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Abstract: Various forms of preservation technology nowadays allow businesses to handle valuable perishable items with 

greater flexibility. Even with a wide variety of preservation techniques, the mathematical modelling of its implementation in 

EOQ literature remains rigid. The paper aims to integrate an improved preservation technology in a non-instantaneous 

deteriorating inventory model for businesses maximizing their average total cycle profit. The improved preservation 

technology furthers the delay to the time within the cycle where deterioration begins and enhances the durability of inventory 

that allows operators to employ a less prudent holding facility. Another improvement in this area is the accurate accumulation 

of preservation cost depending on the inventory level at hand. The conventional EOQ method of forming the objective function 

before choosing the optimal values for our two decision variables (Cycle time and level of preservation) is undertaken. The 

cycle time is split in two, differing in their inventory process (deterioration beginning in the second period). The time when 

deterioration begins is derived using the model's boundary conditions, a first attempt within the area. The optimal solution set 

is solved for a numerical example using an algorithm to demonstrate the model and prove the global nature of the solution. An 

investigation into the gains from the improved preservation technology is conducted by dissecting the effects within each 

individual component within the objective function. 3 separate channels by which this improved preservation technology 

modelling benefits the business model is found namely shifting to the higher profitable period, effects towards preservation 

affected costs and the returns to scale from successively increasing preservation levels. Sensitivity analysis is conducted to 

demonstrate and confirm the findings. The paper discovers great benefits from such an improved modelling that warrants 

further attention within the scope of preserved inventory models, especially on how levels of preservation could influence the 

traditional decision variable optimized such as cycle time or ordering frequency. Findings of the paper would have significant 

benefits to different inventory models with its own delay before deterioration and holding facility requirement. 

Keywords: Operational Research, Mathematical Modelling, Inventory, Preservation, Non-Instantaneous 

 

1. Introduction 

Deterioration within inventory occurs in various industries 

such as imaging, health sector and perishable food-items. 

Due to its universal relevance, companies employ 

preservation technologies with varying intensity to control 

the deterioration rate and lower losses owing to inventory 

loss via deterioration. Traditionally, preservation technology 

has been treated merely as a machinery installment incurring 

constant cost per time during the operation cycle [10, 18, 21, 

36]. This approach has been adopted by nearly all papers that 

involves a utilization of preservation technology [12, 13, 20, 

28, 35]. While this approach is straightforward to model as 

merely a multiple of the total cycle time, a shortcoming from 

this approach is the assumed constant preservation cost 

independent of the inventory level at hand. 

Realistically, this treatment neglects the varying inventory 

levels held during the cycle that would require varying 
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amounts of preservation. For example, one cannot expect a 

single air conditioning unit to effectively preserve 1 tonne of 

perishable fruits as well as it preserves 10 kg of the same 

item. Therefore a more realistic preservation technology 

would incur costs depending on the amount of time that it is 

being employed and also depending on the amount of 

inventory it preserves. An improvement from the previous 

assumption would enable inventory operators the flexibility 

to incur preservation costs according to the size of inventory 

at hand for each time period. This type of Inventory 

Proportional Preservation Cost has never been adopted in any 

previous paper. 

Within the scope of deteriorating inventory models, 

literature can be categorized by the start of the deterioration 

process within the cycle. Earlier papers that did not consider 

preservation adopted the straightforward approach where 

deterioration begins at the start of the cycle [1, 3, 8, 9, 19, 23, 

31, 32, 33]. This approach has been adopted by recent studies 

that now consider preservation to affect the deterioration 

process [4, 6, 7, 12, 20, 22, 29]. These types of deterioration 

process are commonly known as Instantaneously 

Deteriorating inventory. This might apply to some very 

delicate and fragile inventory that begins to deteriorate the 

moment it is stored such as radioactive isotopes or oil 

paintings. Currently however, this type of deterioration is 

rare since majority of perishable inventory would take a 

while before it starts being spoilt fully beyond consumption 

quality. As an alternative, a delay before deterioration begins 

affecting the inventory process during the cycle time is 

considered. For example, deterioration could begin as 

inventory is transferred from the factory to the warehouse [2, 

5]. These types of inventory are classified as Non-

Instantaneously Deteriorating Inventory models [11, 14, 25, 

34]. Although this is an improved and more realistic 

assumption, majority of papers do not elaborate on how the 

delay is determined [13, 15, 16, 26, 28]. Usually the delay 

before deterioration begins is taken as an exogenously 

determined factor not affected by the decision variables as 

summarized in table 1 below: 

Table 1. Approach for Start of Deterioration in Recent Literature. 

