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Abstract: Public key cryptography is one of the most important research contents in modern cryptography. Curve-based public 

key cryptosystems have attracted widespread attention in recent years because they have more obvious advantages in speed and 

key length than general public key cryptosystems. People have done a lot of research on elliptic cryptosystem, among which the 

realization of elliptic cryptosystem is a key content. In this paper, the definition of special parabola in algebraic closed domain is 

proposed, the group structure of special parabola in finite field is studied, and several forms of public key cryptosystem based on 

this parabola are given. The results show that the parabola, together with the additive operations defined above, form an Abelian 

group. The radix of this parabola can be easily determined, so that the factors it contains can be large prime. The security of its 

public key cryptosystem is based on the difficulty of solving the discrete logarithm problem on this parabola. Moreover, these 

parabolic public key cryptosystems are easy to code and decode in plaintext, and easier to design and implement than elliptic 

curve public key cryptosystems. 

Keywords: Special Parabola, Group Structure, Public Key Cryptosystem, Finite Field, Discrete Logarithm 

 

1. Introduction 

Public key cryptography is a kind of cryptography proposed 

in 1970s. The most important characteristic of its algorithm is 

that it uses two non-reciprocal keys to control the process of 

encryption and decryption respectively. The key used for 

encryption is public, called public key, and the key used for 

decryption is used exclusively by users and needs to be kept 

secret, called private key. It is computationally impossible for 

anyone to obtain the decryption key only knowing the 

cryptographic algorithm and encryption key. Public key 

cryptosystem is especially suitable for use in computer 

network environment. It has the functions of information 

encryption, key management and digital signature. It can 

guarantee the integrity, confidentiality and non-repudiation of 

information. So far, the security of the proposed public key 

cryptography is based on a mathematical problem. The 

mathematical problem mentioned here is that there is no 

polynomial time algorithm to solve this mathematical problem. 

For example, factorization large integers, discrete logarithms 

over finite fields and elliptic curve discrete logarithms, etc. 

These problems are difficult to solve as long as the parameters 

are properly selected under the existing theoretical and 

technical conditions, so they lay the foundation for the 

security of the corresponding public key cryptography. Any 

significant progress in solving these problems mathematically 

will have a tremendous impact on the use of the corresponding 

public key cryptography. 

The most common public key cryptosystems used to be 

RSA public key cryptosystem [1] and Diffie-Hellman public 

key cryptosystem exchange algorithm [2]. RSA was broken on 

August 22, 1999, so the key had to be lengthened. In order to 

achieve the security level of 128 bits of symmetric key, NIST 

recommended using 3072 bits RSA key. Obviously, this 

increase in key length will undoubtedly aggravate RSA’s slow 

computing speed [3, 4]. Miller [5] and Koblitz [6] 

independently proposed elliptic curve public key 

cryptography in the mid-1980s. This is another new 

application of elliptic curve theory in cryptography after the 

primality test of Goldwasser and Kilian [7] and the large 

number decomposition of Lenstra [8] based on elliptic curve. 

Its idea is still to use elliptic curves over finite fields to 

analogize multiplication groups over finite fields in various 

public key cryptosystems involving multiplication groups 
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over finite fields, so as to obtain similar public key 

cryptosystems. The security of this kind of system is based on 

the difficulty of solving the discrete logarithm problem on 

elliptic curve. At present, no sub-exponential time algorithm 

has been found to solve this problem. The advantage of elliptic 

curve cryptosystem is that it can use a shorter key length to 

achieve the same security requirements as the cryptosystem 

based on finite field, so that it can complete encryption and 

decryption operations at a faster speed. However, elliptic 

curve cryptosystem has many unsatisfactory aspects in 

plaintext coding and cardinality calculation. To solve this 

problem, we find an algebraic curve which is better than 

elliptic curve in these aspects, namely special parabola, which 

can be used to design special parabolic public key 

cryptosystem. This special parabolic cryptosystem satisfies 

the basic requirement of easy encryption and decryption. It 

can not only make plaintext encoding and decoding very easy, 

but also make it easier to design and implement than elliptic 

curve cryptosystem. In addition, we can easily calculate the 

radix of special parabola, which can make the factors 

contained in special parabola become large primes, so as to 

improve the computational complexity of discrete logarithm, 

thus ensuring the security of the cryptosystem. 

