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Abstract: Isoperimetric, Milman reverse, Hilbert, Widder, Fan-Taussky-Todd, Landau, and Fortuin–Kasteleyn–Ginibre 
(FKG) inequalities in n dimensions in investigations of multidimensional estimators support the use of James-Stein estimator 
against classical least squares as applied to Cumulant Analysis, Associate Random Variables, and Time Series Analysis.  
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1. Introduction 

“quoting Virgil: 
At last they landed, where from far your eyes 
May view the turrets of new Carthage rise; 
There bought a space of ground, which Byrsa call’d, 
From the bull’s hide they first inclos’d, and wall’d. 
(Aeneid, Dryden’s translation) 
This refers to the legend of Dido. Virgil’s version has it 

that Dido, daughter of the king of Tyre, fled her home after 
her brother had killed her husband. Then she ended up on the 
north coast of Africa, where she bargained to buy as much 
land as she could enclose with an oxhide. So she cut the hide 
into thin strips, and then she faced, and presumably solved, 
the problem of enclosing the largest possible area within a 
given perimeter—the isoperimetric problem. But earthly 
factors mar the purity of the problem, for surely the clever 
Dido would have chosen an area by the coast so as to exploit 
the shore as part of the perimeter. This is essential for the 
mathematics as well as for the progress of the story. Virgil 
tells us that Aeneas, on his quest to found Rome, is 
shipwrecked and blown ashore at Carthage. Dido falls in love 
with him, but he does not return her love. He sails away and 
Dido kills herself. Kline concludes [23, p. 135]: 

“And so an ungrateful and unreceptive man with a rigid 
mind caused the loss of a potential mathematician. This was 
the first blow to mathematics which the Romans dealt.” [33] 

From this last quote of Kline we can think or even 
deduce without rigorous proof that Dido possibly suspected 
some mistake or maybe something mysteriously unsolved 
in the problem, which she could blame for her unsuccessful 
love.  

The subject of multidimensional projections that is 
equivalent to reduction of dimensions has a long history 
and there are several difficulties of approaching it. The 
development of multidimensional mathematical and 
statistical apparatus should not be ignored, when 
considering reduction in number of dimensions in 
simplifying mathematical or statistical problem. The very 
good example are James-Stein estimators that depend on 
the number of dimensions and in dimensions more than 2 is 
deferent from the classical least squares estimator that 
almost uniformly reduces every problem to 2-dimensional 
(2D) consideration. 

2. Inequalities as the Method of Study 

the Above Mentioned Problem 

This article offers as a method of the direct approach to 
the above mentioned problem consideration of 
Geometrical, Algebraic, Functional and Correlation 
Inequalities in 2 and more dimensions and various 
approaches for their proofs. 
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2.1. Isoperimetric Inequalities 

The Isoperimetric inequality for convex body K in Rn, Bn 
n-dimensional ball of unit radius and S a surface area of a 
compact set in Rn: 

� ���(�)���(�	)

�/
 ≤	� �(�)�(�	)


�/
��
                     (1) 

Where Volume and Surface area of the ball of radius r in 
Rn is  

Vol (Bn (r)) =
�	/��	
�(	���)

 and S (Bn(r)) = 
��	/��	��

�(	�)
        (2) 

The solution of problem is traced back to Pythagoras 
(2600 - 2500 years ago), who first approached the problem, 
and then to Aristotle’s (200 years later) knowledge of the 
maximum principle of the circle. Zenodorus (200–140 B. C.) 
(though his monograph was lost) was the first to write the 
proof that the maximal area with fixed perimeter in the plane 
would be a circle. Euler some 273 years ago wrote solution, 
which is considered necessary, but not sufficient, using 
method, which is called today Lagrange multipliers.  

For example, the well-known Volterra function and Cantor 
ternary function defined on the interval [0; 1] are known to 
be continuous and rectifiable, but the arc length integral does 
not exist either as a proper or improper Riemann integral. It 
uses a Theorem if y and �	belong to the Euler class, then so 
do the variations y+t 	�[3]. Gergonne some 200 years ago 
used symmetry argument that was later used by Steiner. The 
first formal proof for the planar case is attributed to Steiner 
(170 years ago) who gave five different proofs [33-37]. 

