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Abstract: The main objective of this paper is to solve numerically the differential equations of fractional order with 

homogeneous boundary conditions by the Galerkin weighted residual method. In this method, linear combinations of some 

types of functions are used to find the approximate solutions which must satisfy the homogeneous boundary conditions. Such 

type of functions should be differentiated and integrated easily, so the piecewise polynomials, namely, Bernstein, Bernoulli and 

Modified Legendre polynomials are used as basis functions in this paper. The fractional derivatives are used in the conjecture 

of Riemann-Liouville and Caputo sense. Thus, we develop the Galerkin weighted residual formulation, in matrix form, to the 

linear fractional order boundary value problems, in details, which is easy to understand. The accuracy and applicability of the 

present method are demonstrated through few numerical examples. We observe that the approximate results converge 

monotonically to the exact solutions. In addition, we compare the approximate results with the exact solutions, and also with 

the existing solutions which are available in the literature. The absolute errors are depicted in tabular form as well as graphical 

representations, a reliable accuracy is achieved. The proposed method may be applied to fractional order partial differential 

equations also. 

Keywords: Galerkin Method, Fractional Derivatives, Riemann-Liouville Derivative, Caputo Derivative,  

Fractional Order BVP 

 

1. Introduction 

In recent few decades, the wide spread of differential 

equations of fractional order in various forms arise in the 

areas of physical sciences, mathematical biology and 

engineering problems. These problems have been studied for 

existence and uniqueness results in a limited way analytically 

[1, 2] or semi-analytically [3, 4], such as by variational 

iteration and Adomian decomposition methods. For this, 

many researchers have attempted for solving several 

problems numerically, in a wide range, by different methods 

to obtain approximate solutions, such as Sinc-Galerkin 

method [5], generalized differential transform method [6], 

cubic spline solution [7], Cubic B-Spline wavelet collocation 

method [8], Legendre wavelet approximation [9], 

collocation-shooting method [10], and more, which are 

available in the literature. The technique of using the 

solutions of integer order differential equations has been 

introduced in [11] to find the exact solutions of fractional 

IVP, but the researchers in [12] have shown by some counter 

examples that it was wrong. Very recently, orthonormal 

fractional-order Legendre wavelet basis functions have also 

been incorporated in [13]. 

However, for the huge demand of numerical methods with 

great accuracy, we are interested to find the numerical 

solutions of linear fractional order two-point boundary value 

problems with homogeneous boundary conditions only. For 

this, in this paper, we propose Galerkin weighted residual 

(GWR) method [14] for approximate solutions. Here we are 

restricted to use the piecewise polynomials which are used 

extensively, differentiated and integrated easily, and may be 

approximated any functions to get the desired accuracy. Thus 

we exploit Bernstein and Modified Legendre polynomials 
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[15], and also Bernoulli polynomials [16] as basis functions 

in the approximation. 

We consider throughout the paper the most common 

concepts of Riemann-Liouville and the derivatives in Caputo 

sense which are also rewritten in section 2 as preliminaries. 

We use ‘differ-integral’ as an operator that means both 

derivative and integral of arbitrary order. The fractional 

integral is used for describing the cumulating of some 

quantity and the fractional derivative is used for describing 

damping. The Gamma function plays the important role to 

find the new solution of the Galerkin method. 

Galerkin method to a general two-point linear boundary 

value problem is formulated rigorously in matrix form which 

is described in section 3. The proposed formulation is tested 

on three fractional boundary value problems in section 4. The 

absolute errors, obtained by the proposed method, are 

displayed in tabular form. The results are also compared with 

the existing methods, namely, Sinc-Galerkin method [5] and 

Cubic- Splines method [7]. 

2. Preliminaries 

Leibnitz suggested a close relationship between derivatives 

and infinite series, and he continued: 
1

2d x  is equal to 
dx

x
x

. 