2. The Concept of Special Parabola 

We know that parallel projection usually maps square to 

parallelogram, so after parallel projection of rectangular 

coordinate system in plane, the angle between coordinate axis 

is no longer rectangular, and the measuring units on two 

coordinate axes will become different. Such a coordinate 

system is called affine coordinate system. Specifically, an 

affine frame is formed by selecting a point O and two 

non-collinear vectors e1 and e2 on the plane, which are denoted 

as δ =[O；e1, e2]. The directed lines passing through the 

origin O along e1 and e2 are called x-axis and y-axis 

respectively. For any point M on the plane, if its corresponding 

decomposition formula of OM
�����

 for e1 and e2 is 

1 2OM x y= +
�����

e e , then its ordered number pair ( ),x y  is 

called the affine coordinates of point M with respect to frame 

δ . If the affine frame δ  is given on the plane, then 

according to the above provisions, the set of all points on the 

plane has a one-to-one correspondence with the set of all 

ordered real number pairs. Thus, an affine coordinate system 

O-xy is established on the plane. Since the affine coordinate 

system is completely determined by the calibrated frame δ , 

we directly call frame δ =[O；e1, e2] an affine coordinate 

system, where O is the origin, e1 and e2 are called basic vectors. 

The plane which has established the affine coordinate system 

is called the affine plane, which is recorded as A
2
 (K), where K 

denotes an algebraic closed field. 

Let δ =[O；e1, e2] be an affine coordinate system on the 

plane. Under δ , an ordered real array 1 2 3( , , ) (0,0,0)x x x ≠  

satisfying the following conditions is called a homogeneous 

affine coordinate of points on the plane. 

(1) If 0ρ ≠ , then 1 2 3( , , )x x xρ ρ ρ  and 1 2 3( , , )x x x  are 

homogeneous affine coordinates of the same points. 

(2) If 3 0x ≠ , then 1 2 3( , , )x x x  is a homogeneous affine 

coordinate of a common point whose nonhomogeneous affine 

coordinates are 1 2

3 3

,
x x

x y
x x

= = . 

(3) Points with homogeneous affine coordinates 1 2( , ,0)x x  

are called infinite points. The set of infinite points on a plane is 

an infinite straight line ξ∞  with equation 3 0x = . 

Let x  be an arbitrary point on an affine plane, and for its 

homogeneous affine coordinate 1 2 3( , , )x x x , it can be 

decomposed into 

1 2 3( , , )x x x = 1 2 3(1,0,0) (0,1,0) (0,0,1)x x x+ +       (1) 

Since (1, 0, 0), (0, 1, 0) are coordinates of infinite points 
(1) (2),O O∞ ∞  on the x-axis and y-axis of the affine coordinate 

system respectively, (0, 0, 1) is coordinates of the origin O of 

the affine coordinate system. In this way, formula (1) tells us 

that the homogeneous affine coordinate of a point is an 

ordered array of decomposition about coordinate three arrays 

of point 
(1) (2), ,O O O∞ ∞ . Thus, in order to obtain the 

homogeneous affine coordinates, we must take the 

homogeneous affine frame (1) (2), , ;O O O eδ ∞ ∞ =
 

 composed 

of four points which are not collinear with each three points, in 

which 
(1) (2),O O∞ ∞  are infinite points. The function of e point is 

to restrict the coordinate three array of 
(1) (2), ,O O O∞ ∞  by 

expression (e)=
(1) (2)( ) ( ) ( )O O O∞ ∞+ + , which is determined by 

any coordinate (e) of e point. 

In a homogeneous affine coordinate system, given a 

nondegenerate quadratic curve 

( )KΓ ： ( ) ( )
11 12 13 1

1 2 3 21 22 23 2

31 32 33 3

, , 0, det 0ij

a a a x

x x x a a a x a

a a a x

  
   = ≠  
  
  

. (2) 

We classify quadratic curves by the position relationship 

between quadratic curves and infinite straight lines. The 

quadratic curves intersecting with ξ∞  at two different points 

is called hyperbola, the quadratic curve tangent with ξ∞  is 

called parabola, and the quadratic curve without intersection 

with ξ∞  is called ellipse. 

Obviously, the coordinates of the intersection point of 

infinite straight line ξ∞  and curve ( )KΓ  satisfy the 

following equations: 

2 2
11 1 12 1 2 22 2

3

2 0

0

a x a x x a x

x

 + + =


=
           (3) 

Record as A33=
11 12

12 22

   

   

a a

a a
, when A33=0, curve ( )KΓ  is 

tangent to infinite straight line ξ∞ , and then ( )KΓ  is a 
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parabola, and vice versa. 

