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Abstract: Helmholtz equation is widely applied in the scientific and engineering problem. For the solution of the three-

dimensional Helmholtz equation, the computational efficiency of the algorithm is especially important. In this paper, in order 

to solve the contradiction between accuracy and efficiency, a fast high order finite difference method is proposed for solving 

the three-dimensional Helmholtz equation. First, a traditional fourth order method is constructed. Then, fast Fourier 

transformation are introduced to generate a block-tridiagonal structure which can easily divide the original problem into small 

and independent subsystems. For large 3D problems, the computation of traditional discrete Fourier transformation is less 

efficient, and the memory requirements increase rapidly. To fix this problem, the transformed coefficient matrix is constructed 

as a sparse structure. In light of the sparsity, the algorithm presented in this paper requires less memory space and 

computational cost. This sparse structure also leads to independent solving procedure of any plane in the domain. Therefore, 

parallel method can be used to solve the Helmholtz equation with large grid number. In the end, three numerical experiments 

are presented to verify the effectiveness of the fast fourth-order algorithm, and the acceleration effect to use the parallel method 

has been demonstrated. 
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1. Introduction 

In this paper, we consider the following Helmholtz 

equation 

∆���, �, �� 	 
����, �, �� � 
��, �, ��, in Ω, #        (1) 

with Dirichlet boundary condition 

���, �, �� � ����, �, ��, on �Ω, #                  (2) 

where 
 is the wave number. Helmholtz equation is widely 

applied to wave propagation and acoustic scattering problem, 

viscous and heat transfer problems and electromagnetic 

scattering problems. 

In recent years, there has been tremendous interest in 

developing algorithms for solving the Helmholtz equation. 

The precise numerical solution of Helmholtz equation is of 

great importance. Most algorithms were initially developed 

for the two-dimensional case, such as finite element method, 

finite difference method and other iterative methods [1-4]. 

However, the accuracy of the finite element method reduces 

rapidly with the increasement of the wave number. In 

addition, finite difference method is not competitive for 

solving the Helmholtz equation with large wave number if no 

fine mesh provided. Therefore, some high order finite 

difference method were proposed for solving the two-

dimensional Helmholtz equation in [5-10]. This method is 

prevalent since they can offer a high accuracy solutions with 

less computational cost. There have been applied for solving 

the three-dimensional Helmholtz equations. Braverman et al. 

proposed a fast spectral Helmholtz solver which incorporates 

the application of the FFT with a preliminary subtraction 

technique in [11]. Lu presented a fourth-order compact 

difference scheme based on the Laplace operator in [12]. A 

noniterative solver based on the domain decomposition was 

developed in [13] for solving the three-dimensional 
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Helmholtz equation. Sutmann combined different high order 

finite difference schemes and proposed a more efficient 

algorithm in [14, 15]. Furthermore, Gordon et al. extend the 

sixth-order finite difference method to high and variable 

wave number 
 with CARP-CG algorithm in [16, 17]. Due to 

the heavy computational cost the efficiency of the algorithm 

for solving three-dimensional Helmholtz equation is 

especially important. The Fourier method has many 

advantages for solving the Helmholtz equation. Together 

with the symmetry of the high-order finite difference 

operator, the Dirichlet problems can be solved easily with 

sine transformation. 

In this paper, our aim is to discretize the Helmholtz equation 

with fourth-order finite difference method and build a fast 

algorithm using the discrete Fourier-sine transformation. On 

the other hand, the traditional Fourier transformation in three 

dimensions needs considerable memory requirement especially 

for large wave number equations. In views of this problem, 

twice Fourier transformation are applied for the discrete 

Helmholtz equation. 

The paper is organized as follows. In Section 2, a fourth-

order finite difference method was proposed to discrete the 

three-dimensional Helmholtz equation. In Sections 3 and 4, a 

fast high algorithm is developed for solving the three-

dimensional Helmholtz equation. Section 5 describes the 

parallel implementation for the three-dimensional Helmholtz 

equation. Moreover, three numerical examples prove the 

validity and feasibility of the proposed method. The paper is 

concluded in Section 6. 

