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Abstract: In this paper, we develop a rational high order compact alternating direction implicit (RHOC ADI) method for 

solving the three dimensional (3D) unsteady convection diffusion equation. The present scheme, based on the idea of the fourth 

order rational compact finite difference operator for the spatial discretization and the Crank-Nicolson method for the time 

discretization, is fourth order accurate in space and second order accurate in time. The solution procedure consists of a number of 

tridiagonal matrix operations, which makes the computation to be cost-effective. It is shown by means of the discrete Fourier 

analysis that this method is unconditionally stable. Three test problems are given to demonstrate the performance of the present 

method. The numerical results show that the present RHOC ADI scheme has higher accuracy and better phase and amplitude 

error characteristics than the classical second order Douglas-Gunn ADI method [16] and some high order compact ADI methods 

including the Karaa’s HOC ADI method [26], Cao and Ge’s HOC ADI method [27], and our previous exponential HOC ADI 

method [28]. 
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1. Introduction 

In this paper, we consider the following 3D unsteady 

convection diffusion equation:  

2 2 2

2 2 2
( , , , )

u u u u u u u
a b c p q r S x y z t

t x y zx y z

∂ ∂ ∂ ∂ ∂ ∂ ∂− − − + + + =
∂ ∂ ∂ ∂∂ ∂ ∂

 

( , , , ) (0, ]x y z t T∈ Ω ×                (1) 

 is unknown function in a cubic domain Ω  

with initial condition  

0
( , , , 0) ( , , ), ( , , )u x y z u x y z x y z= ∈ Ω ,         (2) 

and Dirichlet boundary condition 

( , , , ) ( , , , ), ( , , , ) (0, ]u x y z t g x y z t x y z t T= ∈ ∂Ω ×    (3) 

where ∂Ω  is the boundary of Ω , and 0u , g  and the 

source term S are given functions with sufficient smoothness. 

In Eq. (1), a , b  and c  are nonnegative diffusion 

coefficients and p , q  and r  are convective coefficients in 

the x-, y- and z-direction, respectively. The convection 

diffusion equation (1) is one of the most important models of 

mathematical physics, which may be considered as a 

simplified version of the Navier-Stokes equations and plays a 

very important role in computational fluids dynamics. It also 

can be seen in many applications to model the convection and 

diffusion of various physical quantities, such as mass, 

momentum, energy, vorticity, etc. [1-3].  

Finite difference methods have been widely used to solve 

unsteady convection diffusion equations [4-28]. Among them, 

traditional numerical discretization schemes, such as the 

classical explicit difference scheme (forward difference for time 

and central difference for space), the classical implicit 

difference scheme (backward difference for time and central 

difference for space), and explicit or implicit upwind difference 

schemes, are either first order or second order accurate in space, 

and get poor solutions for convection-dominated problems if 

the mesh is not sufficiently refined. In general, explicit 

( , , , )u x y z t
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difference schemes usually have a small stability region, which 

would lead the schemes diverge if the stability conditions are 

not satisfied. So, very small temporal step size must be chosen 

to keep computation converge. On the other hand, fully implicit 

difference schemes show good stability, and relatively big 

temporal step size can be used. But to get a solution of a large 

linear system arising from an implicit scheme at each time step, 

direct methods based on Gaussian elimination or conventional 

iterative methods, such as Gauss-Seidel, Jacobi, and SOR etc. 

may be too expensive to be used in practice, especially for 

higher dimensions. 

To overcome these difficulties, there exist at least two 

alternative strategies. One is to use high order finite difference 

methods [4-14, 17-23, 25-28]. In the last few years, implicit 

high order compact difference schemes for solving 1D and 2D 

unsteady convection diffusion equations have been developed 

[5-10, 12-14]. These schemes usually have third to fourth 

order accuracy in space and have a large stability region [5, 8, 

10], and they are even unconditionally stable [7, 12, 13]. With 

relatively big temporal step size, they can obtain much more 

accurate solutions than the classical difference schemes. 