The parabola studied in this paper is a special quadratic 

curve which satisfies the following conditions: 

a33=0, A33=0, det(aij)≠0.             (4) 

That is 

Γ 2 2
11 1 22 2 12 1 2 13 1 3 23 2 3( ) : 2 2 2 0K a x a x a x x a x x a x x+ + + + =  (5) 

where 
2
12 11 22 0a a a− = ,  det( ) 0ija ≠ . 

In affine coordinate system δ =[O；e1, e2], formula (5) 

becomes the following form: 

Γ
2 2

11 22 12 13 23( ) : 2 2 2 0K a x a y a xy a x a y+ + + + = .   (6) 

3. Group Structure of Special Parabola 

over Finite Fields 

Let algebraic closed field K=Fp be a finite field of p 

elements, p be a large prime number, and *
pF  be a multiplier 

group of Fp. May wish to set up 

{ } { }*0,1, 2, , 1 , \ 0p p pF p F F= − =⋯⋯ .     (7) 

The coefficients in formula (6) are as follows: 

11a a= , 22a c= , 122a b= , 132a d= − , 232a e= − . (8) 

In affine coordinate system δ =[O；e1, e2], we consider the 

following non-degenerate special parabola on affine plane 
2 ( )pA F : 

Γ(Fp)
2 2: 0ax bxy cy dx ey+ + − − =         (9) 

where *, , , , pa b c d e F∈ , 2 4 0b ac− = . 

Obviously, origin O (0, 0) is on Γ(Fp). 

If 0x ≠ , let y xt= , then 

2

d et
x

a bt ct

+=
+ +

,                (10) 

2

( )t d et
y

a bt ct

+=
+ +

                (11) 

can be deduced from formula (9). 

We use P(t) to denote the points determined by formula (10) 

and (11) on Γ(Fp). Origin O is denoted as ( )P t∞ , that is, 

( ) (0,0)P t∞ = . 

Obviously t∞  satisfies 

0d et∞+ = ,                (12) 

that is 

1 modt de p−
∞ ≡ − .              (13) 

Since 

2 2 1 2 2 1(4 )a bt ct c t bc t b c− − + + = + +
 

=
2

1(2 )c t b c − +
 

, (14) 

we get 

2 10 (2 )a bt ct t b c −+ + ≠ ⇔ ≠ − .       (15) 

Let { }|pR t F t α= ∈ ≠ , where 
1(2 ) modb c pα −≡ − , then 

(10) and (11) give a one-to-one mapping :P R → Γ(Fp) 

between R and Γ(Fp). 

Now let’s define the addition operation " "⊕  of points on 

Γ(Fp). For any ( )P t ∈Γ(Fp), where t R∈ , defines 

( ) ( ) ( ) ( ) ( )P t P t P t P t P t∞ ∞⊕ = ⊕ = .       (16) 

Obviously, P ( )t∞  is the zero element to " "⊕ . 

Let 1 2( ), ( )P t P t ∈ Γ(Fp), where 1 2,t t R∈ , and 1 2,t t t∞≠ , 

define 

1 2( ) ( ) ( )P t P t P t⊕ = ,              (17) 

where 

2
1 2

1 2
1 2

1 2

0,

0.

t t
if t t

t t t

t if t t

α

∞

 +
+ ≠= +

 + =

             (18) 

With this addition operation " "⊕ , we can get the following 

theorem. 

Theorem 1. Let Fp be a finite field of p elements and Γ(Fp) 

be a special parabola over Fp, then (Γ(Fp) , ⊕ ) is an Abel 

group. 

Proof. Easy to verify, for arbitrary 1 2,t t R∈ , when t1+t2≠0, 

there is 

2
2 2

1 2

2
1 2

( ) ( )
0,

( )

c t t
a bt ct

t t

α α− −
+ + = ≠

+
       (19) 

so t R∈ ; 

when 1 2 0t t+ = , there is ( ) ( )P t P t∞= ; 

hence ( )P t ∈ Γ(Fp), 

that is closed to " "⊕ . 

Obviously, operation " "⊕  is commutative. 