2. The Fourth-Order Finite Difference 

Method 

We consider a fourth-order finite difference method of (1), 

where Ω is the model domain and �Ω is the boundary of the 

domain. 
��, �, ��  is an given continuous function. In this 

paper, a cubic domain Ω � �0, �� � �0, �� � �0, ��  is 

considered as the solution field. Firstly, the uniform partition 

is define as ��� , �� , � !�,�,"�#$%,&$%,'$%
 in Ω . Without loss of 

generality, we consider the case of ( � ∆� � ∆� � ∆� since 

it can be extended to the general situation. For any point ��� , �� , � � in Ω the standard second order central difference 

operator can be written as 

)*���,�, � ��$%,�, + 2��,�, 	 ��-%,�, (� ,
).���,�, � ��,�$%, + 2��,�, 	 ��,�-%, (� ,
)/���,�, � ��,�, $% + 2��,�, 	 ��,�, -%(� ,

 

where ��,�, , 0 � 1, 2, … , 3, 4 � 1, 2, … , 5, 6 � 1, 2, … , 7  refers 

to the fourth-order finite difference solution of the three-

dimensional Helmholtz equation. refers to the fourth-order 

finite difference solution of the three-dimensional Helmholtz 

equation. 

The fourth-order finite difference form can be obtained in 

the interior of Ω. 

81 	 9:;:
%� < =)*� 	 ).� 	 )/�>��,�, 	 ;:

? =)*�).� 	 )*�)/� 	 ).�)/�>��,�, 	 
���,�, 
� 
 	 ;:

%� =)*�).� 	 )*�)/� 	 ).�)/�>
�,�, 	 @�(A�. #                       (3) 

Figure 1 depicts the contributions to the 19-points stencil in an given axes, where C% � 1 	 9:;:
%� , C� � ;:

? . 

 

Figure 1. The 19 points stencil of fourth-order finite difference method for 3D Helmholtz equation. 
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Moreover, (3) can be written in the matrix form 

81 	 9:;:
%� < �D# E F& E  F' 	 F# E  D& E  F' 	 F# E  F& E  D' �G

	 ;:
? �D# E  D& E F' 	 F# E  D& E  D' 	 D# E  F& E  D'�G 	 
�G 	 GH� I 	 ;:

%� �D# E F& E  F' 	 F# E  D& E  F' 	 F# E  F& E  D'�I 	 IH,
#                    (4) 

where 

D# � 1(� tridiag�1, +2,1�,  D& � 1(� tridiag�1, +2,1�,  D' � 1(� tridiag�1, +2,1�, 
G � =�%,%,%, O , �%,%,' , �%,�,%, O , �%,�,', O , �%,&,' , O , �#,&,'>P ,I � =
%,%,%, O , 
%,%,', 
%,�,%, O , 
%,�,', O , 
%,&,' , O , 
#,&,'>P ,  

and the symbol Q represents the Kronecker product. F# , F& , F' 

and F#&'  are identity matrices, and the subscripts denote their 

dimension. D#, D& and D'  are 3 � 3, 5 � 5  and 7 � 7 

tridiagonal matrices respectively. GH  and IH  contain 

boundary values subtracted from G and I. 

3. The Explanation of the Boundary 

Parts 

The boundary part GH consists 18 parts which are related to 

six surfaces and twelve edges of the domain, they 

are  RHSTU, RHVTSSTW, RH XYS , RHZ�[;S ,  RHYZT\S , RHV]^9 ,  _H S%, _H S�, _H S`,  _HSA, _H^%, _H^�, _H ^`, _H^A, _HV%, _HV�,_HV`, _HVA In this section, only the detailed discussion of RH XYS  and _HS% will be given, the other items can be deduced 

in similar way. 

For a point ��%, �� , � � in the domain, points on the left 

surface of the domain =��, �� , � >, =��, �� , � $%> , =��, �� , � -%>, =��, ��-%, � >, =��, ��$%, � > will generate the 

boundary part RH XYS  as shown in Figure 2. 