It can easily be derived from Brunn-Minkowski inequality, 
which however, has its inverse inequality found by Milman 
[48, 49] 

For non rigorous consideration the proof for plane case 
that A ≤	L2/4� consists from few steps, where A denotes the 
area, and L the length of the curve. 

1. Lemma. The figure solving the isoperimetric problem is 
convex. The proof uses contradiction argument.  

2. Consideration of the n-polygons that consist from 
triangles.  

3. Theorem. Only isosceles triangles should be considered 
4. Rescaling for inscribing the cycle into the n-polygon. 
5. According to [33] maximization of the area of two 

isosceles triangles with given bases and the base angles α, β 

and the bases a, b: sin α: sin β = a: b can lead to 

counterexample to Zenodorus lemma the isosceles triangle 
has the greatest area, and if the 2 isosceles triangles are not 
similar the similar isosceles triangles with the same bases and 
with the same sum of perimeters have the greatest area. 

That was shown geometrically by Steiner, who says it had 
already been shown by Lhuilier using differential calculus.  

6. In contrast to the earlier arguments by symmetry 
Steiner’s argument is based on mean curve that is equally 
distanced from 2 original curves. 

7. Another approach considers maximizing the area for 
curves t→ (x (t), y (t)) (that look like the method of proof of 

Han-Banach Theorem)  

� (x, x’, y, y’, t) dt = 1/2 �(!"# − !′")dt       (3) 

With perimeter 

� &(x, x’, y, y’, t) dt =�'!′� + "′�dt                 (4) 

using Lagrange multipliers and solving Eulers equations. 
8. Another approach for n-polygons the problem becames 

to maximize  

A = 1/2∑ !*"*�� − "*!*��
��*+�                    (5) 

with fixed perimeter 

L = ∑ ,(!* − !*��)� + ("* + "*��)�
��*+�               (6) 

9. A year after Charles Hermite death Hurwitz [1] 
published Fourier series proof  

f (t) = 1/2a0 + ∑ -

+� cos (nt) + bn sin (nt)            (7) 

With application of Parseval’s theorem 

�
� � .(!)/(!)0!��

1  =a0b0/2 + ∑ -
2

+�  + cndn      (8) 

The problem with the above parameterization t→ (x (t), y (t)) 
becomes 

x’2 + y’2 = (L/2�)2                              (9)  

with x, x’, y, and y’ as below 

x (t) =1/2a0 + ∑ -

+� cos (nt) + bn sin (nt)           (10) 

y (t) = 1/2c0 + ∑ 3

+� cos (nt) + dn sin (nt)           (11) 

x’(t) = ∑ 2

+� cos (nt) - an sin (nt)                 (12) 

y’(t) = ∑ 0

+� cos (nt) - cn sin (nt)               (13) 

After expansion for 

L2 - 4�                                  (14) 

term for n=1 becomes a1 = d1 and b1= - c1 with terms for 
n > 1 vanishing an = dn = bn= cn= 0 and the equations become 
equations for circle. 

10. After 20 years Carleman published proof based on 
power series theorem 

L = � |5#(6)|��
1 	07 and A= � � 8�1��

1 |5#(6)|�08	07    (15) 

Consider	analytic	function	in	unit	disk  	I 2= 5#I  (z) = 
∑ -
6

+1  

Let bn = ana0 + an-1a1 + ….+ a0an, and (∑ -
6

+1 ) 
(∑ -
6

+1 ) = ∑ 2
6

+1  

Then L = 2�∑ |-
|�
+1  with  

A = � � |2
|��
1

��
1 8�
��0807 = �∑ |2
|�
+1 /n+1 

And the isoperimetric inequality becomes 

∑ |2
|�
+1 /n+1 ≤ (∑ |-
|�
+1 ) (∑ |-
|�
+1 )         (16) 
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It was mentioned before that Isoperimetric inequality can be 
derived from Brunn–Minkowski inequality that was proposed 
by Hermann Brunn 10 years before Minkowski and states: 

[J(A + B)] 1/n≥ [J(A)] 1/n + [J(B)] 1/n,             (17) 

where J denotes n-dimensional Lebesgue measure and  
the + on the left-hand side denotes Minkowski addition. 