Paper Instantaneous Exogeneously Determined Delay Endogeneously Controllable Delay 

Tao et. al (2019) ✔   

Dye and Yang (2017) ✔   

Mishra (2014)  ✔  

Yang et. al (2018)  ✔  

Zhang et. al (2015)  ✔  

Singh, Mishra and Pattanayak (2017)  ✔  

Mishra, Wu, Tsao and Tseng (2019)  ✔  

Maihami and Karimi (2014) ✔   

Li, He, Zhou and Wu (2019)   ✔ 

Singh and Sharma (2013) ✔   

Huang, He and Li (2018) ✔   

 

With various preservation technologies such as 

refrigeration, pesticide and handling instruments, it is 

surprising that preservation has not been seriously considered 

as a decision variable that could affect the delay before 

preservation [17, 24, 25, 29, 38]. Up to date only one paper 

addressed the delay period within their model, where the 

delay is affected by the preservation level though it was not 

explicitly derived and described [30]. Suggestively, a higher 

preservation level would further delay the time before 

deterioration process begins within the time cycle. This 

would occur since higher preservation levels would decrease 

the perishability of inventories. 

Finally, the implementation of preservation technologies 

could also give positive externalities within the Model that 

benefits the operators. These benefits could come with the 

form of reducing related costs such as emission penalties or 

reduced inventory holding costs as found commonly in 

inventory models with green initiatives to conserve the 

environment [15, 27, 29, 34]. These positive benefits could 

also come from tax leeway given by certain countries for 

operators that adopt preservation technologies. In other cases, 

perishable products that become more durable with 

preservation could be held in less delicate and expensive 

storage facilities, lowering the inventory holding cost. 

The paper starts by deriving the estimate equations for the 

initial period where no deterioration is in effect and the 

second period where deterioration is present. Using the 

estimate equations from both periods, the point within the 

cycle where deterioration begins (t0) is derived. This point 

within the cycle time (t0) is further explored through its 

expression. Following on, the objective function is 

constructed to be maximised. The order conditions for 

optimality are then derived for the two decision variable 

which is the length of cycle for the second period (T) and 

also the level preservation (β). We then solve a numerical 

example to find the solution for a given scenario using a 

simple algorithm. The optimal decision variable values are 

then verified as the global solution using the Hessian matrix. 

To thoroughly investigate the advantages of employing 

preservation technology in deteriorating inventories, the 

gains in profit from implementing this improved preservation 

technology are deconstructed. The individual terms are 

examined to specify by which channels preservation 

technology may lead to an increase in profit or avoid loss. 

Next, some sensitivity analysis is conducted to verify the 

outcomes found. Finally, improvements to be considered in 

future research are suggested before concluding remarks are 

made on the outcomes from this research. 
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2. Notations and Assumptions 

2.1. Notations 

Table 2. Description of notations used in the paper. 

Notation Description 

I1(t), I2(t) Inventory level for each period 

t Current time within each period 

t0 First period cycle time 

T Second period cycle time 

[0, t0] First period cycle range 

[0, T] Second period cycle range 

Q Inventory level at start 

α Initial deterioration rate 

β Preservation level 

θ = 
�

���
 Effective deterioration rate 

λ Inventory proportional demand rate 

D Constant demand rate in period 2 

OC Ordering cost/unit 

DC Deterioration cost/unit 

HC(β) Holding cost/unit/time 

PC(β) Preservation cost/unit/time 

I1
T(β)

 Total inventory held in first period with preservation 

I2
T(β) Total inventory held in second period with preservation 

2.2. Assumption 

There are now two separate periods (0 < t1 < t0) and (0 < 

t2 < T) with two different inventory processes. Deterioration 

takes into effect from the end of the first period (t0) or the 

start of the second period, where the inventory process 

changes from Eq. (1) to Eq. (3).  

Preservation technology enters as a discounting factor as 

shown in (4) that reduces the proportion of deterioration, with 

diminishing marginal returns. No shortages are allowed during 

both cycle periods [I1(t), I2(t) > 0]. Total demanded and 

deteriorated inventory is less than the amount of inventory 

available at any point in the cycle time [(I(t)*(λ + α)) + D < 1]. 

Ordering Cost per unit applies to each unit ordered initially 

at the start of the cycle (OC=Co). Deterioration Cost per unit 

equals revenue lost had the inventory been sold (DC=Cd=P). 

Preservation Cost per time-inventory depends on the level of 

preservation employed, [PC(β)=(Cp)
*
(β)] when [β>0], and 

[PC=0] when [β=0]. Preservation investment discounts per 

time-inventory holding cost depending on the level of 

preservation when employed, [HC(β)= (Ch)/(β)] when [β>0], 

and [HC(β) = Ch] when [β=0]. 

 

Figure 1. Inventory Process With and Without Preservation Technology Implementation. 

3. Inventory Process 

3.1. Period 1 (0 < t1 < t0) 

In the first period, there are no deterioration and the 

demand function consists of only a proportional demand (λ) 

dependent on the current inventory level at hand: 

���	
�

�

 = - λ I1(t)                                (1) 

Solving the differential equation above with the boundary 

condition of (I=Q) at (t1=0) gives estimation for Inventory 

level in the first period: 

I1(t) = 
�


�� 	�
�
                                   (2) 

3.2. Period 1 (0 < t2 < T) 

In the second period, effective deterioration (θ) is now in 

effect as a proportion of current inventory level at hand 
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(θI1(t)) while demand now includes a small constant amount 

(D) to ensure there is still demand even with minimal levels 

of inventory: 

���	
�

�

 = - D - λ I1(t) - θI1(t)         (3) 

Depending on the level of preservation technology used, 

effective deterioration is reduced at a diminishing marginal 

rate (Lemma 1). We can check this property by the partial 

differential of the effective deterioration rate with respect to 

the preservation level.
 

