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Abstract: The phytoplankton is one of the most ancient inhabitants of our planet. It consists of mostly unicellular aquatic 

species, both fresh water and marine. The purpose of this work is to model the dynamics of a diatoms population because it is a 

predominant phytoplankton kind and plays a key role at the base of the food chains, climate regulation and ecology. The 

formulated mathematical model would give a better idea about the expected population size in the near and further future. As a 

modelling tool we propose the branching stochastic process of Bellman-Harris (BPBH) Z (t). In general, the generating 

function (g.f.) F (t) for non Markov multidimensional BPBH is difficult for explicit expression. Impossibility for simultaneous 

birth and death of the BPBH-particle together with producing offspring would correspond to the biological side. Only after 

completion of the whole cycle the cell is capable of dividing and every particle is of zero age at birth, which corresponds to the 

condition of right continuity at the zero point of the distribution function (d.f.) G (t). It makes the multidimensional g.f. F (t) 

more suitable for research and analytical expression, allowing the use of basic theorems. The matrix U (t) of means meets the 

requirements and satisfies the basic matrix equation for a multidimensional non Markov branching processes. The matrix 

equation, corresponding to the system of sixteen integral equations is determined. The moments of Z (t) are expressed. The 

most characteristic feature of the diatoms is their cell wall - the cause of mitosis to result in one of the two daughters 

decreasing in size. This again directs the authors to determine the particle's type by its initial size and model by suggesting a 

decrease in the offspring size. The diatom's cell stops dividing when their size drops below the minimum. Accumulating 

sufficient critical mass, cells that have ceased to divide begin to merge with each other, generating a new cell. In contrast to the 

determined models the stochastic processes assess the probable future development. A certain fact is that the diatoms number 

is influenced by many factors of random nature in the environment. 
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1. Introduction 

About half of all Earth's photosynthesis is due to 

phytoplankton. It produces over 80 percent of oxygen. On the 

Bulgarian Black See coast there are about 600 species 

phytoplankton. Phytoplankton consists of about 16 000 

microscopic aquatic species, both fresh water and marine. 

Diatoms are the most successful phytoplankton group in the 

modern ocean and have risen to dominance relatively quickly 

over the last 100 million years [1, 12]. The phytoplankton 

plays a key role at the base of the food chains, climate 

regulation and ecology [3]. The branching stochastic 

processes assess the probable future development [2-4, 7]. 

The phytoplankton, in particular the diatoms are 

photosynthetic and therefore contain chlorophyll-a (chl-a) [5, 

12]. Its quantity increases and divides together with the whole 

cell. Data about chl-a can be easily acquired via satellite. The 

chlorophyll-a concentration can be a measure of the 

phytoplankton concentration. The proposed model allows to 

interpret as a particle not the whole cell, but only the "unit" of 
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chl-a contained in it [6, 8]. In the considered BPBH it is 

impossible simultaneous birth, death and offspring-production 

of the particle. Every particle is of zero age at birth. This 

allows the use of some basic theorems for multidimensional 

continuous non-Markov branching processes. Every particle 

has a life span �  and produces offspring just before dying. 

These two conditions completely coincide with the diatom's 

cell-division, which is one of the reasons why the authors 

model through BPBH. The mathematicians have long ago 

discovered that in discrete time the Fibonacci series describes 

successfully the diatoms' number 0, 1, 1, 2, 3, 5, 8, 13.... [1, 

12] The particle’s type is defined by its initial size [6, 8]. 

Phytoplankton feeds even the blue whale, which is considered 

to be the greatest animal ever lived on our planet. The next 

picture presents different kinds of diatoms. 

 
Figure 1. Different kinds of diatoms. The shells could be seen. 

2. Arguments to Propose as a Modelling 

Tool BPBH 

2.1. Choice of a Mortality Rate 

The cell can divide or die. Here we mean death for 

disappearance from the population by means other than 

division. Diatoms are in the basis of the food chains. They 

have the ability of forming dispersed aggregates in the water 

column, which constitute the main food available to the early 

larval stages of many fish species. At such stages, larvae are 

passive and can only eat the prey passing in very close 

vicinity. This is the reason for assumption that the mortality �1 � �� is the same for all types. 

2.2. Choice the Particle's Lifespan Distribution 

From the birth to the splitting every cell goes through 

several specific stages known in advance and required a 

concrete time. Only after the successful completion of the 

cycle the cell is capable of dividing. Therefore we assume 

that the lifespan of the cell follows	��	, ��	�. 
2.3. Arguments to Model Through BPBH 

(a) Only after completion of the whole cycle the cell is 

capable of dividing and every particle is of zero age at 

birth, that is to say G (0)=G (0+)=0. In this case of 

right continuity at the zero point of the d.f., the 

multidimensional g.f. is more suitable for research and 

analytical expression. The authors of all basic works 

unambiguously warn about that the g.f. of non Markov 

multidimensional BPBH can be impossible to express 

explicitly [2, 11]. 

