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Abstract: Data missing often affects the characteristics of the sequence. Using appropriate methods to process the missing 

data is the premise and guarantee to obtain high quality information. In this study, a fractal interpolation method is proposed to 

fill the missing data with self-similar feature sequences. Two sets of binomial multifractal sequences with parameters of 0.25 and 

0.35 are taken as the research objects, and the Hurst index value of the sequence after filling processing is calculated by 

MF-DMA, which verifies the practicability of the fractal interpolation filling method. At the same time, the method is applied to 

multi-fractal sequences with missing rates of 10%, 15% and 20% respectively, and compared with the filling effects of deletion 

method and random filling method, then, the applicability of the three methods is obtained. The results show that, for binomial 

multifractal sequences with different missing ratios, the Hurst index of the sequence processed by fractal interpolation has the 

highest degree of fitting with the theoretical value, its effect of repairing the fractal sequence is better than the other two methods, 

and has a good application prospect. 
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1. Introduction 

In the course of investigations and research, there are often 

cases of data loss. Missing data often increases the difficulty 

of experimental analysis and even leads to unreliable 

experimental results. In this regard, many scholars at home 

and abroad have discussed the treatment of missing data. In 

1978, Rubin proposed a multi-interpolation method for 

dealing with missing discrete data. This method replaces the 

missing data by creating an interpolation vector, which 

improves the shortcomings of the single interpolation [1]; 

Mao Qunxia in paper [2] discussed the application of 

multi-interpolation method in the case of missing data in 

survey data by data simulation technology, pointing out that 

multi-interpolation is limited to the filling of discrete data 

and can not be used to repair time series with correlation; In 

2013, Tan et al. [3] proposed an attribution method based on 

tensor decomposition to repair the lost traffic flow data. 

Although this method can effectively restore the time 

dependence of traffic flow itself, it is limited to processing 

the sequence with less missing data. In 2015, Dohoo 

compared the multiple attribution method with the complete 

case analysis method based on missing disease control data, 

and obtained the applicability and limitations of the multiple 

attribution method [4]. In 2018, Xia Zhiling and others filled 

the missing data with the optimal hybrid substitution method, 

solved the problem of missing data in water environment, 

and achieved good restoration results. In summary, these 

methods are mainly used for data processing in specific areas, 

without considering the non-linear characteristics of the data 

sequence itself. With the establishment and development of 

fractal theory, a large number of studies have shown that 

many data series in real life have self-similar characteristics, 

such as financial investment, commodity prices, network 

traffic and traffic flow time series [6-9]. Research on the 

methods and techniques that can effectively extract the 

information hidden behind these data is of great practical 
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significance for revealing the intrinsic characteristics and 

development laws of things and explaining the relevant 

principles of complex phenomena. At present, deletion 

method and single interpolation method are the main 

methods to deal with the missing segment data of 

non-stationary self-similar sequence. Single interpolation 

method includes mean interpolation, random interpolation 

and regression interpolation. It has changed the disadvantage 

of neglecting missing values in traditional methods, so that 

all kinds of statistical analysis can be completed after 

interpolation. The data set is expanded, but the disadvantage 

of single interpolation method is that it will change the 

distribution characteristics of sample data and lead to the 

deviation of statistical results. Therefore, the research on the 

processing method of non-linear missing sequence needs to 

be further improved. 

This paper takes the typical binomial multifractal sequence 

as the research object. On the premise of random missing of 

original data, fractal interpolation method is proposed to 

repair missing fractal sequences. The Hurst index of the 

sequence is calculated by MF-DMA to verify the validity of 

the fractal interpolation method, and Compared with 

traditional deletion method and random filling method, the 

advantages, disadvantages and applicability of the three data 

processing methods under different missing rates of binomial 

multiple sequence are analyzed, so the most effective 

processing method is obtained. It provides valuable reference 

for the further study of fractal sequences. 

2. Theory and Method 

2.1. Algorithm of MF-DMA 

MF-DMA is an effective method for analyzing the 

multifractal characteristics of signal sequences [10-12]. Its 

main algorithm steps are as follows. 