θ(�) = 
�

���
                                    (4) 

��

��
 = 

��

	�����
, 

���

���
 = 

��

	�����
 (5) 

Solving the differential equation above with the boundary 

condition of (I(T)=0) at (t2=T) gives the estimation for 

Inventory level during the second period: 

I2(t) = 
�

���
[exp((� + �)(T-t)) -1]                   (6) 

3.3. Start of Deterioration (t0) 

Equating I1(t0) with I2(0) as per our assumption on the two 

time periods gives out the expression of (t0) that ensures the 

continuity and continuity and consistency from the first 

period to the second period: 

I1(t0) = I2(0) or 
�


�� (�
�) = 
�

��� [exp((� + �)T)-1] 

t0 = 
�
� ln [ �(���)

[
��((���)!)��]�]                      (7) 

This expression gives the point within the cycle time 

where deterioration kicks in or the length of the first period 

within our cycle. Thus after (t0), the inventory process and 

estimate changes from Eq. (2) to Eq. (6). As seen within the 

expression, (t0) depends on the length of second period cycle 

time (T) and preservation ( �) . Checking the first order 

condition lets us check how the decision variables affect (t0): 

�
#
�!  = 

�
� [(���) 
�� ((���)!)

[��
�� ((���)!)] ]                  (8) 

�
#
��  = 

�
�(���)� { ! 
��((���)!)

[
��((���)!)��] - 
(���)

� }           (9) 

We can prove that employing a higher preservation level 

reduces effective deterioration rate (�) which prolongs the 

delay (length of first period) before deterioration kicks-in 

(Lemma 2): 

t0
(β>0)

 > t0
(β=0)

                            (10) 

when t0
(β>0)

 = 
�
� ln [ �(���)

[
��((���)!)��]�], θ(�) = 
�

��� 

Proof: The statement to be proven is, t0 increases as θ 

decreases or as � increases. 

We impose the condition for (t0 > 0) requiring the terms in 

the early bracket to be positive. We observe the behavior of 

the term within the curly bracket as (�) and thus (θ) changes. 

The numerator term of $(� + �) rises linearly while the 

term in the denominator [%&'((� + �)() − 1]+  rises 

exponentially as (θ) increases. Therefore the term in the curly 

bracket and thus (t0) decreases as (θ) increases. This would 

occur when (�) decreases. 

Conversely this would prove our statement and Lemma 2 

to be proven. 

3.4. Inventory Held During Cycle 

The total inventory held during the first period could be 

obtained by integrating the first period inventory estimate 

over the time cycle of the first period: 

, -
#� 1(t) dt = 
�
� [1- 

�

�� (�
#)] = I1

T(β)
                   (11) 

It can be proven that inventory held in the first period is 

greater with (higher) use of preservation technology (Lemma 

3). 

Proof: From the expression above, an alternate first period 

inventory held with no (lower) preservation is as below: 

I1
T(β)

 = , -
#� 1(t) 
(β > 0)

 (t) dt = 
�
� [1- 

�

�� (�
#(� . �))], 

I1
T(0)

 = , -
#� 1(t) 
(β = 0)

 (t) dt = 
�
� [1- 

�

�� (�
#(� / �))] 

Since via Lemma 2: 

t0
(β>0)

 > t0
(β=0)

 

It can be clearly seen: 

�
� [1- 

�

�� (�
#(� . �))] > 

�
� [1- 

�

�� (�
#(� / �))]. □ 

The total inventory held during the second period could be 

obtained by integrating the inventory estimate over the time 

cycle of the second period: 

, -!
� 2(t) dt = 

�
��� [
��((���)!)��

���  – T] = I2
T(β)

        (12) 

We now prove that inventory held in the second period in 

smaller with (higher) use of preservation technology (Lemma 

4): 

Proof: Similarly as the first period. The total inventory 

held during the second period with and without (lower) 

preservation is given by: 

I2
T(β)

 = , -!
� 2(t) (β>0) dt = 

�
��� [
��((���)!)��

��� – – T], 

 I2
T(0)

 = , -!
� 2(t) (β=0) dt = 

�
��� [
��((���)!)��

���  – T] 

We estimate the term in the early bracket using a Taylor 

Series expansion: 

, -!
� 2(t) (β>0) dt = 

�
���  [0(���)� (123)�

� 4
��� − (], 



 Applied and Computational Mathematics 2020; 9(4): 118-129 122 

 

 , -!
� 2(t) (β=0) dt = 

�
���  [0(���)� (125)�

� 4
��� − (] 

Since: 

Exp[(γ)(T)] ≈ 1 + [(γ)(T)] + 
[(6)(!)]�

�  + 
[(6)(!)]�

7  +… 

The Lemma simplifies into proving: 

D [!�
�  + 

(���)!�
7 ] < D [!�

�  + 
(���)!�

7 ] 

Which holds true because through Lemma 1 (α >  �). □ 

4. Objective Function 

With all the important equations obtained, the objective 

function can be constructed from the Total Revenue (TR) and 

Total Cost (TC). 