However, traditional iterative methods still be used to solve 

the sparse linear system arising from the implicit difference 

schemes at each time step [5, 10]. Biconjugate gradient 

stabilized method (BiCGStab) is used in [13, 14]. This method 

is more efficient than conventional iterative methods, such as 

Gauss-Seidel, Jacobi, and SOR etc. However, it is still 

expensive to be used at each time step, especially for higher 

dimensional problems. The other strategy is to develop 

efficient and cost-effective difference algorithms, such as 

alternating direction implicit (ADI) [11, 15, 16, 18, 20-23, 

25-28] or locally one dimensional (LOD) procedures [29-32], 

which are based on reducing high dimensional problems in 

several space variables to collections of 1D problems and only 

requiring to solve tridiagonal matrices, are simple to 

implement and economical to use. It is well known that the 

classical ADI method developed by Peaceman and Rachford 

[15], and Douglas and Gunn [16] have been popular due to 

their computational cost-effectiveness. However, these two 

ADI schemes, which are second order accurate in space and 

often produce significant dissipation and phase error [11, 21, 

22], are not ideally suited to deal with the spatial discretization 

of convection-dominated transport problems. And the 

Peaceman-Rachford ADI scheme for 3D convection diffusion 

problems is conditionally stable. To achieve higher spatial 

accuracy computational cost-effectiveness, recently, there has 

been a renewed interest in the development of HOC ADI 

methods for 2D and 3D unsteady convection diffusion 

equations. Karra and Zhang [20], You [21], Tian and Ge [22], 

Tian [11], developed, respectively, an HOC ADI method for 

solving 2D unsteady convection diffusion equations with 

constant coefficients. They are all second order accurate in 

time, fourth order accurate in space and unconditionally stable. 

Very recently, Sun and Li [23] presented a combined compact 

difference ADI (CCD ADI) method for solving 2D unsteady 

convection diffusion equations. This method is second order 

accurate in time, sixth order accurate in space and 

unconditionally stable. For 3D unsteady convection diffusion 

problems, Wang and Shen [25] proposed two splitting 

schemes, which are fourth order accurate for spatial diffusion 

term and second order accurate in time and a revised ADI 

scheme which obtains spatial fourth order accurate for 

convective term. Karaa [26] derived a so called delta 

formulation of HOC ADI (DHOC ADI) scheme, which is 

second order accurate in time and fourth order accurate in 

space. It is shown by using a discrete Fourier analysis that the 

method is unconditionally stable in the diffusion case. 

However, it is conditionally stable in the convection diffusion 

case. Recently, Cao and Ge [27] extended Karra and Zhang’s 

HOC ADI scheme [20] to the 3D case. Ge et al. [28] extended 

Tian and Ge’s EHOC ADI scheme [22] to the 3D case. These 

two generalized HOC ADI schemes are second order accurate 

in time, fourth order accurate in space and unconditionally 

stable. More recently, finite difference method is also 

employed by some authors to solve multidimensional 

unsteady convection diffusion reaction equations [35, 36]. 

Among these HOC ADI schemes, Tian [11] proposed a 

rational HOC ADI (RHOC ADI) scheme for solving the 2D 

unsteady convection diffusion problems, which is temporally 

second order, spatially fourth order and unconditionally stable. 

The main advantage of the RHOC ADI scheme is that it is 

more accurate than the existing other HOC ADI schemes, such 

as Karra and Zhang [20], You [21], Tian and Ge [22]. So, in 

this article, we are aiming at developing an RHOC ADI to 

solve the 3D unsteady convection diffusion equation. This 

paper is organized as follows. Section 2 presents the RHOC 

ADI finite difference method for the 3D unsteady convection 

diffusion problems; in Section 3, the Fourier (or von Neumann) 

stability analysis is used to show that the proposed RHOC 

ADI method is unconditionally stable in the convection 

diffusion case; in Section 4, numerical experiments for three 

test problems are performed to validate the effectiveness of the 

present schemes; finally, Section 5 is devoted to some 

conclusion. 

2. Rational High Order Compact ADI 

Scheme 

For convenience of deduction, Eq. (1) is rewritten as:  

2 2 2

2 2 2
( , , , )

u u u u u u u
a b c p q r S x y z t

x y z tx y z

∂ ∂ ∂ ∂ ∂ ∂ ∂− − − + + + = −
∂ ∂ ∂ ∂∂ ∂ ∂

                           (4)