 

Figure 2. The corresponding points of RH XYS. 
RH XYS can be written as follows 

RH XYS � =C��#a E D& E F' 	 C��#a E F& E D'>G�,:,:	=C%�#a E F& E F'>G�,:,: #  (5) 

where �#a � %;: �1,0, … ,0�#P . 
Analogously, _H S%  is related to three points =��$%, �� , � >, =��-%, �� , � >, =�� , �� , � $%>. Therefore, we have 

_Hca � �C�F#Q�&%Q�'��G:,�,'$%. #               (6) 

where �&% � %;: �1,0, … ,0�&P , �'� � %;: �0,0, … ,1�'P. 

Moreover, the boundary part dI includes six parts. IH can 

be written as follows 

IH � IHSTU 	 IHVTSSTW 	 IH XYS 	 IHZ�[;S 	 IHefghc 	IHV]^9#                         (7) 

where 

IHSTU � C%�F# E F& E �'��I:,:,'$%,IHVTSSTW � C%�F# E F& E �'%�I:,:,�,IH XYS � C%��#% E F& E F'�I�,:,:,  

IHZ�[;S � C%��#� E F& E F'�I#$%,:,:,IHefghc � C%�F# E �&% E F'�I:,�,:,IHV]^9 � C%�F# E �&� E F'�I:,�,:
 

�'% � 1(� �1,0, … ,0�'P , �#� � 1(� �0,0, … ,1�#P ,
�&� � 1(� �0,0, … ,1�&P .  

4. The Fast Algorithm for 3D Helmholtz 

Equation 

For the tridiagonal Toeplitz matrix D# and D&, we have 

R#D#R# � Λ% � diag�j%, j�, … , j#�,R&D&R& � Λ� � diag�k%, k�, … , k&�,  

where  

�R#��,� � l �#$% 8sin ��n#$%< ,
j� � + A�#$%�:

] sin� �n��#$%� , 1 o 0, 4 o 3, ##           (8) 
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R#  and R&  are discrete Fourier-sine transformation 

matrices. R& and kS , p = 1,2, … , 5 can be defined similarly as 

(8). Multiplying R# ⊗ R& ⊗ F'  on both side of (4), the 

following formula can be obtained 

81 + 9:;:

%� < �Λ% ⊗ F& ⊗  F' + F# ⊗ Λ� ⊗  F' + F# ⊗  F& ⊗  D' �Gq

+ ;:

? �Λ% ⊗  Λ� ⊗ F' + F# ⊗  Λ� ⊗  D' +  Λ% ⊗  F& ⊗  D'�Gq + 
�Gq + GqH

= Ir + ;:

%� � Λ% ⊗ F& ⊗  F' + F# ⊗  Λ� ⊗  F' + F# ⊗  F& ⊗  D'�Ir + IrH,

#                           (9) 

where Gq = �R# ⊗ R& ⊗ F'�G, Ir = �R# ⊗ R& ⊗ F'�I, GqH = �R# ⊗ R& ⊗ F'�GH, IrH = �R# ⊗ R& ⊗ F'�IH. 

Multiplying R# ⊗ R& ⊗ F'  on each part of GqH, there follows 

RsHSTU = �C��Λ% ⊗ F& ⊗ �'�� + C��F# ⊗ Λ� ⊗ �'�� + C%�F# ⊗ F& ⊗ �'���Gq:,:,'$%, 

RsHVTSSTW = �C��Λ% ⊗ F& ⊗ �'%� + C��F# ⊗ Λ� ⊗ �'%� + C%�F# ⊗ F& ⊗ �'%��Gq:,:,�, 

RsHYZT\S = �C��Λ% ⊗ R& ⊗ F'� + C��F# ⊗ R& ⊗ D'� + C%�F# ⊗ R& ⊗ F'��Gq:,�,:, 

RsHV]^9 = �C��Λ% ⊗ R& ⊗ F'� + C��F# ⊗ R& ⊗ D'� + C%�F# ⊗ R& ⊗ F'��Gq:,&$%,:, 

RsH XYS = C��R# ⊗ t� ⊗ F'�Gq�,:,: + C��R# ⊗ F& ⊗ F'�Gqq�,:,: + C%�R# ⊗ F& ⊗ F'�Gq�,:,: 

RsHZ�[;S = C��R# ⊗ t� ⊗ F'�Gq#,:,: + C��R# ⊗ F& ⊗ F'�Gqq#,:,: + C%�R# ⊗ F& ⊗ F'�Gq#,:,:, 