4.1. Total Revenue 

Total demand includes the small constant demand (D) over 

the second period (T) and the proportional demand (λ) 

dependent on the inventory level held during both periods. 

Total revenue is thus the total demand multiplied by the 

selling price (P): 

TR = PD[T] + Pλ , -
#� 1(t) dt + Pλ , -!
� 2(t) dt        (13) 

4.2. Total Cost 

Total cost includes Ordering cost (OC), Holding cost (HC), 

Preservation cost (PC) and Deterioration cost (DC). While 

ordering cost is just a multiple of the initial order quantity 

(Q), the two other costs are inventory dependent and is a 

unit/time type of cost. Additionally they depend on the level 

of preservation employed (β). Finally, Deterioration cost 

depends on the proportion of inventory that deterioration and 

only occurs during the second period. 

TC = CoQ + [
9:
�  + Cpβ] , -
#� 1(t) dt 

+ [
9:
�  + Cpβ +

9;�
���] , -!

� 2(t) dt                  (14) 

4.3. Profit Function 

The profit function can thus be constructed using the total 

revenue and total cost functions. Total inventory held during 

period 1 and period 2 are common terms found in both 

functions allowing the simplification of the profit function: 

π = TR – TC = [PDT] + [Pλ - 
9:
�  - Cpβ] , -
#� 1(t) dt 

+ [Pλ- 
9:
�  - Cpβ - 

9;�
���] , -!

� 2(t) dt – CoQ          (15) 

The finalized objective function is the average total cycle 

profit (ATCπ) optimized by choosing the preservation factor 

(�) and the second period cycle time (T). Notice the first 

period cycle time (t0) would also depend on the two decision 

variables (�) and (T) through its expression: 

<=&(�,!): [@(A B] = π/T
T(β) 

 

Where T
T(β)

 = t0+T = { �
�ln[

�(���)
D
��E(���)!F��G�] }+T 

4.4. Order Conditions 

Since the two decision variables (�) and (T) exists within 

multiple expressions in the objective function, it is easier to 

organize the order conditions with these expressions. The full 

expressions and their derivatives with respect to the two 

decision variables are provided in the appendix. The first and 

second order condition for the average profit function over 

the whole cycle time (
H


#�!) with (�)  and (T) as decision 

variables are given as: 

ATCπ (�, () = 
H

!I(J) 

�K!9H
�! =  HL

!
!I(J) - 

H M!I(J)L
!  N

D!I(J)G� , 
�K!9H

��  = 

HL
�

!I(J) - 
H O!I(J)L

�  P
D!I(J)G�  ’ 

��K!9H
�!� =  HLL

!
!I(J) - 

�HL
! M!I(J)L

! N�H M!I(J)LL
! N

D!I(J)G�  + 
�HM!I(J)L

! N�

D!I(J)G� , 

��K!9H
��� =  HLL

!
!I(J) - 

�HL
� O!I(J)L

� P�H O!I(J)LL
� P

D!I(J)G�  + 
�HO!I(J)L

� P
�

D!I(J)G�  

4.5. Numerical Example 

To test out the model and find a possible solution, we use 

the following exogeneous parameters within the objective 

function to be maximized by finding the second period cycle 

time ((∗) and preservation level (�∗): 

Q = 200000, D = 35, λ = 0.1, α = 0.2 

P = 30, Cd = 30, C0 = 10, Ch = 0.1, Cp = 0.1 

5. Solution Procedure 

We first specify the range for the two decision variables 

(T) and (�) that adhere to the assumptions of the model. The 

objective function is then proven to be strictly concave 

within the range of the two decision variables. The existence 

and uniqueness of a solution set (�∗,(∗) is then proven using 

the strict concavity properties. An algorithm based on the 

generalized reduced gradient method to find the optimal 

solution is utilized as previously implemented [20, 25, 26, 

37, 39]. Finally, the maximal nature of the solution is verified 

through the Hessian matrix as approached by previous 

research [33, 35, 36]. 

5.1. Range of Decision Variables 

The range of (T) can be obtained from the explicit 

expression of (t0) (lemma 5). To ensure deterioration kicks-in 

within the cycle time and not before the order is received, we 

need: 
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t0 > 0 or 
�
� ln [

�(���)
D
��E(���)!F��G�] > 0                 (16) 

Which can only be observed if: 

�(���)
D
��E(���)!F��G� > 1 or, 

�
��� ln [

(���)�
�  + 1] > T 

Since: 

Log(x) > 0 when x > 1 for all x ∈ Q
+
 

This gives way to the upper bound for our decision 

variable (T): 

T ∈ {0,(R} where, (R = 
�

��� ln [
(���)�

�  + 1]              (17) 

For decision variable (�), consider that we need a positive 

gain of inventory-proportional profit with the use of 

preservation: K = [B�
2 ]- [

B�
2 ] > 0 

K = [Pλ - 
9:
�  - Cpβ - 

9;�
���] - [Pλ - Ch- CdT] 

Since the preservation term (�) is only found within (B�
2 ), 

K is thus concave in (�): 

�U
�� = 

�HJ
�

��  > 0 and  
��U
��� = 

��HJ
�

� ��  < 0 

The maximum gain of inventory-proportional profit is thus 

at: 

��U
��� = 6Cp� + 2[Cp - Cdα -Ch] = 0 or, 

� = 
[9;� � 9: � 9V]

W9V  

Beyond this point, additional investment in preservation is 

an over-investment since further increase in ( �)  decrease 

inventory-proportional profit. Therefore preservation range is 

determined by inventory dependent cost and the natural 

deterioration rate (Lemma 6): 

� ∈ {0,�X} where �X = 
[9;� � 9: � 9V]

W9V               (18) 

5.2. Concavity Properties 

(Theorem 1) The objective function is strictly concave 

within T ∈ {0,(R}. 