99 years passed before V. Milman established reverse form 

Vol (s	5K + t IL)1/n ≤ C (s Vol (5K)1/n + t Vol (IL)1/n)  (18) 

where φ and ψ are volume-preserving linear maps from Rn to 
itself for any real numbers s, t > 0. 

2.2. Sampling and Functional Inequalities Related to 

Probability and Stochastic Inequalities 

Some of the most interesting extensions would be 
inequalities of Cauchy and Hilbert. Hilbert some 110 years 
ago, though did not use Cauchy’s inequality, but rather some 
complicated methods to prove that 

∑∑ LMN	
O�
 	≤ (∑ -O� )� �P (∑ 2O� )� �P ,                 (19) 

with C= 2�, where the summations run from 1 to +∞, which 
was later reduced by I. Schur to C= �. 

This inequality inspired very famous mathematicians G. H. 
Hardy, J. E. Littlewood and G. P´olya so much, that not only 
they devoted 2 (two) last chapters of their book 
“Inequalities” to Hilbert’s double series theorem and its 
seemingly statistical extension “Rearrangements”, but also as 
it was discussed in “by Hardy in his “Prolegomena to a 
chapter on inequalities,” which was a Presidential Address at 
the annual meeting of the London Mathematical Society of 8 
November/28, 1 year before D. V. Widder introduced two 

important extensions of Hilbert’s inequality, and It presented 
20 years of research into inequalities by the most 
distinguished mathematicians. “The joint author ‘Hardy–
Littlewood’ produced 97 papers of the highest quality and 
was recognized as the best mathematician in the world for a 
decade or so. Hardy produced 279 papers of comparable 
quality in his own right. Littlewood produced 90 individual 
papers and 116 joint papers with various authors, including 
the 97 papers of which Hardy was a co–author.” 

Hilbert’s double series theorem possibly inspired A. 
Hurwitz to publish a new proof for AG ≥  HG inequality 
using sum of a function f of the n real variables over the n! of 
all possible n! permutations of variables. This paper, 
acording to R. Bellman, six years preceded his famous paper 
on the generation of invariants by integration over groups. 

There were some improvements to constant C in Hilbert’s 
inequality such, as by  

H. Frazer, who showed that it can be reduced to 

(n+1) sin
�

(R��),                                   (20) 

and N. G. de Bruijn and H. S. Wilf showed that the best 
possible constant for the discrete case of summations running 
from 1 to N in  

∑∑ LML	
O�
 ≤ S(∑-
�)� �P  can be replaced by         (21) 

CN=�- 
�
��T(logN)-2+O (loglog (logN)-3), N→+∞       (22) 

The later remarkable result is very important in light of the 
Bruijn-Wilf type best constant for nth finite section of 
Carleman’s inequality 

∑ (-�-�…-*)� *P
*+� < Cn∑ -*
*+� ,           Cn=e-2��e1/ln (n)2+O (1/ln (n)3)                                            (23) 

C2=1/2 (1+sqrt (2)) C3=4/3 

And for the Hardy’s inequality 

Cn=4-16��/ ln (n)2 + O (lnlnn/ln (n)3),                                                                     (24) 

It is interesting to notice that Wilf adviced Bruijn to apply recurrence argument to Carleman’s method 
The extensions of Widder with the remark of Hardy are the following inequalities: 

∑∑ ��V	(O 
⁄ )
O�
 -O2
≤ �(∑∑ LML	

O�
 )
� �P (∑∑ NMN	

O�
 )
� �P                                                            (25) 

∑∑ ⃒YZ[	(O 
⁄ )⃒
\]^	(O,
) -O2
≤ 2(∑∑ LML	

\]^	(O,
))
� �P (∑∑ NMN	

\]^	(O,
))
� �P                                              (26) 

where the summations run from 0 to +∞, and the coefficient 
on the left-hand side is interpreted as 1/n when m = n; 

In this form it is very much resembling the famuos 
Landau-Kolmogorov inequality, which was inroduced by E. 
Landau 2 years after I. Schur’s improvement. 

