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Abstract: In 1974, J. Morlet raised the concept of wavelet transform and established the inversion formula through the 

experience of physical intuition and signal processing. In 1986, Y. Meryer created a real small wave base, and the wavelet 

analysis began to flourish after a multi scale analysis of the same method of constructing the small wave base with S. Mallat. In 

order to analyze and deal with non-stationary signals, a series of new signal analysis theories are proposed.: Short Time Fourier 

Transform, time-frequency analysis, wavelet transform, and fractional Fourier transform and so on. In this paper, an explicit 

algorithm is given to construct the minimum-energy frames based on frame multiresolution analysis via characteristic vectors of 

the mask matrix. In section 2, we show the structure of minimum-energy wavelet frames in terms of their masks (Lemma 1) and 

discuss that we should eliminate the correlation of the rows of the mask matrix by the polyphase decomposition technique. Based 

on FMRA, an explicit algorithm is given to construct this frames. By this method, all the minimum-energy wavelet frames can be 

obtained. As an application, several examples are showed to explain this method in section 3. This method can also be applied in 

other fields of wavelet analysis. 

Keywords: Frame Multiresolution Analysis, Polyphase Decomposition, Minimum-Energy Frames 

 

1. Introduction 

In 1974, an French engineer, J. Morlet, raised the concept of 

wavelet transform and established the inversion formula 

through the experience of physical intuition and signal 

processing. In 1986, Y. Meryer, created a real small wave base, 

and the wavelet analysis began to flourish after a multi scale 

analysis of the same method of constructing the small wave 

base with S. Mallat. In order to analyze and deal with 

non-stationary signals, a series of new signal analysis theories 

are proposed and developed: Short Time Fourier Transform, 

time-frequency analysis, wavelet transform, and fractional 

Fourier transform and so on. 

This paper deals with the study of compactly supported 

minimum-energy wavelet frames corresponding to a single 

refinable function with compact support. It is well known that 

the multiresolution analysis (MRA for short) is a systematic 

method to construct orthonormal wavelet bases for )R(L

p [1-8]. 

MRA requires that the refinement mask ( )ωH  should satisfy 

( ) ( ) 1
22

=π+ω+ω HH  [9, p132]. However, there exist many 

refinable functions whose mask ( )ωH  possesses 

( ) ( ) 1.
22

≤π+ω+ω HH So we want to know whether these 

refinable functions can generate tight wavelet frames, 

especially minimum-energy wavelet frames. In 1998, J. J. 

Benedetto and S. Li [10] introduced the theory of frame 

multiresolution analysis (FMRA for short). FMRA is an 

extension of the concept of MRA. Based on FMRA, we can 

construct tight wavelet frames associated with a given 

refinable function. 

Definition 1 (FMRA) A FMRA associated with a dilation 

factor 2≥∈ M,RM  is a sequence of close subspaces of )R(L

2

satisfying the following conditions: 

1. { } { } ;Zj,VV
jj

∈⊂ +1
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3. ( ) jf x V∈  if and only if 1( ) ;jf Mx V +∈  

4. There exists a function 0V)x( ∈ϕ  such that 

{ }Zn：)nx( ∈−ϕ
 

forms a frame in .V0  

The function )x(ϕ  is called a frame refinable function for 

the FMRA. It is emphasized that the shifts of )x(ϕ  form a 

frame, not necessarily an orthonormal or a Riesz base of 0V  
as MRA. In this paper, we fix M=2. In this case, Charles K. 

Chui and Wenjie He [11] discussed and constructed 

minimum-energy frames by the unitary matrix extension [see 

12]. When M=3, Cui Lihong, Cheng Zhengxing and Yang 

Shouzhi gave a sufficient and necessary condition to the tight 

wavelet frames in [13]. Motivated by the work of [11] and [13], 

we construct the minimum-energy wavelet frames via 

characteristic vectors of the mask matrix. 

Definition 2 (Minimum-energy wavelet frames [11]) Let 

)R(L)x(

2∈ϕ with ,Lˆ

∞∈ϕ ϕ̂  continuous at 0, and 

10 =ϕ )(̂

 
be a scaling function that generates a FMRA. Then 

a finite family of functions 1
21 },,{ V

N ⊂ψψψ=ψ ⋯ is 

called a minimum-energy wavelet frame associated with 

)x(ϕ , if 

,,f,f,f

N

i Zk

i

k,

Zk

k,

Zk

k,

2

1

0

2

0

2

1 ∑∑∑∑
= ∈∈∈

ψ+ϕ=ϕ  

All ).R(Lf

2∈  

The minimum-energy wavelet frame ψ  is necessarily a 

tight wavelet frame in )R(L

2  with frame bound equals to 1. 