In 1819 Lacorix showed that if 
axy =  then 

1
12
2

1

2

( 1)

1
( )

2

ad y a
x

adx

−Γ +=
Γ +

. In particular, this result obtained that 

1

2

1

2

2
d x x

dx
π

= . 

In this section, firstly we show the definitions of Gamma 

functions and secondly Riemann-Liouville and Caputo of 

fractional derivatives [1, 2]. 

Gamma Function 

Let ����  be a factorial function. In this case, for any 

positive integer n, given by [2]: 

(0) 1, ( ) ( 1) 1,2,3,...F F n nF n n= = − =  

Gamma function for any 0>x  is defined as follows: 
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For the Gamma function can be demonstrated that: 
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Also for negative values of x, we use the following 

definition: 
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Definition Let �: [�, 
] → ℝ be a function, � be a positive 

real number, n be the integer satisfying	� − 1 ≤ � < �, and Γ 

be the Euler Gamma function [1], then the left and right 

Riemann-Liouville fractional derivatives of order � of ���� 
are given as 
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The left and right Caputo fractional derivatives of order � 

of ���� are given as 
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Bernstein Polynomials 

The general form of the Bernstein polynomials of nth 

degree over the interval [a, b] is defined by [15] 
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Bernoulli Polynomials 

The Bernoulli polynomials of degree n can be defined over 

the interval [0, 1] implicitly by [16] 
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where, 
k

b  are Bernoulli numbers given by 
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Also equations (9) can be written explicitly as 
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Modified Legendre Polynomials 

The analogue of Rodrigues formula for the Legendre 

polynomials is 
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To satisfy the condition (0) (1) 0, 1n np p n= = ≥ , we 

modify the Legendre polynomials in equation (12) as [15]: 
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3. GWR Formulation of Fractional 

Differential Equations 

We consider Bernstein, Bernoulli and modified Legendre 

polynomials as basis functions to obtain the approximate 

solutions to the boundary value problems in the Galerkin 

weighted residual (GWR) method [14]. If ( )u x denotes the 

unknown exact solution to a boundary value problem then we 

shall denote approximate trial solution by ( )u xɶ . 

We consider linear fractional order two-point boundary 

value problems with the boundary conditions [1, 5]: 

( ( ) ) ( ) ( ), (0) (1) 0
d du d u

p x s x f x u u
dx dx dx

α
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We assume that the approximate solution of differential 

equation  (14) as: 
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Using equations (15) and (16), the Galerkin weighted 

residual equations are 
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Inserting equations (18) and (19) into (17) to get  
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Solving the system (20) we find the values of parameters 

and then substituting into equation (15), we get the 

approximate solution of the desired FBVP (14). 

4. Numerical Examples 

In this section, we consider three problems with 

homogeneous boundary conditions to verify the proposed 

method. 

Example 1. Consider the linear fractional boundary value 

problem [5] 

0.5

0 ( ) ( ),c

xu D u x f x′′+ =                       (21) 

with boundary conditions 

(0) (1) 0,u u= = and
1.5 0.51

( ) 2 (2.65 2 )
(0.5)

f x x x= + −
Γ

, 

0.5

0

c

x
D  is the Caputo fractional derivative operator. 

The exact solution of this problem is, ( ) ( 1)u x x x= − . 

Solving this FBVP by the proposed method in section 3, 

we find the approximate results, absolute errors using first 5 

Modified Legendre polynomials, Bernoulli polynomials, and 

Bernstein polynomials. We compare our accuracy of the 

absolute errors versus the errors obtained by the Sinc-

Galerkin method [5] with � = 5,� = 5, are shown in Table 

1. Also we compare the approximate results with the exact 

solutions by displaying in Figure 1. We note that though the 

Bernstein polynomials converges slowly but we may observe 

that the accuracy is acceptable. 
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Table 1. Absolute errors obtained by present method using three types of polynomials for example 1. 