In the first step, assuming the signal sequence is 

( ), 1,2,...,x i t N=  (N is the length of the signal sequence), 

calculate the accumulated sequence by 
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Taking scale n as the size of sliding window, the moving 

average function is calculated by 
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Here, ( ( 1) , ( 1) )t n n N nθ θ∈ − − − −       , x   represents the 

largest integer not greater than x, x   represents the smallest 

integer not less than x. [0,1]θ ∈  is the position parameter of 

sliding window. Gu and Zhou in paper [10] have proved that
=0θ is a good estimation of moving average function. 

Therefore, =0θ was applied in this research. 

In the third step, the residual sequence is obtained by 

subtracting the moving average function from the cumulative 

sum sequence. 
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In the fourth step, the sequence is divided into nN

non-overlapping interval segments by an interval of n, and 

1nN N n= −   , Each interval is expressed as 

( )( ) ( 1) , 1,2,3,...,i v n i i nε ε= − + = . Then, by calculating the 

square mean of the entire interval sequence to obtained the 

mean square function of the vth interval segment 
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The fifth step is to calculate the q-order fluctuation 

function. 
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In the sixth step, the scaling behavior of fluctuation function 

is investigated by changing the value of window scale n. If the 

data sequence is long-range power-law-dependent, there are 

( )( ) H q

qF n n∝                 (7) 

Drawing logarithmic graphs of ( )qF n  and n, the slope 

fitted by least square method is the generalized Hurst 

exponent of the multifractal series. It is an important index to 

measure whether the data sequence has fractal characteristics 

and its long-range correlation. When ( )H q  changes with q 

value, the sequence is multifractal, and the larger the variation 

range, the stronger the autocorrelation trend of the sequence; if 

( )H q  is a fixed constant independent of q value, it means the 

sequence is single fractal. 

2.2. Brief Introduction of Data Missing Processing Method 

The delete method is to cancel the missing data segment 

from the original sequence directly, and get a new sequence 

whose length is less than the original sequence. 

Random filling method is based on the idea of random 

sampling, a corresponding number of data are randomly 

selected from the existing data of the sequence to fill the 

missing sequence segments, and a complete new sequence is 

obtained. 

For the fractal interpolation method, the concept of fractal 

interpolation was proposed by Barnsley in 1986, assuming 

that the data set consisting of a series of interpolation points is
2, 0,1,2,.( ) }.{ . ,

i i
x y i N R= ∈
，

, here 0 1 ... Nx x x< < < , The fractal 

interpolation function is a continuous function that is 

interpolated at these points, and its graph is an attraction of the 

Iterated Function System (IFS). The specific construction 

process [13-15] is as follow. 

Let each function in the iteration function system be an 
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affine transformation, written as 
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According to eqution (9) and eqution (10), for each i, the 

five constants of function Wi satisfy the following equation. 
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di in the formula is a free variable, which satisfies 0 < di < 1 

(i = 1, 2,..., N). It is called the vertical scale factor. The value of 

di in the experiment is 0.5. The coefficients ai, ei, ci, fi (i = 1, 

2,..., N) are completely determined by the interpolation data 

{xn | n = 0, 1, 2,..., N}. 

Fractal interpolation filling method is a method of filling 

the missing values of the original sequence by generating a 

series of new points between the interpolated data using the 

fractal function generated by the recursion of the upper 

iteration. 

3. Analysis of Experimental Process and 

Results 

3.1. Model Construction and Parameter Selection 

Binomial multifractal sequence is a typical multifractal 

time series, which is the representative of non-stationary 

signal sequence [16-18]. The multifractal sequence with 

length of (n to 10) can be constructed by the following 

formula. 

( ) ( )1 ( )1
( ) 1 1,2,3,...,

n iin nx i a a i N
−−−= − =，        (11) 

Here, a is the main parameter to generate the sequence, n(i) 

denotes the number of values i in binary 1. 

Figure 1 shows the multi-fractal sequence images with 

parameter a of 0.2, 0.25, 0.35, 0.4 and lengths of 1024 

generated in MATLAB 7.0 environment. 

 

Figure 1. Binomial multifractal sequences generated by different parameters. 

According to Figure 1, with the increase of parameters, the 

difference between the two ends of the sequence decreases and 

the fluctuation decreases gradually. Because the fluctuation 

range of the data is too large or too small, it is not conducive to 

analysis and research, so this paper chooses parameters and 

binomial multifractal series of length 1024 to carry out 

experiments. 