We introduce the basic idea of rational high order compact 

ADI method by using the 1D steady convection diffusion 

equation as following 

( )xx xau pu f x− + =              (5) 
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where a  is the nonnegative constant conductivity, p  is 

the constant convective velocity, and ( )f x  is a sufficiently 

smooth function of x. Using the technique outlined in [11], 

we can easily derive a three-point fourth order compact 

scheme for Eq. (5), which is formulated symbolically as 

1 4( )x x i i xL A u f O h− = +                 (6) 

in which  

2
1 21x x xL α δ α δ= + + , 2

x x xA pαδ δ= − +        (7) 

and xδ  and 2
xδ  are the second order central difference 

operators for the first and second derivatives respectively, xh  

is the mesh size in the x-direction, and the coefficients 1α , 

2α  and α  are given as follows: 

1

, 0

0, 0

a
p

p

p

α

α

− ≠
= 
 =

, 

2

2

2
2

( )
, 0

6

, 0
12

x

x

ha a
p

p

h
p

α

α

 − + ≠
= 


=


, 

2 4

2 4

1
12 144

1
6 36

x x

x x

Pe Pe

a
Pe Pe

α

 
− + 

 =
 

− + 
 

                      (8) 

where xPe  is the cell Reynolds number in the x-direction 

and x xPe ph a= . It is obvious that Eq. (6) with Eqs. (7) 

and (8) is a fourth order scheme for convection diffusion 

equation (5). This scheme is named as an RHOC difference 

scheme in [11]; i.e., the influencing coefficients of the 

difference scheme formulation are connected to the rational 

functions of the coefficients of the differential operators and 

mesh size. 

For convenience, we define the fourth order finite 

difference operators about y- and z-direction as follows: 

2
1 21y y yL β δ β δ= + + , 

2
y y yA qβδ δ= − + ,        (9) 

2
1 21z z zL γ δ γ δ= + + , 2

z z zA rγδ δ= − + ,       (10) 

and yδ , zδ , 
2
yδ  and 2

zδ  are the second order central 

difference operators for the first and second derivatives, yh

and zh  are the mesh size in the y- and z-direction, 

respectively, and the coefficients 1β , 2β , β , 1γ , 2γ  and 
γ  are given as follows: 

1

, 0

0, 0

b
q

q

q

β

β

− ≠
= 
 =

, 

2

2

2
2

( )
, 0

6

, 0
12

y

y

hb b
q

q

h
q

β

β

 −
 + ≠
= 


=


, 

2 4

2 4

1
12 144

1
6 36

y y

y y

Pe Pe

b
Pe Pe

β

 
 − +
 =
 
 − +
 

                    (11) 

1

, 0

0, 0

c
r

r

r

γ
γ

− ≠= 
 =

, 

2

2

2
2

( )
, 0

6

, 0
12

z

z

hc c
r

r

h
r

γ

γ

 − + ≠
= 
 =

, 

2 4

2 4

1
12 144

1
6 36

z z

z z

Pe Pe

c
Pe Pe

γ

 
− + 

 =
 

− + 
 

                      (12) 

where y yPe qh b= , z zPe rh c= . 

Applying the rational fourth order compact difference operators 1
x xL A− , 

1
y yL A−

 and 1
z zL A−  to the 3D unsteady convection 

diffusion Eq. (4), it yields the following rational fourth order approximation 

1 1 1 4 4 4( ) ( ) ( )n n
x x y y z z ijk ijk x y z

u
L A L A L A u S O h h h

t

− − − ∂+ + = − + + +
∂

                       (13) 

Rearranging Eq. (13), we obtain 

1 1 1 4 4 4( ) ( ) ( )n n n
ijk x x y y z z ijk ijk x y z

u
L A L A L A u S O h h h

t

− − −∂− = + + − + + +
∂

                      (14) 

In which ijk  represents the spatial position of ( , , )i j kx y z  and 
n
ijku  represents the approximate solution at time level 

nt n t= ∆ , n  represents the temporal level, and 1n nt t t+∆ = −  is the temporal step size.  