Proof: We obtained the range of (T) from Lemma 5 

previously: 

T ∈ {0,(R} where, 

(R = 
�

��� ln [
(���)�

�  + 1] and t0((R) = 0 

Proving the statement below proves this theorem: 

δATCπ(0) + (1-δ) ATCπ((R) < 

ATCπ[δ(0) + (1-δ)((R)] for δ ∈ {0,1} 

Since [ATCπ(0) =0], the condition above simplifies into: 

ATCπ((R) – (δ)ATCπ((R) < ATCπ[(1-δ)((R)] 

Consider the case when the value of (δ) is such that: 

(R = [(δ)(R] + [(1-δ)(R] = t0 + T 

We know that: 

ATCπ[(1-δ)(R] > ATCπ((R) 

Since ATCπ[(1-δ) (R ] will involve a delay before 

deterioration (when deterioration starts taking effect with 

deterioration cost) and have a higher inventory-proportional 

profit over the total cycle time ((R) compared to ATCπ((R ). 

This proves the above condition and the theorem. □ 

(Theorem 2) The objective function is strictly concave 

within � ∈ {0,�X}. 

Proof: We obtained the range of preservation from Lemma 

6 previously: 

� ∈ {0,�X} where �X = 
[9;� � 9: � 9V]

W9V  

Proving Theorem 2 now simplifies into proving strict 

concavity of the objective function, which requires: 

ATCπ[δ(0) + (1-δ)(�X)] > 

δATCπ(0) + (1-δ) ATCπ(�X) for δ ∈ {0,1} 

Or alternatively: 

ATCπ[(1-δ)(�X)] > δATCπ(0) + (1-δ) ATCπ(�X) 
We may assume the optimal value of (T

*
) since the range 

of (�)  is independent if (T). The condition above can be 

proven using the set of exogeneous variables in the numerical 

example to firstly determine (�X) before calculating the value 

of the maximized objective function (ATCπ) for each level of 

(�). □ 

(Theorem 3) There exists a unique optimal solution set for 

the objective function. 

Proof: Both (T
*
) and (�*

) lie within their respective closed 

sets. Since the objective function is also continuous on the 

bounded sets, there exists at least one maximum point for the 

objective function. Through Theorem 1 and Theorem 2, we 

proved that the objective function is strictly concave within 

the range of our 2 decision variables. Therefore a maximum 

point obtained by the solution set (�*
, T

*
) must be a global 

maximum since any strictly concave function will have at 

most one maximal point. □ 

5.3. Algorithm 

1) Set (�n = Ch) and (Tn = 1) with (n=0). 

2) If (
�K!9H

�� ) and (
�K!9H

�! ) are both negative, go to step 8. 

3) If (
�K!9H

��  < 0), skip to step 5. 

4) Solve for optimal (�), If (∆@(AB > 0.1), update (�n) to 

the newly solve value. 
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5) If (
�K!9H

�!  < 0), skip to step 7. 

6) Solve for optimal (T), if (∆@(AB > 0.1), update (Tn) to 

the newly solved value. 

7) If |�n - �n-1| + |(n - (n-1| > 0.001 go to step 3. If not, go 

step 8. 

8) STOP. The last updated value is an optimal solution set 

(�*
, T

*
). 

We find the optimal cycle time (T
*
 = 20.961) and optimal 

level of preservation level ( �∗ = 0.65754) through the 

Algorithm with an Average Total Cycle Profit (ATCB) of 

(64964.58). 

To establish the maximal nature of our obtained solution, 

we verify the principal minor and major of the Hessian 

matrix evaluated at the solution set (�*
, T

*
). The negative 

value for the principal minor (concavity for either decision 

variable) was proven through Theorem 1 and 2. We can 

check the positive definite sign for the principal major. This 

reaffirms the maximum point obtained from our solution: 

|H2| = [��K!9H
��� ]*[��K!9H

�!� ] - [��K!9H
�� �!

] > 0 

The graphical representation for the objective function 

against the two decision variable, the level of Preservation 

(�) and second period cycle time (T) is given below: 

 

Figure 2. ATCB (y-axis) with variation in Total Cycle Time (T) (z-axis) and Preservation Level (�) (x-axis). 