_rH % = C��R# ⊗ R& ⊗ F'� Gq�,�,:, _rH � = C��R# ⊗ R& ⊗ F'� Gq#$%,�,:, 

_rH ` = C��R# ⊗ R& ⊗ F'� Gq#$%,&$%,:, _rH A = C��R# ⊗ R& ⊗ F'� Gq�,&$%,:, 

_rHS% = C��F# ⊗ R& ⊗ �'�� Gq:,�,'$%, _rHS� = C��F# ⊗ R& ⊗ �'%� Gq#$%,�,'$%, 

_rHS` = C��R# ⊗ F& ⊗ �'�� Gq:,&$%,'$%, _rHS` = C��R# ⊗ F& ⊗ �'�� Gq:,�,'$%, 

_rHu% = C��R# ⊗ F& ⊗ �'%� Gq:,�,�, _rHu� = C��R# ⊗ F& ⊗ �'%� Gq#$%,:,�, 

_rH^` = C��F# ⊗ R& ⊗ �'%� Gq:,�&$%,�, _rH^A = C��F# ⊗ R& ⊗ �'%� Gq�,:,�, 

where 

Gq�,:,: = ��#% ⊗ R& ⊗ F'�G�,:,:, Gqq�,:,: = ��#% ⊗ R& ⊗ D'�G�,:,:,
Gq#,:,: = ��#� ⊗ R& ⊗ F'�G#,:,:, Gqq#,:,: = ��#� ⊗ R& ⊗ D'�G#,:,:.

 

Multiplying �R# ⊗ R& ⊗ F&� on Equation (6), there holds 

IrHSTU = C%�F# ⊗ F& ⊗ �'��Ir:,:,'$%, IrHVTSSTW = C%�F# ⊗ F& ⊗ �'%�Ir:,:,�,
IrH XYS = C%��#% ⊗ F& ⊗ F'�Ir�,:,:, IrHZ�[;S = C%��#� ⊗ F& ⊗ F'�Ir#$%,:,:,
IrHYZT\S = C%�F# ⊗ �&% ⊗ F'�Ir:,�,:, IrHV]^9 = C%�F# ⊗ �&� ⊗ F'�Ir:,�,:,

 

Equation �9�  is transformed into block-tridiagonal system, therefore, we can transform the original problem into the 

following equations 

w81 + 9:;:

%� < =j�F' + k�F' + D'> + ;:

? =j�k�F' + k�D' + j�D'> + 
�F'x Gq�,�,: + GqH�,�,:
= Ir�,�,: + IrH�,�,:, 0 = 1,2, … , 3; 4 = 1,2, … , 5.

#                        (10) 

5. Numerical Experiments 

5.1. Preparation for the Numerical Experiments 

In this section, the algorithm is applied for three numerical 

experiments. And the performance of the algorithm is 

described using MATLAB on an eight processor computer. 

One error measurement is used to weigh the difference 

between ��,�,9
∗  and ��,�,9, where ��,�,9

∗  denotes the real solution 

of the three-dimensional Helmholtz equation. 

Define the error measurement as follows 
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{||}| � ~ �`357 � ���,�,9z + ��,�,9��#,&,'
�,�, "% �

%�
 

For different kinds of meshes, the convergence order can 

be written as 

}|�{| � 6}�� {||}|���{||}|�� 	 1�. 

5.2. Parallel Implementation 

After deriving Gq  by (10), the solution G  of the three-

dimensional Helmholtz equation is calculated by G ��R# E R& E F'� Gq. Due to the special form of the coefficient 

matrix, the computational procedure is independent for each � , 6 � 0,1, … , 7 . Therefore, the fast algorithm proposed in 

Section 3 is well adapted for the parallel computation. The 

implementation under � processors is shown in Figure 3. 

 

Figure 3. Partition of the three-dimensional mesh among � processors. 

Example 1. Consider the problem 

���, �, �� � ����n.� ����n/����=√�n>· w2 sinh=√2��> 	 sinh 8√2��1 + ��<x ,#  (11) 

with Dirichlet boundary conditions, where Ω � �0,1� ��0,1� � �0,1� is a unit cubic. 