3.2. Results and Analysis 

According to the steps introduced in 2.2, let the parameters 

a = 0.25 and a = 0.35. Two sets of multifractal sequences with 

1024 lengths are obtained by self-programming with 

MATLAB. The proportion of continuous missing data in the 

sequences is 10%, 15% and 20% respectively. Based on 

MF-DMA, the missing data are processed by direct removal 

method, random sampling filling method and fractal 

interpolation filling method. The Hurst index of the sequence 

is obtained as follows: 
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Figure 2. The sequence with parameter 0.25 corresponds to the Hurst exponents obtained by different processing methods. 

 

Figure 3. The sequence with parameter 0.35 corresponds to the Hurst exponents obtained by different processing methods. 
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The trend of Hurst exponent in the graph reflects that the 

sequence repaired by the above three methods still has 

multifractal characteristics, and the fitting degree of Hurst 

values of each repaired sequence is different from that of the 

theoretical value. Among them, the sequence repaired by 

fractal interpolation is similar to the original sequence's Hurst 

values, regardless of the missing ratio of the data being 10%, 

15% or 20%. In addition, the results show that the Hurst 

values of the fractal interpolation sequence are lower than the 

theoretical values, which indicates that the fractal 

interpolation method can deal with the missing values of 

fractal sequence. Eliminate the role of trends. 

By comparing Figures 2 and 3, it is found that the Hurst 

value of binomial multifractal sequence generated by 

parameter a=0.35 changes more smoothly, which indicates 

that the autocorrelation trend intensity of the multifractal 

sequence is lower. At this time, fractal interpolation filling 

method, random sampling filling method and direct removal 

method are used to repair the missing items of the multifractal 

sequence. The Hurst index of F-DMA is close to that of the 

original sequence. 

In order to further compare the effectiveness of the three 

methods introduced in this paper for missing sequence 

processing, we calculated the mean square error (MSE) of 

Hurst values of each repair sequence corresponding to the 

missing ratio of 10%, 15% and 20% for the two groups of 

polynomial multifractal sequences with parameters a=0.25 

and a=0.35, respectively. The variance value reflecting the 

stability of error variation. The results are shown in the 

following Tables. 

Table 1. a=0.25, the error between the obtained Hurst index value and the theoretical value. 

methods missing rate of 10% missing rate of 15% missing rate of 20% standard deviation 

Deletion method 0.0174 0.0434 0.0405 0.00014 

Random padding 0.0122 0.0193 0.0274 0.00004 

Fractal interpolation 0.0021 0.0123 0.0136 0.00002 

Table 2. a=0.35, the error between the obtained Hurst index value and the theoretical value. 

methods missing rate of 10% missing rate of 15% missing rate of 20% standard deviation 

Deletion method 0.0016 0.0048 0.0046 0.000002 

Random padding 0.0009 0.0023 0.0030 0.0000008 

Random padding 0.0001 0.0020 0.0018 0.0000007 

 

Datas in Table 1 and Table 2 clearly reflect the fitting errors 

between the repair series and the original sequence. It can be 

seen that, on the one hand, the deviation between Hurst value 

and theoretical value obtained by fractal interpolation is the 

smallest under various missing ratios, which further shows 

that fractal interpolation fills the missing multifractal 

sequence with the best repair effect compared with the other 

two filling methods; on the other hand, the standard deviation 

in Table 2 is obviously smaller than the standard deviation in 

Table 1, indicating that the missing value has the best repair 

effect on the two kinds of fractal sequences. The sequence 

model generated by parameters has different influence degrees. 

For the multifractal sequence with a = 0.35 parameter, it is 

advisable to use the above three methods to repair the missing 

values of the sequence. The magnitude of variance shows that 

the fractal interpolation method has better stability when 

dealing with missing values of fractal sequence. 

4. Conclusion 

In order to effectively estimate the missing values of fractal 

data sequences and improve the efficiency of data analysis, 

this paper proposes a fractal interpolation method, which is 

applied to filling missing data of binomial multifractal 

sequences with different parameters and different missing 

ratios. Based on MF-DMA, the Hurst index of new method is 

compared with the deletion method and the random padding 

method, and the validity of the fractal interpolation padding is 

tested. The results show that the fractal interpolation filling 

sequence has a smaller error with the original sequence, and 

its repair result is more stable and reliable, which provides a 

new idea and method for solving the problem of data missing 

from self-similar sequence. 
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