It is easy to see that Eq. (13) is fourth order semidiscrete approximation to the 3D unsteady convection diffusion Eq. (1). In 

the following, nu  and nS  will be written in short for 
n
ijku  and 

n
ijkS  if there is no confusion about the notations. By the 
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application of the forward Taylor series expansion, we have 

2 3
1 2 3

2 3

1 1
(1 ) exp( )

2! 3!
⋯

n n nu t t t u t u
t tt t

+ ∂ ∂ ∂ ∂= + ∆ + ∆ + ∆ + = ∆
∂ ∂∂ ∂

                      (15) 

whose equivalent equation is  

1exp( ) exp( )
2 2

n nt t
u u

t t

+∆ ∂ ∆ ∂− =
∂ ∂

                                     (16) 

Combining Eq. (16) with Eq. (14), a fourth order difference approximation of Eq. (1) is obtained by 

( )1 1 1 1 1exp ( )
2

n n
x x y y z z

t
L A L A L A u S− − − + +∆ + + − 

 
( )1 1 1exp ( )

2

n n
x x y y z z

t
L A L A L A u S− − −∆ = − + + − 

 
           (17) 

Under the assumptions of the constant convective and diffusive coefficients, the difference operators xA , yA , zA , xL ,

yL  and zL  commute with each other, which yields that  

1 1 1 1 1exp( ) exp( ) exp( ) exp( )
2 2 2 2

n n
x x y y z z

t t t t
L A L A L A u S− − − + +∆ ∆ ∆ ∆−  

1 1 1exp( ) exp( ) exp( ) exp( )
2 2 2 2

n n
x x y y z z

t t t t
L A L A L A u S− − −∆ ∆ ∆ ∆= − − −                       (18) 

By using the Taylor expansions, and rearranging it, we have 

1 1 1 1(1 )(1 )(1 )
2 2 2

n
x x y y z z

t t t
L A L A L A u− − − +∆ ∆ ∆+ + +  

1 1 1 1(1 )(1 )(1 ) ( )
2 2 2 2

n n n
x x y y z z

t t t t
L A L A L A u S S− − − +∆ ∆ ∆ ∆= − − − + +  

3 4 4 4( ) ( )x y zO t O th th th+ ∆ + ∆ + ∆ + ∆                                    (19) 

When applied to both sides of Eq. (19) with the difference operator x y zL L L  and neglected 
3 4 4 4( ) ( )x y zO t O th th th∆ + ∆ + ∆ + ∆ , it 

becomes 

1( )( )( )
2 2 2

n
x x y y z z

t t t
L A L A L A u +∆ ∆ ∆+ + +  

1( )( )( ) ( )
2 2 2 2

n n n
x x y y z z x y z

t t t t
L A L A L A u L L L S S+∆ ∆ ∆ ∆= − − − + +                   (20) 

It is clear that the approximation (20) is fourth order accurate in space and second order accurate in time, and has a compact 

27-point stencil. It involves only discrete difference operators of the form 1
x
ωδ , 2

y

ωδ  or 3
z
ωδ , where 1ω , 2ω  and 3ω  are 

nonnegative integers less than or equal to 2. Finally, we introduce two intermediate variables *
u  and **u , and apply the 

D’Yakonov ADI-like scheme [33], then we can get the following RHOC ADI scheme for the 3D unsteady convection diffusion 

equation with a source term. 

** 1

* **

1 *

( ) ( )( )( ) ( )
2 2 2 2 2

( )
2

( )
2

n n n
x x x x y y z z x y z

y y

n
z z

t t t t t
L A u L A L A L A u L L L S S

t
L A u u

t
L A u u

+

+

∆ ∆ ∆ ∆ ∆ + = − − − + +


∆ + =


∆ + =


           (21)

where ( , , , )n
i j k nS S x y z t=  and 

1
1( , , , )n

i j k nS S x y z t+
+= . Eq. (21) is fourth order accurate in space and second order accurate in 

time. The solution to the resulting sparse linear systems of 
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the RHOC ADI scheme (21) can be computed by applying 

the 1D tridiagonal Thomas algorithm with a considerate 

saving in computing time. The intermediate variable values 

of *u  and **u  at the boundaries in the first and second 

ADI scheme above are explicitly given in terms of the central 

difference of 1n
g

+  with respect to y  and z  from Eq. (2) 

and Eq. (3). 

* 1( )
2

n
z z

t
u L A g +∆= +              (22) 

** 1( )( )
2 2

n
y y z z

t t
u L A L A g +∆ ∆= + +          (23) 

3. Stability Analysis 

In the following, we use the Fourier (or von Neumann) 

method for linear stability analysis of the RHOC ADI scheme 

(21). Let the numerical solution be expressed by means of a 

Fourier series, whose typical term is 

exp{ }exp{ }exp{ }n n
ijk x y zu I i I j I kξ σ σ σ= .     (24) 

where 1I = − , nξ  is the amplitude at time level ,n

, ,i x j y k zx ih y jh z kh= = = , and ( )x x xhσ θ= , ( )y y yhσ θ=  and 

( )z z zhσ θ=  are phase angles with the wave numbers xθ , yθ  

and zθ  in the x-, y- and z-direction, respectively. 