There are also negative elements for ( )P t ∈Γ(Fp), which are 

defined as follows: 

( ) ( )
( )

,

.

p t if t t
p t

p t if t R and t t

∞ ∞

∞

 =− =  − ∈ ≠
       (20) 

Obviously satisfy 
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( ) ( ( )) ( ) ( ) ( )P t P t P t P t P t∞ ∞ ∞ ∞ ∞⊕ − = ⊕ = ,    (21) 

( ) ( ( )) ( ) ( ) ( )P t P t P t P t P t∞⊕ − = ⊕ − = .       (22) 

The following proves that operation " "⊕  can be combined, 

namely arbitrary ( )iP t ∈Γ(Fp), where , 1, 2,3it R i∈ = , there 

is 

( ) ( )1 2 3 1 2 3( ) ( ) ( ) ( ) ( ) ( ) .P t P t P t P t P t P t⊕ ⊕ = ⊕ ⊕   (23) 

When one of ( )1, 2,3it i =  is t∞ , it is easy to verify that 

formula (23) holds. 

When ( 1, 2,3)it t i∞≠ = , the following situations are 

discussed. 

If 1 2 0t t+ ≠ , then 

( )
2

1 2
1 2 3 3

1 2

( ) ( ) ( ) ( )
t t

P t P t P t P P t
t t

α +
⊕ ⊕ = ⊕  + 

 

( )

( )

2
1 2 3 1 2 3 2

1 2 1 3 2 32
1 2 1 3 2 3

2
1 2 1 3 2 3

0,

0.

t t t t t t
p if t t t t t t

t t t t t t

p t if t t t t t t

α
α

α

α∞

  + + +
   + + + ≠  + + +=   


+ + + =

 (24) 

If 2 3 0t t+ ≠ , then 

( )
2

2 3
1 2 3 1

2 3

( ) ( ) ( ) ( )
t t

P t P t P t P t P
t t

α +
⊕ ⊕ = ⊕   + 

 

( )

( )

2
1 2 3 1 2 3 2

1 2 1 3 2 32
1 2 1 3 2 3

2
1 2 1 3 2 3

0,

0.

t t t t t t
p if t t t t t t

t t t t t t

p t if t t t t t t

α
α

α

α∞

  + + +
   + + + ≠  + + +=   


+ + + =

 (25) 

So, if 1 2 0t t+ ≠  and 2 3 0t t+ ≠ , then formula (23) holds. 

If 1 2 0t t+ =  and 2 3 0t t+ ≠ , then 

( )1 2 3 3 3( ) ( ) ( ) ( ) ( ) ( ),P t P t P t P t P t P t∞⊕ ⊕ = ⊕ =    (26) 

( )
2

2 3
1 2 3 2

2 3

( ) ( ) ( ) ( )
t t

P t P t P t P t P
t t

α +
⊕ ⊕ = − ⊕   + 

 

2 2
3 2

32 2
2

( )
( ).

t t
P P t

t

α
α

 −
= =  − 

          (27) 

At this time, formula (23) holds, the same can be proved 

when 1 2 0t t+ ≠  and 2 3 0t t+ = , formula (23) also holds. 

If 1 2 0t t+ =  and 2 3 0t t+ = , then 

( )1 2 3 3 3( ) ( ) ( ) ( ) ( ) ( ),P t P t P t P t P t P t∞⊕ ⊕ = ⊕ =     (28) 

( )1 2 3 1

1 2 3

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ).

P t P t P t P t P t

P t P t P t

∞⊕ ⊕ = ⊕

= = − =     (29) 

At this time, formula (23) holds. 

In summary, (Γ(Fp) , ⊕ ) forms an Abel group. 

Theorem 2. Let Fp be a finite field of p elements and Γ(Fp) 

be a special parabola over Fp, then the cardinal number of Γ(Fp) 

is 

|Γ(Fp)| 1p= − .                    (30) 

Proof. For arbitrary 1 2,t t R∈ , set up ( ) ( )1 1 1, ,p t x y=

( ) ( )2 2 2,p t x y= , 

then formula (10) and (11) give 

1
1 2

1 1

1 1
1 2

1 1

,

( )
;

d et
x

a bt ct

t d et
y

a bt ct

+
=

+ +
+

=




+



+







             (31) 

2
2 2

2 2

2 2
2 2

2 2

,

( )
.

d et
x

a bt ct

t d et
y

a bt ct

+
=

+ +
+

=




+



+







               (32) 

If 1 2t t= , then ( ) ( )1 2p t p t= . 