‖.′‖ 	≦ 4 ‖.‖	‖.′′‖                                    (27) 

He showed that for the norm of ‖.‖  defined to be the 

supremum of |.(!)| , a real-valued function .  defined on 
(0,∞) . If . is twice differentiable and both .  and .##  are 
bounded: 

‖.′‖ 	≦ 2 ‖.‖	�/�	‖.′′‖�/�                   (28) 

It was extended by A. N. Kolmogorov 5 years after the 
book by G. H. Hardy, J. E. Littlewood and G. P´olya, on 
Inequalities and 10 years later was translated in Math Ann. 
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For determination of the best constants C (n, k) for the n-th 

derivative of f defined on (0, ∞)  if both f and .(
) are 

bounded. 

d.(*)d 	≦ C (n, k) ‖.‖	��*/
	d.(
)d k/n, where C (n, k) = an-k an
-1+k/n 

in terms of Favard constants 

an = 
e
� 	∑ [	(��)f�g��	]
��hg+1                            (29) 

Hardy et al. (1934) showed that for a usually defined norm 
of real-valued function . defined on (0, ∞) 
as 

‖.‖ = ,� [.(!)]�h
1 0!                              (30) 

‖.′‖ 	≦ 	√2 ‖.‖	�/� 	j.(k)j�/�                     (31) 

And it was extended by Ljubic (1964) and Kupcov (1975) 
to  

d.(*)d 	≦ C (n, k) ‖.‖	��*/
 	j.(k)j�/�,          (32) 

where C (n, k) are given in terms of zeros of polynomials.  
It is interesting to notice that C (n, 1) involves roots of 

� � lmln
(m�	�nm���)√n

h
1

o
1  = 

��
�
 

PROPOSITION 1 (Governing the reduction of 
dimensions). Therefore, as we can notice the use of 

supremum of a function over an interval, or maximum, or 

minimum instead of sum of the numbers completely loses the 

notion of multidimensionality and reduces it possibly to 1 

dimension instead of double-number dimensional. 

This Proposition is a direct consequence from the above 
discussion. 

It is very certain, that this effect is given not only in 
mathematical formulae, but it has some psychological and 
methodological outcomes, that affect ability to recognize 
multidimensionality in the problem or mathematical model, 
as a way to solve it. 

Similar notions can arise in the discrete inequalities of Ky 
Fan, Taussky, and Todd that date 50 to 60 years ago: 

∑ (!p
��p+1 -2!p�� + !p��)2≥16 sin4 �
�(
��)∑ !p�
p+1 ;      (33) 

for the sequence of real numbers x0=0, x1,....xn, x0=xn+1=0, 

with equality holding if and only if xi=csin
p�

�� , i=1,...,n, 

where c is a real constant and for the sequence of real 
numbers x1=0, x1,....xn: 

∑ (!p
��p+� -!p��)2≥4 sin2(p��)�
�
�� ∑ !p�
p+� .            (34) 

2.3. Introduction of Stein’s Estimators for Exponential 

Family [46-48] 

Introduction of Stein’s estimators for exponential family of 
distributions is another connection between Poisson process 
in dimension ≥ 3 and normal or Gaussian distributions. If X 
is from exponential family of distributions its density is given 
by functional dependence: 

.q(x) = exp{7x-5(7)}k (x), x rℝ,             (35) 

let t (X) = - 
*t(u)
*(u)  for any absolutely continuous function g 

on ℝ, such that E|/#(v)|<∞, then the following identity holds 

E{(t (X) – 7)g (X)} = E{g’(X)}.             (36) 

This important identity is very useful for the application of 
the methods of linear combinations and ratios of random 
variables of exponential family of distributions that would be 
discussed in Subsection 2.3.1. and for future development of 
the theory of Stein estimator and different tests of hypotheses 
for multidimensional exponential families. 