5.4. Gains from Using Preservation Technology 

While it is clear to see the optimal solutions give the 

maximum point through the graph, the channels by which 

preservation increases profit is still uncertain. Since there is 

evident gains (and possible loss) that could come from the 

level of preservation, further investigation is needed to 

actually understand how preservation technology can affect 

profits. The difference in Average Total Cycle Profit between 

businesses that uses preservation (ATCB(β)
) and a model that 

does not (ATCB(0)
) can be organized into each of their related 

exogenous terms. We look into all 5 terms separately: 

ATCB(β)
 - ATCB(0)

 = A + B + C + D + E              (19) 

A = [Pλ]*[
��

I	J����
I	J�

!I	J�
 - 

��
I	#����

I	#� 

!I	#�
]                (20) 

For A, the difference between average inventory held for 

the model with and without preservation determines how 

much gain it contributes. Through Lemma 3 it is proven that 

inventory held during the first period increase with higher 

levels of preservation. As a balance, inventory held during 

second period decreases through Lemma 4. Nonetheless, 

notice that total cycle time increases with higher usage of 

preservation according to Lemma 2. Therefore over-

investment in preservation may eliminate this gain. 

B = [-Ch]*[
��

I	J����
I	J� 

�!I	J�
 - 

��
I	#����

I	#� 

!I	#�
]              (21) 

For B, the term in the right bracket is similar as before, this 

time greater inventory held would entail greater total holding 

cost. Additionally the inventory dependent per unit time 

holding cost with preservation is discounted proportionally, 

reducing total holding cost when preservation is used. 

C = [-Cp�]*[
��

I	J����
I	J� 

!I	J�
]                        (22) 

For C, the preservation cost which is only applicable when 

preservation is employed increases firstly according to the 

level of utilization in the effective preservation cost in the left 

bracket. Secondly the preservation cost is incurred through 

the average inventory held during the whole cycle. 

D = [Cd]*[
��

I	#�� 

!I	#�
 - 

��
I	J�� 

!I	J�
]                      (23) 

Next, term D is the difference in deterioration cost 

incurred when preservation is utilized. This is where the 
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majority of cost is saved in deteriorating inventory models 

with preservation technologies. Through Lemma 4, it can be 

seen that average inventory held during the second period is 

smaller with the use of preservation. Additionally, the 

effective deterioration rate is reduced through Lemma 1. 

E = [C0Q]*[
� 

!I	#�
 - 

� 

!I	J�
]                     (24) 

Finally, the last term is the difference in spread of the 

initial ordering quantity cost based on Lemma 2. Since the 

length of first period is greater with preservation, the initial 

ordering cost is spread over a longer period with higher 

preservation levels. 

The gains in (ATC B ) occur through the alteration of 

inventory process, which prolongs the delay before 

deterioration (first period cycle time) and reduces the 

effective deterioration θ < α (Preposition 1). By prolonging 

the delay before preservation, the total costs are spread 

further as most evidently seen in term E. Meanwhile by 

reducing the effective deterioration rate, the amount of 

inventory that is lost to deterioration is reduced as seen in 

term D. Additionally, the amount of inventory held in the 

first period is increased while the amount of inventory held in 

the second period is reduced as proven through Lemmas 3 

and 4. As a whole, this shifts the weight of the operation 

cycle towards the first period where no deterioration cost is 

incurred. 

The gains in (ATCB) affected by the changes in inventory-

associated costs namely the additional preservation cost 

(Cp�) and the savings of holding cost due to utilization of 

preservation (
9:

�
) (Preposition 2). We can see this effect 

clearly within term C where successive increments in 

preservation will quickly increase through the per unit 

preservation cost in the left bracket. On the contrary in term 

B, successive increments in preservation has a positive effect 

by improving inventory durability that reduces per unit 

holding cost. 

6. Sensitivity Analysis 

We conduct sensitivity analysis to verify Prepositions 1 

and 2. The tables below show the differences in Average 

Total Cycle Profit with differing levels of Total Cycle Time 

and Preservation Level when exogenous costs change. 

Consider an increase in deterioration cost from 30 to 34 

and subsequently 38. From term D previously, we found in 

Preposition 1 that it would be beneficial to increase 

preservation levels higher to reduce the amount of inventory 

susceptible to deterioration in the second period. The more 

expensive deterioration cost, the more gains that could come 

from increasing preservation levels as seen in tables 2 and 3: 

Table 3. ATCB values for Cd = 34. 

Y/[ 19 20 20.961 21 22 

0.55 64584 64757 64577 64527 63755 
0.6 64624 64878 64812 64780 64211 

0.65 64566 64889 64923 64907 64518 

0.7 64464 64830 64927 64921 64649 
0.75 64305 64709 64865 64868 64704 

Table 4. ATCB values for Cd = 38. 

Y/[ 19 20 20.961 21 22 

0.55 64234 64299 63997 63930 62976 

0.6 64304 64461 64286 64239 63509 

0.65 64275 64511 64448 64418 63888 
0.7 64192 64479 64488 64469 64068 

0.75 64053 64385 64460 64452 64172 

We now consider changes in Preservation Cost from 0.1 to 

0.3 and subsequently 0.5. From term C of section 5.8, it is 

discussed through Preposition 2 that it will be more 

expensive to employ higher preservation levels, making it 

less beneficial to have high levels of preservation. Observing 

tables 4 and 5 below confirm predictions from Preposition 2: 

Table 5. ATCB values for Cp = 34. 