One of the advantage of this frame is that it can avoid the 

complication of the change of bases using the same wavelets 

as the orthonormal bases [see 11]. In this paper, an explicit 

algorithm is given to construct this frames. The paper is 

organized as follows. In section 2, we show the structure of 

minimum-energy wavelet frames in terms of their masks 

(Lemma 1) and discuss that we should eliminate the 

correlation of the rows of the mask matrix by the polyphase 

decomposition technique. The explicit algorithm is also given 

in section 2. The last section is devoted to some examples 

obtained by this algorithm. 

2. Preliminaries and Main Results 

2.1. Preliminaries 

Let { }
Zj

j

V ∈  generates an FMRA in )R(L

2  and 

.V

N

1
21 },,{ ⊂ψψψ=ψ ⋯  

Since { },Zn:)nx(SpanVV ∈−ϕ=⊂ 210  

we have N+1 sequences { } 2
ℓ∈∈Znn

h  and 

{ } 2

21

ℓ
⋯

∈
=

∈
N,.,l

Zn

l

n

g

 

such that 









−ϕ=ψ

−ϕ=ϕ

∑

∑

∈

∈

Zn

l

n

l

Zn
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2
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            (1) 

here and throughout, .N,,,l ⋯21=  

In this paper, the Fourier transform of an integrable function 

)x(f  is defined as 
.xe)x(f)(f

ˆ

R

xi d∫
ω−=ω Taking Fourier 

transform at both sides of (1) leads to 








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∑

∑
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Set ∑
∈

ω−=ω
Zn

ni

n

eh)(H

2

1  

And 
,eg)(G

ni

Zn

l

n

l ω−

∈
∑=ω

2

1  then (2) is equivalent to 


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






ωϕω=ωψ

ωϕω=ωϕ

)(̂)(G)(ˆ
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The π2 -periodic functions )(H ω  and )(G

l ω are called the 

refinement and the wavelet masks respectively. With )(H ω  

and )(G

l ω , a )N( 12 +×  matrix can be formulated as 












π+ωπ+ωπ+ω
ωωω=

ω

)(G)(G)(H

)(G)(G)(H

)(M

N

N

⋯

⋯
1

1      (4) 

Charles K. Chui and Wenjie [11] gave the structure of the 

minimum-energy wavelet frame as follows. 

Lemma 1 Let )R(L)x(

2∈ϕ  with ,Lˆ

∞∈ϕ
 

ϕ̂  continuous 

at 0, and be a refinable function that generates a FMRA in the 

sense of Definition 1. And Let )(H ω
 
and )(G

l ω
 
be the 

masks concerning with ϕ  and { }.,,,

Nψψψ=ψ ⋯
21 . Then 

ψ  is a minimum-energy wavelet frame if and only if 

ω=ωω ∗
.e.a,I)(M)(M 2

           (5) 

here )(M ω∗  represents the complex conjugate of the transpose 

of )(M ω .  

It should be emphasized that Charles K. Chui and Wenjie 

[11] have pointed out that the refinable function )x(ϕ  

generates a FMRA tight wavelet frame if and only if the 

refinable mask )(H ω  satisfy ( ) ( ) 1.
22

≤π+ω+ω HH  From 

Lemma 1, the construction of wavelet frame can be reduced to 
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the problem of extending a vector matrix ∗π+ωω ))(H),(H(
 

to a unitary matrix as (4). That is, we need to seek N functions 

)(G,),(G),(G

N ωωω ⋯
21  such that (5) is satisfied. Note the 

rows of (4) are correlative, so we should remove this feature 

by using the polyphase decomposition technique [see 13, p106, 

also see 9, p318] first. Similarly to [13] and for completeness, 

this technique is introduced briefly. )(H ω  and 
)(G

l ω  can be 

written in their polyphase forms respectively as 













ω+ω=ω

ω+ω=ω

ω−

ω−

))(Ge)(G()(G
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i
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2
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       (6) 

Write 












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π+ωπ+ωπ+ω
ωωω=

ω

)(G)(G)(H

)(G)(G)(H

)(N

N

N

212
2

111
1

⋯

⋯    (7) 

Since )(H),(H ωω 21  and )(G),(G

ll ωω 21
 are π -periodic 

functions, we have 

)(N

e

e

)(M

i

i

ω










−
=ω

ω−

ω−

1

1

2

1
          (8) 