2.4. Linear Regression Model and Stein’s Estimator 

Compared to Least Squares Estimator for 

Multidimensional Exponential Families 

For regression model, Y = XC + e,               (37) 

where Y is a N x 1 vector of N observations on the variable 
to be explained, X is a N x K full-column-rank matrix of N 
observations on K fixed explanatory variables, C is a column 
vector of regression coefficients, and e is a N x 1 error vector 
with a multivariate normal distribution with mean vector 0 
and variance-covariance matrix w�IN, with w2 unknown. The 
least-squares (LS) estimator for C is  

ĈLS = (X’X)-1 X'Y,                               (38) 

Stein’s estimator compared to Least Squares estimator for 
multidimensional exponential families  

Stein’s estimator for the above regression model is: 

ℂSE= z1 − |(}�u~)t(}�u~)
�#�#�� �C,                      (39) 

where L is a scalar,  

n= N-K, S2 =(� − vS)#(� − vS)/n               (40) 

Though ℂSE is also biased, it dominates ĈLS so as  

E [(ℂSE – C)’ X’X (ℂSE – C)] < E [(ĈLS – C)’ X’X (ĈLS – C)], and 0<L<
�(���)
(
��) , K> 2.                                (41) 

An unbiased estimator of the bias of 

ℂSE is CUB (ℂSE) = ℂSE - ĈLS = - L

��

Ĉ��’�’�Ĉ�� Ĉ��                                                                (42) 
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2.5. Properties of Statistics and the Uniformly Most Powerful Invariant Test 

It is worth to mention property of independence of 

Z = (X’X)1/2Ĉ�� ∝N (J,w�IK) (J = (X’X�1/2C)and (k��/w�) ∝ �

�. 

To test null hypothesis H0: C= 0 against alternative 
hypothesis H1: C≠ 0, the uniformly most powerful invariant 
test statistic is  

F = (ĈLS
’X’XĈLS)/KS2, F ∝ ℱK,n                 (43) 

an F-distribution with K and n degrees of freedom and 
noncentrality parameter, D = C’

X
’
XC/2w�.  

And for F-ratio based on ℂSE statistic 

� = ℂSE
’[S2(X’X)-1]-1ℂSE = F (1 – nL/KF)2         (44) 

� is a function of F, and it is invariant to the same linear 
and orthogonal transformations, as F is. 

3. Simple Rules for the Reduction of 

Dimensions 

As a result of the above discussion that established the 
support for the James – Stein estimators from Geometrical, 
Algebraic, Functional and Correlation Inequalities the 
following rules can be used for the consideration in the 
problems involving the reduction of dimensions: 

1. The multidimensional problem should not be reduced to 
less than 3-dimensional problem; 

2. James – Stein estimators should e preferred in place of 
usual least Squares estimators; 

3. Other types of approaches to model multidimensional 
problem should be explored. 

As an example below is a supporting discussion on three 
approaches to Multidimensional Time Model for Probability 
Distribution Function (MTM for PDF). It is concluded by 
Proposition that allows a new perspective in approaching 
multidimensional problem as decomposition of a process 
with special properties into composition of processes of 
Brownian motion. 

4. First Approach to Multidimensional 

Time Model Through Kramers 

Turnover Problem in the Theory of 

Velocity of Chemical Reactions 

Consider first the mathematical structure of the models of 
Boltzmann type kinetic equations for reacting gas mixtures 
for particles undergoing inelastic interactions with reactions 
of bimolecular and dissociation-recombination type is very 
complicated, because of the collisional operators that usually 
in the full Boltzmann equations, are expressed by 5-fold 
integrals. Consequently direct numerical applications of these 
models present several computational difficulties. The search 
for the simpler solution had its long way till the introduction 

of the equation for the Brownian motion by Albert Einstein. 
However, using the theory of Brownian motion for the 
velocity (rate) of chemical reactions Bohr, Kramers, and 
Slater used only one-dimensional (1D) model for The 
Kramers turnover problem, that is, obtaining a uniform 
expression for the rate of escape of a particle over a barrier 
for any value of the external friction until it was corrected by 
Grote-Hynes theory 40 years later, with new improvements 
following after 6 years by by Mel'nikov and Meshkov (MM). 
There are certainly other theories followed, all of them 
distinguish 1D approach from 2D, 3D, and multiD 
approaches.  