Substituting the discrete Fourier mode (24) in both sides of 

Eq. (20), we can get the amplification factor 
1( , , ) /n n

x y zG σ σ σ ξ ξ+= , as follows: 

( , , ) ( ) ( ) ( )x y z x x y y z zG g g gσ σ σ σ σ σ=       (25) 

where ( )x xg θ  is given by  

1 2 3 4

1 2 3 4

( ) ( )
( )

( ) ( )
x x

I
g

I

η η η ησ
η η η η

− + −
=

+ + +
        (26) 

with 

22
1 2

4
1 sin

2

x

xh

σαη = − , 
2

2 2

2
sin

2

x

x

t

h

σαη ∆= , 
1

3 sin x

xh

αη σ= , 4 sin
2

x
x

p t

h
η σ∆=                   (27) 

In the same way, we can obtain the other two terms ( )y yg σ  

and ( )z zg σ  by replacing x  by y  and z , p  by q  and 

r , α  by β  and γ , 1α  by 1β  and 1γ , 2α  by 2β  

and 2γ  in the above expressions, respectively. It was proved 

that ( ) 1x xg σ ≤  for all [ , ]xθ π π∈ −  in [11]. Similar 

conclusions can be drawn for ( )y yg σ  and ( )z zg σ , that is 

( ) 1y yg σ ≤  and ( ) 1z zg σ ≤ . Therefore, the present 

RHOC ADI method, when applied to the 3D unsteady 

convection diffusion problems, is unconditionally stable. 

4. Numerical Experiments 

In this section, three test problems possessing exact 

solutions are given to demonstrate the performance of the 

RHOC ADI method. We compare the numerical results of the 

present method with those of the Douglas-Gunn ADI scheme 

[16], the Karaa’s DHOC ADI schemes [26], Cao and Ge’s 

PHOC ADI scheme [27] and EHOC ADI scheme developed 

by Ge at al. [28]. We conduct our computations using double 

precision arithmetic on P4/3.4G dual-core personal computer 

with 4GB memory. 

4.1. Problem 1 

We first consider a 3D unsteady diffusion problem in the 

unit cubic region [ ] [ ] [ ]0,1 0,1 0,1× × , with the coefficients 

1a b c= = = , 0p q r= = = , and  

2 2( , , , ) 2 exp( ) sin( ) sin( ) sin( )S x y z t t x y zπ π π π π= −  

so that the analytical solution is given by 
2( , , , ) exp( )sin( ) sin( )sin( )u x y z t t x y zπ π π π= −

 

Table 1. L∞  and L∞  norm errors and convergence rate at 
2t h∆ = , 0.2T = , Problem 1. 

h  

Douglas-Gunn ADI scheme [16] DHOC ADI scheme [26] RHOC ADI scheme 

∞L  Error 2L  Error Rate ∞L  Error 2L  Error Rate ∞L  Error 2L  Error Rate 

1/5 1.291 (-2) 5.307 (-3)  6.943 (-3) 2.853 (-3)  3.976 (-3) 1.634 (-3)  

1/10 2.148 (-3) 7.595 (-4) 2.80 4.600 (-4) 1.626 (-4) 4.13 2.850 (-4) 1.008 (-4) 4.02 

1/20 4.488 (-4) 1.587 (-4) 2.26 2.830 (-5) 1.000 (-5) 4.02 1.780 (-5) 6.293 (-6) 4.00 

1/40 1.068 (-5) 3.777 (-5) 2.07 1.762 (-6) 6.231 (-7) 4.00 1.112 (-6) 3.933 (-7) 4.00 

Table 2. L∞  and L∞  norm errors and convergence rate at 0.01h = , 0.2T = , Problem 1. 