Conversely, if ( ) ( )1 2p t p t= , namely ( ) ( )1 1 2 2, ,x y x y= , 

there is 

1 2

2 2
1 1 2 2

1 1 2 2

2 2
1 1 2 2

,

( ) ( )
.

d et d et

a bt ct a bt ct

t d et t d et

a bt ct a bt ct

+ +
=

+ + + +
+ +

=
+ +




+



+







        (33) 

From this we can get 1 2t t= , so 1 2t t=  is the necessary 

and sufficient condition of ( ) ( )1 2p t p t= , according to the 

thought of anti-evidence, that is 

( ) ( )1 2 1 2t t p t p t≠ ⇔ ≠ .            (34) 

Since :P R → Γ(Fp) is a one-to-one mapping, we get 

|Γ(Fp)| R= 1p= − .              (35) 

4. Special Public Key Cryptosystem 

4.1. Discrete Logarithm Problem of Special Parabola 

In order to use special parabola to construct cryptosystem, it 

is necessary to find out the difficult mathematical problem on 

special parabola. Give the following notation first: 
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( ) ( ) ( ) ( )

n

nP t P t P t P t= ⊕ ⊕ ⊕⋯⋯
�����������

.        (36) 

where ( )P t ∈Γ(Fp), , .t R n p∈ ＜  

Let ( )P t  be a point on special parabola Γ(Fp). 

If there is a smallest positive integer n such that 

( ) ( )nP t P t∞= , then n is the order of point ( )P t , denoted as 

( )P tn , that is 

{ }( ) min ( ) ( ),P tn nP t P t n N∞= = ∈ .        (37) 

If there is no such positive integer n, then point ( )P t  is 

called infinite order and is recorded as ( )P tn = ∞ . 

We know that if E(Fp) is an elliptic curve over finite field Fp, 

P is the generator of a cyclic subgroup on E(Fp), and 

( )PQ E F∈ , the only integer n ( 0 ( ) 1n ord P≤ ≤ − ) satisfying 

nP=Q is a discrete logarithm problem on elliptic curve, which 

is a difficult mathematical problem. 

Similarly, the mathematical difficulty of special parabola is 

the parabolic discrete logarithm problem. That is know special 

parabola Γ(Fp) and point 1( )P t , where point 1( )P t  is the 

generator of a cyclic subgroup of group (Γ(Fp) , ⊕ ). Random 

selection of an integer n p＜  make it easy to calculate 

2 1( ) ( )P t nP t= , but given 1( )P t , 2( )P t ∈ Γ(Fp), it is very 

difficult to calculate n. 

In order to implement cryptosystem on special parabola, we 

also need to establish a reversible embedding mapping from 

plaintext message space M to special parabola to encode 

plaintext. That is 

:P M → Γ(Fp), : ( )P m P m→ ,       (38) 

where pm F∈ , ( )P m  is called plain code, which is encoded 

by plaintext m. 

Specific coding algorithms are as follows: For pm F∈ , 

calculate 

2 1

2 1

( )( ) mod ,

( )( ) mod ,

m

m

x d em a bm cm p

y m d em a bm cm p

−

−

 ≡ + + +


≡ + + +

  (39) 

then there is 

( ) ( , )m mP m x y= .              (40) 

Reverse encoding as 

1 :P− Γ(Fp) ,M→  
1 : ( )P P m m− → ,       (41) 

that is 

1 modm mm y x p−≡ .                (42) 

For example, in order to facilitate calculation, a finite field 

of { }11 0,1, 2 ,10F = ⋯⋯ , a special parabola of 

Γ
2 2

11( ) : 9 4 5 7 0F x xy y x y+ + − − = ,        (43) 

and a plaintext of 118m F= ∈  are set. 

We can see 9, 1, 4, 5, 7a b c d e= = = = = . 

From formula (39), we get 

2 1
8

8

(5 7 8)(9 8 4 8 ) mod11 8,

8 8mod11 9.

x

y

−≡ + × + + × =
≡ × =

  (44) 

So (8) (8,9)P = , on the contrary, when (8) (8,9)P =  is 

known, the anti-coding process is 

19 8 mod11 8m −≡ × = .              (45) 

Special parabolic cryptosystems are based on the difficulty 

of solving the discrete logarithm problem defined on the group 

of curve points. Like the discrete logarithm problem of elliptic 

curve, in order to make the calculation of discrete logarithm 

on Γ(Fp) more difficult, it is necessary to select the prime 

number p to be very large. When the factor of 1p −  contains 

a large prime q, the computational complexity of the discrete 

logarithm algorithm is ( )log( 1)O q p +  [9], which can ensure 

the security of special parabolic cryptosystem. Here we 

present three cryptosystems based on special parabolic group 

structure. 

4.2. Key Exchange Protocol Based on Special Parabola 

The key exchange protocol enables multiple users in an 

insecure channel to obtain common secret information, which 

may be used as the private key of a symmetric cryptosystem, 

while the attacker cannot obtain the secret information. 