x 
Exact 

Solutions 

Absolute errors obtained by present method using 5 

polynomials Absolute errors using 9 

Bernstein polynomials 

Sinc-Galerkin method 

[5] with � = �,� � � 
Legendre Bernoulli Bernstein 

0 0 0 0 0 0 0 

0.1 -0.09000 1.30 ! 10"# 1.29 ! 10"# 2.36 ! 10"& 1.30 ! 10"# 7.79 ! 10"# 

0.2 -0.16000 2.54 ! 10"# 2.51 ! 10"# 3.51 ! 10"& 2.54 ! 10"# 2.34 ! 10") 

0.3 -0.21000 3.62 ! 10"# 3.60 ! 10"# 6.07 ! 10"& 3.62 ! 10"# 1.74 ! 10") 

0.4 -0.24000 4.48 ! 10"# 4.44 ! 10"# 8.10 ! 10"& 4.48 ! 10"# 4.25 ! 10"# 

0.5 -0.25000 5.03 ! 10"# 4.98 ! 10"# 8.59 ! 10"& 5.03 ! 10"# 1.72 ! 10") 

0.6 -0.24000 5.18 ! 10"# 5.13 ! 10"# 1.01 ! 10"+ 5.18 ! 10"# 1.19 ! 10") 

0.7 -0.21000 4.48 ! 10"# 4.79 ! 10"# 1.31 ! 10"+ 4.84 ! 10"# 5.87 ! 10"# 

0.8 -0.16000 3.93 ! 10"# 3.88 ! 10"# 1.37 ! 10"+ 3.93 ! 10"# 1.55 ! 10") 

0.9 -0.09000 2.34 ! 10"# 2.31 ! 10"# 8.86 ! 10"& 2.34 ! 10"# 4.46 ! 10"# 

1 0 0 0 0 0 0 

 

Figure 1. Exact and approximate solutions of Example 1. 

Example 2. Consider the linear fractional boundary value 

problem [5, 7] 

0.3

00.5 ( ) ( ) ( ),c

xu D u x u x f x′′ + + =                 (22) 

with the boundary conditions 

 

(0) (1) 0,u u= =  and

2 3.7 4120 24
( ) 4 (5 3) 0.5 ( ) ( 1)

(5.7) (4.7)
f x x x x x x x= − + − + −

Γ Γ
. 

The exact solution of this problem is 4( ) ( 1)u x x x= − . 

In this case, we compute the absolute errors using first 5 

polynomials of each type: Modified Legendre, Bernoulli, and 

Bernstein. We compare the accuracy of the absolute errors 

versus the errors obtained by the Sinc-Galerkin method [5] 

with � � 5,� � 5, and also with the Cubic Spline method 

[7], are shown in Table 2. The approximate results and the 

exact solutions are displayed in Figure 2. In this case, the 

present method is reliable with good accuracy. 

Example 3. Consider the linear fractional boundary value 

problem [5, 7] 

0.5

0( ) ( ) ( ),c

xu xu x D u x f x′′ ′− + =                  (23) 

with the boundary conditions 

(0) (1) 0,u u= =  and 

3 2 1.5 2.5 0.51
( ) 3 2 8 2 (2.67 3.2 4 )

(0.5)
f x x x x x x x= − − + + + + −

Γ
 

The exact solution of this problem is 2( ) ( 1) 2u x x x x= + − . 

 

Table 2. Absolute errors obtained by present method using three types of polynomials for example 2. 

x 
Exact 

Solutions. 

Absolute errors obtained by present method using 5 polynomials Sinc-Galerkin method 

[5] with � � �,� � � 

Cubic Spline 

method [7] Legendre Bernoulli Bernstein 

0 0 0 0 0 0 0 

0.125 �0.00021 1.73 ! 10"# 1.13 ! 10"# 1.81 ! 10"# 2.80 ! 10"# 2.00 ! 10") 
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x 
Exact 

Solutions. 