Δt  
Douglas-Gunn ADI scheme [16] DHOC ADI scheme [26] RHOC ADI scheme 

∞L  Error 2L  Error Rate ∞L  Error 2L  Error Rate ∞L  Error 2L  Error Rate 

0.05 1.295 (-2) 4.580 (-3)  1.294 (-2) 4.574 (-3)  7.060 (-3) 2.496 (-3)  

0.025 2.957 (-3) 1.045 (-3) 2.13 2.940 (-3) 1.039 (-3) 1.88 1.737 (-3) 6.142 (-4) 2.02 

0.0125 7.268 (-4) 2.570 (-4) 2.02 7.099 (-4) 2.510 (-4) 1.93 4.325 (-4) 1.529 (-4) 2.01 

0.00625 1.918 (-4) 6.780 (-5) 1.92 1.750 (-4) 6.186 (-5) 1.97 1.080 (-4) 3.819 (-5) 2.00 

 



6 Yongbin Ge et al.:  A High Order Compact ADI Method for Solving 3D Unsteady Convection Diffusion Problems  

 

 
The initial and Dirichlet boundary conditions are directly 

taken from this analytical solution. This test problem was 

used in [26-28]. For the 3D pure diffusion equation, the 

PHOC ADI scheme, the EHOC ADI scheme and the present 

RHOC ADI scheme are the same, because, actually, they all 

reduce to the standard fourth order Padé scheme. So, we just 

use the Douglas-Gunn ADI scheme, the DHOC ADI scheme, 

and the present RHOC ADI scheme to compute. We consider 

uniform grids ( )x y zh h h h= = =  with different mesh sizes. 

The compared quantities are the L∞  norm errors, 2L  norm 

errors and convergence rate of the numerical solution with 

respect to the exact solution. The rate of convergence is 

defined by 2ln ( 1/ 2)err err , where 1err  and 2err  are the 

2L  norm errors with the spatial grid sizes h  and / 2h  or 

temporal grid sizes t∆  and / 2t∆ , respectively. 

In Table 1, we set 2t h∆ = , 0.2T =  and halve the spatial 

grid sizes h  from 1/ 5  to 1/ 40  to demonstrate the spatial 

fourth order accuracy. We see that the present RHOC ADI 

and the DHOC ADI schemes are fourth order accurate in 

space, whereas the Douglas-Gunn ADI scheme is second 

order accurate in space. The present RHOC ADI scheme 

provides more accurate solution than the Douglas-Gunn ADI 

scheme or the DHOC ADI scheme. In Table 2, 0.01h = ,

0.2T =  and the change of temporal grid sizes t∆  from 

0.05  to 0.00625  are chosen for the demonstration of 

temporal second order accuracy. We observe that all three 

schemes have second order accuracy in time. However, the 

results of the present RHOC ADI scheme and the DHOC 

ADI scheme become more and more accurate with the 

reduction in time step than the ones of the Douglas-Gunn 

ADI scheme. 

4.2. Problem 2 

To further study the performance of the present RHOC ADI 

scheme, we apply it to a 3D unsteady convection diffusion 

problem which is defined in the unit cubic region 

[ ] [ ] [ ]0, 2 0, 2 0, 2× × , with an exact solution given, as in 

[26-28], by  

3 2 2 2

2
( 0.5) ( 0.5) ( 0.5)

( , , , ) (4 1) exp
(4 1) (4 1) (4 1)

x pt y qt z rt
u x y z t t

a t b t c t

−  − − − − − −= + − − −  + + + 
 

The Dirichlet boundary and initial conditions are set to 

satisfy this exact solution.  

In Table 3, the L∞  norm errors, the 2L  norm errors and 

the CPU time are shown by using the present RHOC ADI, the 

Douglas-Gunn ADI [16], the DHOC ADI [26], the PHOC 

ADI [27], and the EHOC ADI [28] schemes. We fix 

0.01a b c= = =  and 0.025x y zh h h h= = = = , change 

p q r= =  from 8  to 8000 , t∆  from 46.25 10−×  to 

76.25 10−× , and T from 11.25 10−×  to 41.25 10−× . The 

results in Table 3 show that the present RHOC ADI scheme 

provides a higher accuracy solution than the Douglas-Gunn 

ADI scheme and the other HOC ADI schemes. We notice the 

DHOC ADI scheme is divergent when convective coefficients 

are larger than a certain number. There is nothing strange since 

the DHOC ADI scheme is conditionally stable for the 

convection diffusion problem [26]. In Figure 1, 4
6.25 10t

−∆ = × , 

0.125T = , 8p q r= = = , 0.01a b c= = = , 1.2 , 1.8x y≤ ≤ , 

1.5z = , and 0.025h =  are chosen for comparison of the 

Douglas-Gunn ADI (a), the DHOC ADI (b), the EHOC ADI 

(c), and the present RHOC ADI (d) schemes with the exact 

solution. It shows that under this condition, the present RHOC 

ADI scheme is the most accurate, whereas the Douglas-Gunn 

ADI scheme, the DHOC ADI scheme, and the EHOC ADI 

scheme, are not so accurate. For further comparison, we set 
61025.6 −×=∆t , ,00125.0=T ,800=== rqp  