(b) Every particle of the BPBH has a random life time � 

and produces offspring just before dying. This 

coincides with the diatom's cell division mechanism. 

(c) Impossibility for simultaneous birth and death of the 

particle together with producing offspring corresponds 

to the biological side. 

(d) The mitosis results in one of the two daughters 

decreasing in size. [1, 12] 

(e) The diatoms stop dividing when their size drops below 

the minimum. [1, 12] 

(f) The size of the diatoms is between 30 and 150 microns. 

[1, 12] 

(g) The critical stop-dividing size is between half to one-

third of the regular. [1, 12] 

(h) In discrete time the Fibonacci series describes 

successfully the diatoms' number. [1, 12] 

(i) The mortality �1 � �� is the same for all types. 

(j) The indivisible cells have a bottom-down mechanism 

and may remain hidden for a long time. 

The cell is a particle in the BHBP Z (t) designated by T. 

2.4. Data 

The authors consider data from samples taken from about 

50 stations along the Bulgarian Black Sea coast during the 

summer of '94, '97, from 2002 to 2006, 2009 and 2011. The 

measured concentrations of chl-a reveal a distribution of a 

phytoplankton population localized to a particular depth and 

geographical longitude and latitude. 

The authors offer an algorithm: 

(Step 1.) Determine the endpoints of the rectangular 

parallelepiped contained the entire area. 

(Step 2.) Set a desired step h. 

(Step 3.) Divide the entire volume into 
�  equal sub-

volumes. 

(Step 4.) Determine the endpoints of the all rectangular 

sub-parallelepipeds. 

(Step 5.) Check each of the measured in the submitted data 

quantities in which sub-volume falls. 

(Step 6.) Collect the registered quantities for each are 

(Step 7.) Plot result. 

(Step 8.) End. 

The following diagram (Figure 2.) reflects the measured 

concentration of chl-a, giving rough guide about the 

distribution of the chl-a in the selected location. It gives an 

idea about the phytoplankton's distribution and from there - 

of the diatoms, dominate kind of it on the Bulgarian Black 

See coast. 
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Figure 2. Measured concentration of chl-a. 

3. Diatoms Model 

Over the probability space �Ω, �, �� are defined a random 

variables �, ��  for � � 1,… ,4  and BPBH Z (t) with 4 types of 

particles, defined by theirs initial sizes. [6, 8]. The particles' 

lifetimes are � ∈ ��	, ��	�, �. �. ����� � ��� � ��. Taking into account �⋄ 8� and the 

mechanism of the diatoms division, we get five as Δ -

subintervals number. Δ=[30,155] is divided as follows: 

Δ!" � #30,55', Δ!!" � �55,80', Δ� � �80,105', Δ� � �105,130', Δ( � �130,150'. Define:	Δ" � Δ′" ∪ Δ′". 

The BPBH with 4 types of the particles ,� ; 	� � 1, … ,4, 

depending on in which subintervals falls its initial sizes, is 

designated by .��� � �."���, .����, .����, .(���� 
Every particle is of zero age at the birth and it is 

impossible simultaneous birth, death and offspring-

production. This allows us the use of basic theorems for the 

multidimensional continuous non-Markov branching 

processes. It follows from what we said above that for the 

particles in the four-dimensional non-Markov BPBH Z (t) are 

met: 

Conditions for the particles in the four-dimensional non-

Markov BPBH Z (t): 

Condition 1. The particle ,  in .���  represents diatom's 

cell. Its initial size defined the type. 

Condition 2. The life span of ,  is designated by 	� ∈��	, ��	�. 
Condition 3. ," is in a not-splitting mode. 

Condition 4. Accumulating sufficient critical mass, ," 

begins to merge with each other, generating a new	,(. 

Condition 5. ,�; 	� � 2,3,4	 reaches maturity with a 

probability �, when splits into ,�  and ,�0" [9]. 

Condition 6. Each particle evolves independently of each 

other. 

The mechanism of the particles division is illustrated by 

Figure 3. 

 
Figure 3. Mechanism of division of the particles. 