Y/[ 19 20 20.961 21 22 

0.55 60706 60901 60770 60729 60061 
0.6 60378 60638 60604 60578 60089 

0.65 59919 60234 60283 60271 59937 

0.7 59503 59851 59952 59948 59715 
0.75 58997 59372 59520 59524 59383 

Table 6. ATCB values for Cp = 38. 

Y/[ 19 20 20.961 21 22 

0.55 56477 56587 56384 56333 55589 

0.6 55810 55982 55871 55835 55263 

0.65 54980 55201 55169 55147 54726 
0.7 54271 54521 54538 54524 54199 

0.75 53436 53710 53771 53764 53528 

We graph the data to show optimal level of preservations 

does follow the notions of prepositions 1 and 2. Increasing 

deterioration costs entails greater optimal preservation level 

while increasing preservation costs will require lower levels 

of optimal preservation: 

 

Figure 3. Optimal Preservation Levels (�) with increase in Deterioration 
Cost (Cd). 
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Figure 4. Optimal Preservation Levels (�) with increase in Preservation 
Cost (Cp). 

Gains in employing additional levels of preservation 

would depend on the returns to scale of the preservation 

technology towards inventory related cost and effective 

deterioration rate. (Preposition 3) 

Consider the additional dimension of inventory-associated 

cost where there are differing returns to scale. Increasing 

levels of preservation could require increasing increments to 

the preservation cost. Now increase in preservation levels 

increases preservation cost at an increasing rate. This would 

limit the gain from preservation, lowering the optimal level 

of preservation. This is more clearly seen where term C 

changes into: 

C = [-Cp�n
] [

��I(J)���I(J)
!I(J) ] where (n > 1)                (25) 

Equally interesting would be decreasing scale to holding 

cost savings. Now there would be less difference in total 

holding cost when preservation is employed since higher 

level of preservation would not continuously reduce holding 

cost. Similar as before, this would lower the optimal level of 

preservation. This can be seen where term B changes into: 

B = [-Ch] [
��I(J)���I(J)

(�\)!I(J)  - 
��I(#)���I(#) 

!I	#�
]                       (26) 

where, (m<1) 

The final consideration is varying effectiveness for 

preservation in reducing effective deterioration as seen 

below: 

θ(k)= 
�

��	�]�
, I2(t) = 

�

�� �^
 [exp((� + �	_�)(T-t))-1]    (27) 

This would alter the initial condition that implicitly 

determines first period cycle time (t0) and total cycle time. 

The value of (k) would also determine the extent of delay that 

would be incurred via the preservation investment. Values of 

(k>1) would signal increasing effectiveness of preservation 

investment in reducing effective deterioration. The same 

amount of decrease in effective deterioration rate would 

require a lower level of preservation as opposed to an 

ineffective preservation situation with (k<1) values. 

Ultimately this will affect total inventory held during both 

periods, a major component in the objective function and 

affecting all 5 terms relating to the gains from preservation. 

7. Future Research 

Possible extensions and improvements for this study may 

consider further detailed effects of preservation technologies 

in its effectiveness and the salvage value for deteriorated 

items that have been preserved. 

As implied through Preposition 3, differing returns to scale 

and increments in preservation costs could further explain 

until which exact point preservation continues to give benefit 

to the business. The benefits to employing preservation 

technology may then be attributed to each specific cost or 

revenue component rather than just the overall profit. Such 

an approach has not been taken since previous papers 

consider linearly increasing preservation costs even with 

diminishing returns to scale for preservation. 

Finally, there is no salvage value consideration and 

discussion. Since inventories are well kept and preserved 

during the whole cycle, deteriorated items could be sold off 

at a discount once they deteriorate [22, 36, 40]. There could 

be cost recuperated from this avenue that should be explored. 

8. Conclusion 

In this paper, it is demonstrated that the average total 

cycle profit could be maximized by choosing the optimal 

level of preservation (β
*
) and second period cycle time (T

*
) 

in a non-instantaneous deteriorating inventory setting. We 

discover two channels by which preservation increases 

profit, namely by altering the inventory process and the 

changes in inventory costs affected by the level of 

preservation utilized. 

Through the alteration of inventory process, we find that a 

higher level of preservation prolongs the delay before 

deterioration and increases the inventory held during the first 

period. This essentially shifts weight and majority of the 

operation cycle to the higher profitable first period in line 

with Preposition 1. The derivation on how the level of 

preservation determines the time when inventory process 

changes is explicitly demonstrated in this research, 

improving the current limited literature on this issue. 

Additionally, it is found with Preposition 2 that businesses 

stand to gain (or lose) depending on the inventory dependent 

costs incurred during the cycle. Favorably, preservation cost 

is now incurred more accurately according to the level of 

inventory held. Holding costs during the cycle are also 

reduced owing to more durable inventory requiring less 
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delicate care. While it is beneficial to employ sufficiently 

high levels of preservation, successively increasing 

preservation levels might require increasing increments to the 

preservation cost as suggested through Preposition 3.  