� ���, �, �� � sin���� sin����, � � 0 , ���, �, �� � 2 sin���� sin���� , � � 1, 0, �, � � �0,1�,  

The numerical results for solving Gq and G are displayed in 

Table 1. Here CPU�q  and CPU�  denotes the computational 

time (s) for solving Gq and G respectively. After deriving Gq, 

we need to multiply R# E R& E F'  on the left side of Gq to 

compute the numerical solution of the Helmholtz equation. 

As we can see from Table 1, CPU�q time is notably less than CPU�  time especially for large gird points. Moreover, the 

comparison of the computational time of three times Fourier 

transformation and twice Fourier transformation are given in 

Table 1. Here R# E R& E R'  and R# E R& E F'  represent 

two different transform operators. 

Table 1. CPU time (s) and error for solving Gq and G. 

�  
�� E �� E ��  �� E �� E ��  ����q  time (s) ���� time (s) ����q  time (s) ���� time (s) 8  0.0381 0.0449 0.0499 0.2240 16  0.0634 0.8158 0.1947 0.2717 32  0.4535 28.6402 0.7144 0.4436 64  1.5009 1052.0414 3.2476 3.1560 128  9.0472 46725.2783 14.0811 60.283293 

 
If the practical problem only needs some of the solutions 

of the Helmholtz equation, the algorithm can provide more 

precious numerical solutions on one of the surfaces. The 

numerical solution on the face � � %�  with 1024 � 1024 �1024 meshes are presented in Figure 4. Color depicts the 

value of numerical solution. 
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Figure 4. The numerical solution on the face � � %� with 3 � 1024. 

Example 2. Consider the problem 

∆� 	 
�� � 
, 
 � 5, in Ω, 
with boundary conditions corresponding to the exact solution 

� � sin���� sin���� sin���� . #               (12) 

Figure 5 illustrates the numerical solution of (12) with 512 � 512 � 512 meshes. 

 

Figure 5. The numerical solution of Equation (12) with 3 � 512. 

The behavior of the parallel implementation was examined 

in Example 2. The results are displayed in Table 2. The 

results again verify the efficiency of the parallel processor. 

Moreover, we test the convergence order of the proposed fast 

high algorithm. The last column of Table 2 demonstrates the 

fourth-order convergence of the proposed algorithm. The line 

in Figure 6 is fitted by log �error� and log �3� and its slope is 

4.0545. 

 

Figure 6. log-log picture of 6}� �{||}|� and 6}� �3� and the slope of the fitted line is 4.0545. 
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Table 2. CPU time (s) and error for solving Gq and G. 

�  ����q  time (s) 
���� time (s) 

error order 
1 core 8 cores 8  0.0313 0.0162 0.2392 1.0145e-04  16  0.1008 0.1902 0.3019 5.6505e-06 4.1662 32  0.6519 3.2303 0.4358 3.3522e-07 4.0752 64  2.8458 56.5750 3.1811 2.0439e-08 4.0357 128  12.4757 1020.6792 50.2228 1.2621e-09 4.0174 256  56.7871 12472.1685 909.4857 7.8732e-11 4.0027 

 

Example 3. Consider the problem 

∆� 	 
�� � 0, in Ω, 
with boundary conditions corresponding to the exact solution 

���, �, �� � cos�2�� cos=√1 	 
��> ���¦ √§/ ���¦ √§n . #        (13) 

The figures of the numerical solutions G  with different 

wave number in Figure 7 and Figure 8. As shown in Figures 

7-8, the solutions of the Helmholtz equation is highly 

oscillating for large wave number. 

 

Figure 7. Numerical solutions on the face � � %�  with 3 � 512  when 
 � 8�. 

 

Figure 8. Numerical solutions on the face � � %�  with 3 � 1024  when 
 � 16�. 

6. Conclusion 

In this paper, we proposed an fourth-order fast algorithm for 

solving the three-dimensional Helmholtz equation. By 

multiplying the Fourier transform operator, the large system 

becomes some small independent systems. Moreover, in view 

of the special format of the coefficient matrix, we utilize the 

parallel processors to solve the equation. This implementation 

is especially efficient for solving the numerical solutions on 

one of the surfaces. Three numerical experiments have 

demonstrated the validity of the fourth-order fast algorithm. 
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