Choosing a large prime 
1802p＞ , a special parabola Γ(Fp), 

and the base point ( )P t  on Γ(Fp), the order ( )P tn  of ( )P t  is 

a large prime number. 

(1) User A chooses random number a, calculates 

( )AQ aP t= , and sends it to user B. 

(2) User B chooses random number b, calculates 

( )BQ bP t= , and sends it to user A. 

(3) User A calculates the shared key ( )Bk aQ abP t= = . 

(4) User B calculates the shared key ( )Ak bQ abP t= = . 

Obviously, the security of the system is based on the 

difficulty of solving the discrete logarithm of special parabola: 

( ), ( )A BQ xP t Q yP t= = .          (46) 

4.3. Encryption and Decryption Cryptosystem Based on 

Special Parabola 

Scheme 1: 

Let Γ(Fp) be a special parabola, ( )P t ∈Γ(Fp), the order of 

( )P t  is large prime number ( )P tn . 

(1) User A selects the private key Ad  and calculates the 

public key ( )A AQ d P t= . 

(2) In order to send information m to user A, user B first 
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codes m to ( ) ( , )m mP m x y= , then selects random number k  

to send ( )( ), ( ) AkP t P m kQ+  to user A. 

(3) User A decryption process is: first calculate 

( ) ( )( ) ( ) ( ) ( , ),A A m mP m kQ d kP t P m x y+ − = =     (47) 

then use formula (42) to calculate 
1 mod .m mm y x p−≡  

Obviously, if an attacker wants to restore plaintext m, he must 

calculate Ad
 with knowledge of 

( )P t
 and QA, or k  with 

knowledge of 
( )P t

 and 
( )kP t

. Because |Γ (Fp)|
1p= −

 

contains a large prime factor, such a calculation is very difficult. 

Scheme 2: 

Choose a large prime number p, suppose Γ(Fp) is a special 

parabola over finite field Fp, then |Γ (Fp)| 1p= − . 

(1) User A selects a public key Ae  to satisfy 1 1Ae p −＜ ＜  

and calculates the private key Ad  through 1modA Ae d p≡ . 

(2) User B selects a public key Be  to satisfy 1 1Be p −＜ ＜  

and calculates the private key Bd  through 1modB Be d p≡ . 

(3) User A encodes message m as ( ) ( , )m mP m x y= , 

calculates 1 ( )Ac e P m= , and sends c1 to user B. 

(4) User B calculates c2=eBc1 and sends c2 to user A. 

(5) User A calculates c3=dAc2 and sends c3 to user B. 

(6) User B calculates. 

( )( )
3 2 1

( ) ( ) ( ).

B B A B A B

B A B A A A B B

d c d d c d d e c

d d e e P m e d e d P m P m

= =
= = =

  (48) 

That is, user B obtains the plaintext ( ) ( , )m mP m x y=  sent 

by user A, and then decode the plaintext message 
1 modm mm y x p−≡ . 

5. Conclusions 

Since the birth of elliptic curve public key cryptosystem, 

people have made a lot of achievements in the research of 

elliptic curve cryptography. There are not only theoretical 

research on elliptic curve cryptography [10-12], but also 

application research on elliptic curve cryptography [13-19]. 

The security of this cryptosystem is based on the difficulty of 

the elliptic curve discrete logarithm problem. Similarly, the 

security of the special parabolic curve public cryptosystem 

proposed in this paper is based on the difficulty of solving the 

special parabolic discrete logarithm problem. This paper has 

done some basic research work on special parabola. In the 

future, people can further study the special parabolic curve 

public cryptosystem according to the research ideas of elliptic 

curve public cryptosystem, and popularize and innovate it. 

Therefore, the establishment of special parabolic public key 

cryptosystem has very important theoretical and practical 

value and a more far-reaching development prospects. In 

addition, the special parabolic public key cryptosystem has the 

same advantages as the elliptic curve public key cryptosystem, 

such as higher security, smaller key volume and better 

flexibility. However, there are still many problems in the 

embedding and implementation of plaintext in the elliptic 

curve public key cryptosystem. Relatively speaking, the 

special parabolic public key cryptosystem shows that plaintext 

coding is very easy and decoding is very simple. So in the 

future, people should feel that the special parabolic public key 

cryptosystem is simpler and easier to implement than the 

elliptic curve public key cryptosystem and the improved RSA 

public key cryptosystem [20]. 
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