It is important and very interesting to consider such point 
that Kramers in his original work had it as possibility that 
multidimensional pattern could be related to time 
dimensions, as he based his introduction theory of Brownian 
motion on the Einstein’s pattern he considered a range of 
time intervals �	. His discussion of the possibility of a term 
proportional to �		 in the expression for Moments of Brownian 
motion �	�	k	(n> 1) related it to the fact that “the values, 
which X takes at moments t1, t2. tn which lie sufficiently close 
together are no longer independent; and Moments of 
Brownian motion �	�	k	(n> 1) in fact are represented by a 
volume integral  

∫…∫v		(t1) X (t2).. X (tn) d t1d t2....dtn 

over an n-dimensional cube; the contribution to this integral 
due to a narrow cylinder extending along the diagonal t1= t2 
=...= tn may give a term proportional to �	.” [11] 

4.1. Second Approach to Multidimensional Time Model 

Through Cumulant Functions and Time Series 

Analysis (Brillinger) 

To strengthen this notion consider cumulants properties for 
time series analysis that provide measure of Gaussianity. If r. 
v. X is normal, then cumk{X} = 0 for k > 2, where cumk 

denotes the joint cumulants of X with itself k times.  
For simplicity consider seq of iid Xi with all moments and 

E {Xi} = 0 and var {Xi} = 1,  
then for Sn = ΣXi/√k	,	 cumk{Sn} = ncumk{X}/nk/2 that tends 
to 0 for k > 2, as n tends to infinity, so Sn has a limiting 
normal distribution.  

And for time series analysis the moment function  
E{X (t+u1)… X (t+uk-1)X (t)} would not depend on t, and 

on the short time interval centered at point of time t can be 
approximated by normal distribution. 

4.2. Third Approach Through Associated Random 

Variables [23, 24] 

Additional to the Brownian motion considerations in the 
theory of chemical reactions and time series analysis for 
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cumulant functions, the same results can be obtained from 
the consideration of associated random variables. 

[49] Consideration of associated random variables 
can be supported by Fortuin–Kasteleyn–Ginibre (FKG) 

inequality as a correlation inequality that states for finite 
distributive lattice on X with J  nonnegative function on it 
satisfying FKG lattice conditions 

J (x ⋀ y)	J (x ∨ y) ≥ J (x)	J (y) for ∀ x, y ∈X 

(∑ .(!)/(!)^	∈�	 	J (x)) (∑ J	(x))^	∈�	 ) ≥ (∑ .(!)^	∈�	 	J (x)) (∑ /(!)^	∈�	 	J (x)) 

Or <fg> - <f><g>	≥ 0, where finite distributive lattice has 
a least element, a minimal element x ≠ O is called an atom 
and relations ⋀ and ∨ satisfy either of the following 

x ⋀ (y ∨ z) = (x ⋀ y) ∨ (x ⋀ z) 

for all x, y, z in X 

x ∨ (y ⋀ z) = x ∨ y) ⋀ (x ∨ z) 

Definition 1. For n > 1 the set of rv Xi is said to be 
associated, if for all given real-valued functions gi that are 
increasing ineach component when the other components are 
held fixed, the inequality  

E [Π/	�	2�	(X)]≥Π�	2�	(gj (X))holds, or equivalently, Corr 
(gi (X), gj (X)) ≥ 0,  

Theorem 1. (a) A set consisting of a single random 
variable is a set of associated random variables. (b) 
Independent random variables areassociated random 
variables. (c) A subset of a set of associated random variables 
forms a set of associated random variables. (d) Increasing 
functions of associated random variables are associated 
random variables [24].  

Proposition 2. Therefore, the process X (t) with above 
properties can be represented by composition of Brownian 
motion processes in finite-dimensional time model. 
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