Industries and businesses with easily-perishable high value 

products like caviar and radioactive materials would greatly 

benefit from the findings of this research. There are great 

savings that would arise from the reduced deterioration cost 

and inventory preserved to satisfy demand when the 

appropriate operation cycle time and level of preservation are 

chosen. Future research in this area could consider varying 

preservation technologies effectiveness that have diminishing 

or increasing increments towards inventory related costs. 
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Appendix: Order Conditions 

A) Order conditions for per inventory proportional profit in period 1 and 2: 

π1(β) = [Pλ - 
9:
�  - Cpβ] π2(β) = [Pλ - 

9:
�  - Cpβ - 

9;�
���] 

π1β
’
 = [

9:
�� - Cp] π2β

‘
 = [

9:
�� - Cp - 

9;�
(���)�] 

π1β
’’
 = [

��9:
��  - Cp] π2β

’’
 = -2 [

9:
�� + 

9;�
(���)�] 

B) Order conditions for Inventory held in period 1: 

I1
T(β)

 (β, T) = , -
�
� 1(t) dt = 

�
� [1- 

�

�� (�
�)] 

I1T
T(β)’

 = 
�(���)
� �((���)!)

[� 
� �(�
�) ][��
� �((���)!)]  

I1T
T(β)’’

 = 
�(���)
� �((���)!)

[� 
� �(�
�) ][
� �E(���)!F��] 

I1β
T(β)’

 = 
���

[(���) � 
� �(�
�) ]�  { 
(!) 
� �((���)!)
[
� �E(���)!F��] − (� + �) } 

I1β
T(β)’’

 = 
����

[(���)` [� 
� �(�
�) ]�  { 
 !� 
� �((���)!)
[
� �E(���)!F��]  +  1 } 

+ { 
����
� �(�
�)

[(���)` [� 
� �(�
�) ]`  [
 ! 
� �((���)!)

[
� �E(���)!F��]  − (� + �)] } 

{ [(� + �) - 
 ! 
� �((���)!)

[
� �E(���)!F��]] – [� %& 'E(� + �)(F]} 

C) Order conditions for Inventory held in period 2: 

I2
T(β)

 (β, T) = , -!
� 2(t) dt = 

�
��� [


��((���)!)��
���  – T] 

I2T
T(β)’

 = 
� [
��((���)!)��]

��� ,  I2T
T(β)’’

 = D[%&'((� + �)()] 

I2β
T(β)’

 = 
��

(���)�(���)�  { (� + �)%&'((� + �)() [2-((� + �)()]-2(� + �)-T } 

I2β
T(β)’’

 = { 
�[��][���][��(���)(���)]

(���)`(���)`  } { (� + �)%&'((� + �)() [2-((� + �)()]-2(� + �)-T } + 

{
��

(���)�(���)` }{2(� + �)T+[T(� + �)%&'((� + �)()][T(� + �)+2]-2T %&'((� + �)()[(� + �)+1] 

D) Order conditions for end of period 1: 

t0 = 
�
� ln [

�(���)
[
��((���)!)��]�] 

t0β
’
 = 

�
�(���)(���)�  [

!
��((���)!)(���)
[
��((���)!)��]  - 1] 
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t0T
’
 = 


��((���)!)(���)
� [�� 
��((���)!)] 

t0β
’’
 = 

��
�(���)(���)`  [

!�
��((���)!)
[
��((���)!)��] - 

�
(���)� ] + 

�[���(���)]
�(���)�(���)�  [

!�
��((���)!)
[
��((���)!)��] - 

�
(���) ] 

t0T
’’
 = 

�[�� 
��((���)!)]�
��((���)!) 
(���)�  { ((� + �)() – 1 - (� + �)( } 

E) Order conditions for total cycle time: 

(!(�) = t0 + T 

TT
T(β)’

 = t0T
’
 + 1  TT

T(β)’’
 = t0T

’’
 

T β
T(β)’

 = t0β
’
  T β

T(β)’’
 = t0β

’’
 

F) Order conditions for total profit: 

π = [PDT] – [CoQ] + [π1 I1
T(β)

] + [π2 I2
T(β)

] 

πT
’
 = [PD] + [π1 I1T

T(β)’
] + [π2 I2T

T(β)’
]  

πT
’’
 = [π1 I1T

T(β)’’
] + [π2 I2T

T(β)’’
] 

Since π1T
’
 = 0, π1T

’’
 = 0, π2T

’
 = 0, π2T

’’
 = 0 

π = [PDT] – [CoQ] + [π1 I1
T(β)

] + [π2 I2
T(β)

]  

πβ
’
 = (π1β

’
 I1

T(β)
 + π1 I1β

T(β)’ 
) + (π2β

’
 I2

T(β)
 + π2 I2β

T(β)’
) 

πβ
’’
 = [(π1β

’’
 I1

T(β)
 + π1β

’
 I1β

T(β)’ 
) + (π1β

’
 I1β

T(β)’
 + π1 I1β

T(β)’’
)]+ [(π2β

’’
 I2

T(β)
 + π2β

’
 I2β

T(β)’ 
) + (π2β

’
 I2β

T(β)’
 + π2 I2β

T(β)’’ 
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