Then (5) means 

ω=ωω ∗
.e.a,I)(N)(N 2

            (9) 

Remark 1 The matrix )(N ω  is the polyphase decomposition 

of )(M ω  and (9) and (5) look very alike. We can extensive 

)(N ω  to an unitary matrix to obtain a minimum-energy 

wavelet frame. The difference of (9) and (5) is that the rows of 

)(N ω  are not correlative. In some applications, we hope the 

refinable functions and frames have some special properties 

such as symmetric or anti-symmetric. Since this algorithm 

needs annihilate the correlative of )(M ω  and the polyphase 

decompositions do not keep the symmetric or anti-symmetric 

feature, we should return to (4) and (5) to obtain a symmetric 

or anti-symmetric frame. Charles K. Chui and Wenjie [11] 

gave an ingenious constructive method. 

2.2. Main Results 

In this subsection, we prove that if the refinement mask 

)(H ω
 
satisfies ( ) ( ) 1.

22
≤π+ω+ω HH  Then there exists an 

explicit algorithm to construct a minimum-energy wavelet 

frame. This method is motivated by Cui Lihong, Cheng 

Zhengxing and Yang Shouzhi [12]. 

Since ( ) ( ) ,
222

2

2

1 )(H)(HHH π+ω+ω=ω+ω  we have 

( ) ( ) .1
2

2

2

1 ≤ω+ω HH  Set 



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

ωωω
ωωω=ω
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)(G

N

N
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then (9) is reformulated as 

( ) 221

2

1
I)(G)(G)(H,)(H

)(H

)(H

=ωω+ωω

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or equivalently, 

( )
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2
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1

21

2

1
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1

1

)(H)(H)(H

)(H)(H)(H

)(H,)(H

)(H

)(H

I)(G)(G

       (12) 

By simple calculation, the characteristic roots of 

)(G)(G ωω ∗  are 

,)(H)(H,

2

2

2

121 11 ω−ω−=λ=λ       (13) 

and the corresponding unit characteristic vectors are 

( )
( )

,

)(H),(H

)(H,)(H

T

T







∆ωω=β
∆ωω−=α

21

12            (14) 

.)(H)(H

2

2

2

1
2 ω+ω=∆             (15) 

Since ( ) ( ) ,1
2

2

2

1 ≤ω+ω HH

 
by Riesz Lemma [9, Lemma 

6.1.3], there exists a polynomial )(H ω3  such that 

.)(H)(H|)(H|

2

2

2

1
2

3 1 ω−ω−=ω         (16) 

Note )(G)(G ωω ∗
 
is a complex symmetrical matrix, 

)(G)(G ωω ∗
 
can be written as 

,))(g

|)(H|

),))(((g)

|)(H|

)(,((

),(

|)(H|

),(

),(
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∗
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λ
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here and throughout, )(g ω
 
is a N×2  matrix and satisfies 

.I)(g)(g 2=ω⋅ω ∗
 
Therefore (17) means that 

).(g

)(H

),()(G ω








ω
βα=ω

30

01
          (18) 

All the above leads to the following Theorem 1. 
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Theorem 1 Let )R(L)x(

2∈ϕ  with ,Lˆ

∞∈ϕ  ϕ̂  

continuous at 0, and ,)(̂ 10 =ϕ  be a refinable function that 

generates a FMRA whose mask )(H ω  satisfies 

ω≤π+ω+ω .e.a,|)(H||)(H| 122        (19) 

and let )(H ω1  and )(H ω2  be the polyphase components of 

)(H ω  respectively. Then there exists a minimum-energy 

wavelet frame { } 1
21

V,,,

N ⊂ψψψ=ψ ⋯  associated with 

)x(ϕ . Furthermore, all the minimum-energy wavelet frames 

can be written in the sense of their masks as 

),(g

)(H)(H)(H

)(H)(H

)(G ω








ω
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





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ωω
ωω−

∆
=ω

321

12

0

011
   (20) 

where 
2

2

2

1
2

)(H)(H ω+ω=∆  and )(H ω3  satisfies 

1.
2

3

2

2

2

1 =ω+ω+ω )(H)(H)(H         (21) 

Remark 2 If the refinable function )x(ϕ  generates an 

orthonormal wavelet base in )R(L

2 , then the FMRA is a 

standard MRA and the refinement mask )(H ω  satisfies  

1.
2

2

2

1 =ω+ω )(H)(H

 
In this case, .)(H 03 =ω . Since 

an orthonormal wavelet base also is a minimum-energy 

wavelet frame, Theorem 1 includes this case in which the 

corresponding orthonormal wavelet base is 

.))(H,)(H(

T ∆ωω− 12  
Examples 1 explains this case. 

