� ≥ 2/�∆ − δ�% + 21n − 1 − �∆ + δ�2 − 2�n − 1�. 
3. Conclusion 

In this paper, we mainly survey the signless Laplacian 

energy of the complement of a Q-borderenergetic graph. 

Theory 7, as a main result, can further be improved if the 

condition on the parameter M	�G� is ignored. In addition, the 

graphs attained the lower bounds in Corollary 12 can be 

considered by the properties of complements of graphs.  
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