Absolute errors obtained by present method using 5 polynomials Sinc-Galerkin method 

[5] with � � �,� � � 

Cubic Spline 

method [7] Legendre Bernoulli Bernstein 

0.250 �0.00292 3.38 ! 10"# 2.22 ! 10"# 1.73 ! 10") 4.72 ! 10") 4.08 ! 10") 

0.375 �0.01235 4.82 ! 10"# 3.12 ! 10"# 4.52 ! 10") 4.28 ! 10") 5.83 ! 10") 

0.500 �0.03125 5.77 ! 10"# 3.59 ! 10"# 6.92 ! 10") 3.00 ! 10") 6.85 ! 10") 

0.625 �0.05722 5.86 ! 10"# 3.33 ! 10"# 8.86 ! 10") 3.17 ! 10") 6.81 ! 10") 

0.750 �0.07910 4.77 ! 10"# 2.17 ! 10"# 1.06 ! 10"& 1.85 ! 10") 5.57 ! 10") 

0.875 �0.07327 2.55 ! 10"# 5.31 ! 10", 9.86 ! 10") 3.09 ! 10") 3.26 ! 10") 

1 0 0 0 0 0 0 

 

Figure 2. Exact and approximate solutions of Example 2. 

In this problem, the absolute errors using first 5 

polynomials of each type: Modified Legendre, Bernoulli, and 

Bernstein, and first 9 Bernstein polynomials are computed. 

We compare the accuracy of the absolute errors versus the 

errors obtained by the Sinc-Galerkin method [5] with 

� � 5,� � 5, and are shown in Table 3.  

The approximate results and the exact solutions are displayed 

in Figure 3. In this case, the accuracy is found with good 

agreement compare to the solutions of the existing method 

and exact solutions. 

 

Figure 3. Exact and approximate solutions of Example 3. 
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Table 3. Absolute errors obtained by present method using three types of polynomials for example 3. 

x 
Exact 

Solutions 

Absolute errors obtained by present method using 5 polynomials Absolute Errors using 9 

Bernstein Polynomials 

Sinc-Galerkin method 

[5] with � � �,� = � Legendre Bernoulli Bernstein 

0 0 0 0 0 0 0 

0.1 −0.18900 2.59 × 10", 2.61 × 10", 1.04 × 10"+ 5.39 × 10") 4.32 × 10", 

0.2 −0.35200 5.02 × 10", 5.09 × 10", 1.32 × 10"+ 5.54 × 10") 8.58 × 10", 

0.3 −0.48300 7.25 × 10", 7.30 × 10", 2.04 × 10"+ 8.35 × 10"# 1.30 × 10"# 

0.4 −0.57600 9.07 × 10", 9.09 × 10", 2.35 × 10"+ 4.17 × 10") 1.69 × 10"# 

0.5 −0.62500 1.03 × 10"# 1.03 × 10"# 2.40 × 10"+ 6.65 × 10") 2.01 × 10"# 

0.6 −0.62400 1.08 × 10"# 1.07 × 10"# 2.95 × 10"+ 6.71 × 10") 2.24 × 10"# 

0.7 −0.56699 1.02 × 10"# 1.02 × 10"# 3.85 × 10"+ 5.52 × 10") 2.48 × 10"# 

0.8 −0.44799 8.53 × 10", 8.51 × 10", 3.97 × 10"+ 3.84 × 10") 2.40 × 10"# 

0.9 −0.26100 5.21 × 10", 5.20 × 10", 2.58 × 10"+ 1.99 × 10") 1.61 × 10"# 

1 0 0 0 0 0 0 

 

5. Conclusion 

In this paper, three polynomials such as Legendre, 

Bernstein, and Bernoulli polynomials have been exploited for 

solving linear fractional order two-point boundary value 

problems by the well-known Galerkin method. The proposed 

formulation is easy to understand and can be coded easily. 

The approximate results converge monotonically to the exact 

solutions in each cases. In addition, fast convergence has 

been achieved in some cases even with a few polynomials of 

lower order. Finally, we may conclude that this method may 

be applied any order of linear and nonlinear fractional 

ordinary or partial differential equations with specified 

boundary conditions. 
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