Remark 3 By Theorem 1, if we choose a different ),(g ω  

we can find all the compact support minimum-energy frames 

consists of N wavelet N

,,, ψψψ ⋯
21

 
associated with a given 

compactly support refinable function )x(ϕ . When N=2, the 

minimum-energy wavelet frame { }21 ψψ=ψ ,  is obtained as 

[9]. 

3. Examples 

In this section, several examples associated with the 

cardinal B-splines are given. It is well known that in the 

development of wavelet analysis, cardinal B-splines serve as a 

canonical example of scaling functions that generate MRA in 

)R(L

2 . The m order cardinal B-splines 2≥m),x(N
m

 is 

defined inducting by 

dx)xt(NN
mm

−= ∫ −
1

0
1                (22) 

with )x(N1  denoting the characteristic function of the unit 

interval [0, 1] (see [14, p188]). The mask of )x(N
m

 is 

.

e

)(H

m

i

m













 +=ω
ω−

2

1
             (23) 

And we can see that )(H

m ω  satisfies  

.|)(H||)(H|

|)(H||)(H|

mm

12121

22

=π+ω+ω≤

π+ω+ω
        (24) 

Example 1 (Haar wavelet) This is the special case when 

m=1 and known as the Haar wavelet. The Haar function is 

)x(N1  and the refinement mask 
2

11
ω−+=ω
i

e

)(H  satisfies 

.|)(H||)(H| 12121 =π+ω+ω
 
It is easy to find the 

minimum-energy wavelet frame mask is 

).(g)(G ω
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Example 2 (Linear B-splines) When m=2,  
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e

)(H

ii

i

ω−ω−
ω−

++=












 +=ω 2

2
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4
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The polyphase decompositions are obtained as follows 

ω−+=ω i

e)(H
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1
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2

4

2
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And 

.)(H

2

22

2 =ω               (28) 

there exists )e()(H

iω−−=ω 22

3 1
4

2
 such that 

1.
2

3

2

2

2

1 =ω+ω+ω )(H)(H)(H

 
By Theorem 1, all the 

minimum-energy wavelet frame masks associated with )x(N2  

are 

),(g

)(H)(H)(H
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Here 

).ee(

ii ωω− ++=∆ 226
8

1
             (30) 

In this case, if we choose )(g ω
 
as 
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,

)e()e(

)e()e(

)(g
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ii
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It is easy to find a minimum-energy frame in terms of masks 

,ee)(Q

ii ω−ω −+−=ω 22
1

4

1

2

1

4

1
         (32) 

and 

.e)(Q

iω−−=ω 2
2

4

2

4

2
           (33) 

Furthermore, it is easy to see the corresponding wavelet 

function )x(

1ψ  is symmetric and )x(

2ψ  is anti-symmetric. 

This result was also given in [11]. 

Example 3 (Quadratic B-splines) When m=3,  

).eee()(H

iii ω−ω−ω− +++=ω 323 331
8

1
   (34) 

Similarly to Example 2, we obtain 

),e()(H

iω−+=ω 23

1 31
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2
          (35) 

),e()(H

iω−+=ω 23

2 3
8

2
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and 

).e()(H

iω−−=ω 23
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4

3
           (37) 

So all the corresponding minimum-energy wavelet tight 

frame masks are 

),(g

)(H
)(H)(H

)(H)(H
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



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here 
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Now we choose 

,
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)(g
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then an anti-symmetric minimum-energy frame is obtained as 

)e()(Q

iω−−−=ω 1
4

3
1

             (41) 

and 

).eee()(Q

iii ω−ω−ω− −−+=ω 32
2 331

8

1
     (42) 

4. Conclusion 

This paper deals with the study of compactly supported 

minimum-energy wavelet frames corresponding to a single 

refinable function with compact support. In section 2, we 

show the structure of minimum-energy wavelet frames in 

terms of their masks (Lemma 1) and discuss that we should 

eliminate the correlation of the rows of the mask matrix by the 

polyphase decomposition technique. Based on FMRA, an 

explicit algorithm is given to construct this frames. In section 

3, some examples is given by this algorithm. This method can 

also be applied in other fields of wavelet analysis. 
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