4. Equations of BPBH Z (t) 

Let us for any positive integer n and i, j=1,…, n use the 

designations: 

12 	� 31", … , 14567684 9 ;	0:2 � 30,… , 0578;4< 9 ; 1:2 � 31,… , 1578;4< 9 ;	=2 � 3=", … , =4567684 9 

>2 	� 3>", … , >4567684 9 

?�@  - the probability and respectively A�@  the expectation ,@ to be a ,�-descendant. A�@���  - the expected number ,@ -descendants from one ,� 	after an arbitrary time t has passed. 

Definition 4.1 M � ‖mEF‖�@  is the particle production mean matrix 

associated with the individual generating function (i.g.f.) f 

(s), where: 

A�@ � GHIGJK |JM"::2                           (1) 

Definition 4.2 U�t� � ‖mEF�t�‖ is the matrix of means at time � ∈ #0,∞�. 
Definition 4.3 ‖A‖ ≔ max�|U�@|� for any V W V matrix A. 

Definition 4.4 

The generating function (g. f.) F (t, s) is 

F�t, s� � ∑[∈\]�^.��� � 1_.�0� � 1:2`="[a …=4[] , 

where �4 � ;b � �b", … , b4�: b � 0,1,2… < 
Let us introduce the functions: c��A�� , d� � ∑4M"e A��40"�������∗4                (2) �������∗" � ��(t) 
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�������∗4 = ∫hi 	��∗(40")(� − d) d ��(d)                (3) 

Proposition 1. 

For the particle production mean matrix j , associated 

with the individual generating function (i.g.f.) f (s) we have: 

j = k� 0� � 0 00 00 �0 0 � 0� �l 

Proof: 

From Condition 3 - ,"  is in a not-splitting mode and 

Condition 5 – ,� ; 	� = 2,3,4	reaches maturity with a probability �, when 

splits into ,�  and ,�0" 

for the components of the i.g.f. we receive: �"(=) = 1 − � + �="                         (4) ��(=) = 1 − � + �=�0"=� for � = 2,3,4	               (5) 

From definition 4.1 and from (1) follows the proposition. 

5. Expectation 

For the considered biological model ‖j‖ < ∞, therefore ‖o(�)‖ is bounded on finite intervals, and ‖o(�)‖ satisfies 

the matrix equation [2, 11]: 

oi(�) = p#1 −	�∗(�)	' + 	∫hi 	oi 	(� − d)jid [�∗(d)]  (6) 

Where p#q	'  is the diagonal matrix with q� 	 in the i-th 

place, and d [�(d)] is the diagonal matrix with ���(d) in the 

i-th entry. According [2, 11] o(�) is the unique solution of 

the equation (6), bounded on finite intervals. 

A�@(�) = r{	.@(�)|.(0) = s�} = 	 GtIGJK |JM"::2             (7) 

Proposition 2. 

For the moments of the non-Markov BPBH Z (t) with 

arbitrarily d.f. ��(�)	�, u = 1,… ,4 we have: 

A�@(�) =1-��(�) + �∫hi 	(1 − ��(� − d))�∑4M"e �40"(��(�))∗4                                           (8)A�@(�)	for i < j	can be expressed from the his predecessor of U(t) sequentially on columns; A�@(�) = 0	for � > u. 
Proof: 

For the >(�, =) it is valid [2, 11]: 

>(�, =) = s(	1 − ��(�)) + 	∫hi�(	>(� − d, =))��(d)                                                    (9) 

By components for � = 1,… ,4 we have: >�(t, s) = E{=z(i)|Z(0) = s�} = ∑ �[∈\| {.(�) = 1|.(0) = s�}="[a …=([|                             (10)  

From (5), (7) and (10), using the designation >h(�) ≡ 1 we obtain: 

>�(�, =) = s�~	1 − ��(�)� +	(1 − �)��(�)+�∫hi 	(>�(� − d, =)	>�0"(� − d, =))���(d)                        (11) 

From equations (7) and (11) for � = 2,3,4	u = 1,… ,4 we receive: 

A�@(�) = ��@~	1 − ��(�)�+�∫hi 			A�@(� − d)>�0"(� − d, =)���(d) +	�∫hi 		A(�0")@(� − d)>�(� − d, =)���(d)        (12) 

From definition 4.2: 

oi(�) = kA""(�) A�"(�)0 A��(�) A�"(�) A("(�)A��(�) A(�(�)	0	 00	 0	 A��(�) A(�(�)0 A(((�)l 

From equation (6): 

oi(�) = k1 − �"(�) 00 1 − ��(�) 0	 00	 0	0	 00	 0	 1 − ��(�) 00 1 − �((�)l	+∫h
i 	oi 	(� − d)jid [�(d)]                (13) 

oi(�) = p~1 − �(�)� + ��
�A""(� − d) A�"(� − d)0 A��(� − d) A�"(� − d) A("(� − d)A��(� − d) A(�(� − d)	0	 00	 0	 A��(� − d) A(�(� − d)0 A(((� − d)�

���(d) 



 Applied and Computational Mathematics 2019; 8(1): 3-8 7 

 

+�k0 A""(� − d)0 	0 A�"(� − d) A�"(� − d)A��(� − d) A��(� − d)0	 00	 0	 	0	 A��(� − d)0 0 l��(d) 
Therefore for � = 1,… ,4 we have: 

A��(�) = 1 − ��(�) + ρ	∫hi 	A��(� − d)���(d)       (14) 

For u = 2,3,4: 
A@"(�) = ρ	∫hi 	A(@0")"(� − d) + A@"(� − d)���(d)    (15) 

For u = 3,4:  
A@�(�) = ρ	∫hi 	A(@0")�(� − d) + A@�(� − d)���(d)    (16) 

A(�(�) = ρ	∫hi 	A��(� − d) +A(�(� − d)���(d)    (17) 

For � = 1,… ,4 with 0 < u < �: A�@(�) = 0	                                 (18) 

We solve equations as follows: 

(14) are renewal equations. Using designation (2) for their 

solutions we have the formula, presented in (19) [2, 11]: 

A��(�) =1-��(�) + A��∫hi 	~1 − ��(� − d)��	c�(A�� , d)  (19) 

From equations (14) we get A""(�) and substitute it in 

equations (15) with j=2, obtaining renewal equation in 

general form. Then replace the obtained for A�"(�)  in 

equations (15) for j=3, and so on. That way we can get all 

the expectations. From the recursion above follows the 

proposition [10]. 

6. Discussion 

Mathematically more convenient is the choice of discrete 

process or continuous process with � ∈ rq?(�) because the 

process would be Markov. The multidimensional continuous 

non-Markov process with d.f. � ∈ �(	, ��	), fits better on the 

biological side. We could assume, that bisection of the cells 

occurs approximately when they double, it is logical and rom 

a biologic point of view 

The derived results for the expectations would give a 

better idea about the expected population size after any time 

has elapsed. 

From a biologic point of view, to seek the asymptotic 

behavior of the number of diatoms after an infinite period of 

time is of no interest, of course. For this reason, the authors 

decided to miss it. The mathematical task for the asymptotic 

behavior of the particle number could be derived for Z (t). 

Some results for the asymptotic of BPBH with normally 

distributed life span of the particles are obtained in [13, 14]. 

Supplementing the branching properties by controlling the 

number of progenitors in every generation allows for 

modelling a random migratory movements in and out of the 

population [15]. 

7. Conclusions 

The most characteristic feature of the diatoms is their cell 

wall. This shell is the reason of mitosis to result in one of the 

two daughters decreasing in size. This is the reason the 

authors to determine the particle's type by its initial size. 

The phytoplankton consists of microscopic aquatic 

species, both fresh water and marine. Mostly predominate 

diatoms and others. The purpose of this work is to model the 

dynamics of a diatoms population, one of the most ancient 

inhabitants of our planet. The formulated mathematical 

model would give a better idea about the expected population 

size in the near and further future. The phytoplankton and in 

particular a diatoms play a key role at the base of the food 

chains, climate regulation and ecology. 

When the condition one of the two daughters decreasing in 

size met is, the model could be applicable for populations of 

unicellular organisms. 

Only after completion of the whole cycle the cell is 

capable of dividing, which corresponds to the mathematical 

condition of right continuity in the zero point of the 

distribution function. This respectively makes the g.f. more 

suitable for research and analytical expression. In general, 

g.f. are very difficult to express in an explicit form, which the 

authors of all the basic works are unambiguously warned 

about [2, 11]. Every particle of the BPBH has a random life 

time, producing offspring, just before dying. These two 

conditions completely coincide with the cell-division and this 

is one of the reasons why the authors are turning to model 

through BPBH. 

The phytoplankton cells have the ability of forming 

dispersed aggregates in the water column, which constitute 

the main food available to the early larval stages of many fish 

species. At such stages, larvae are passive and can only eat 

the prey passing in very close vicinity. This is the reason for 

our assumption that the mortality (1 − �) is the same for all 

types. 

As a modelling tool we propose the BPBH. 

Impossibility for simultaneous birth and death of the 

particle together with producing offspring corresponds to the 

biological side. 

The moments are expressed. The matrix equation, 

corresponding to the system of sixteen integral equations was 

determined. 
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