,8.1,2.1 ≤≤ yx  1.5z = , 0.025h =  in Figure 2. We also 

notice that the present RHOC ADI scheme can still give much 

better results than the other HOC ADI schemes. This fact can 

also be seen by observing the position of contour plots of 

solution surface. An analysis of Figure 1 and Figure 2 shows 

that the present RHOC ADI scheme produces a numerical 

solution in good agreement with the exact solution. However, 

noticeable phase differences are observed between the other 

HOC ADI schemes and the exact solution. We also notice that 

the RHOC ADI, the PHOC ADI, the EHOC ADI and the 

Douglas-Gunn ADI methods exhibit less CPU time than that 

of the DHOC ADI method from Table 3. The execution CPU 

time of the RHOC ADI method is much less than that of the 

DHOC ADI method. This clearly shows that the RHOC ADI 

method is the most effective in view of accuracy and time 

consumption. 

Table 3. L∞ and 2L norm errors and CPU time of five ADI scheme with 0.025h = , Problem 2. 

Scheme ∞L  Error 2L  Error CPU Time (s) 

46.25 10t −∆ = × , 11.25 10T −= × , 8p q r= = =  

Douglas-Gunn ADI [16] 1.963 (-1) 1.158 (-2) 66.86 

DHOC ADI [26] 8.886 (-2) 3.350 (-3) 121.47 

PHOC ADI [27] 8.885 (-2) 3.529 (-3) 69.77 

EHOC ADI [28] 4.459 (-2) 1.531 (-3) 71.71 

RHOC ADI 7.983 (-3) 3.777 (-4) 70.98 

56.25 10t −∆ = × , 21.25 10T −= × , 80p q r= = =  

Douglas-Gunn ADI [16] 4.455 (-1) 2.285 (-2) 66.82 
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Scheme ∞L  Error 2L  Error CPU Time (s) 

DHOC ADI [26] 3.010 (-1) 1.223 (-2) 121.01 

PHOC ADI [27] 3.018 (-1) 1.223 (-2) 69.72 

EHOC ADI [28] 1.375 (-1) 3.782 (-3) 71.66 

RHOC ADI 2.674 (-2) 9.888 (-4) 70.92 

66.25 10t −∆ = × , 31.25 10T −= × , 800p q r= = =  

Douglas-Gunn ADI [16] 4.874 (-1) 2.470 (-2) 66.78 

DHOC ADI [26] 1.477 (+20) 5.924 (+19) 119.61 

PHOC ADI [27] 3.248 (-1) 1.411 (-2) 69.68 

EHOC ADI [28] 1.567 (-1) 4.199 (-3) 70.62 

RHOC ADI 3.137 (-2) 1.115 (-3) 70.87 
76.25 10t −∆ = × , 41.25 10T −= × , 8000p q r= = =  

Douglas-Gunn ADI [16] 4.918 (-1) 2.490 (-2) 66.74 

DHOC ADI [26] 1.918 (+24) 1.130 (+24) 119.38 

PHOC ADI [27] 3.267 (-1) 1.433 (-2) 69.64 

EHOC ADI [28] 1.588 (-1) 4.244 (-3) 70.57 

RHOC ADI 3.189 (-2) 1.129 (-3) 70.82 

 

Figure 1. Contour lines (0.05, 0.15 and 0.35) of the pulse: Douglas-Gunn ADI scheme and exact (a), DHOC ADI scheme and exact (b), EHOC ADI scheme and 

exact (c), and RHOC ADI scheme and exact (d), in the subregion 1.2 , 1.8x y≤ ≤ , on 1.5z =  at 
46.25 10t −∆ = × , 0.125T = , 8p q r= = = , 0.01a b c= = = , 

0.025h = . Dot contour lines in (a) - (d) correspond to exact solution.. 
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Figure 2. Contour lines (0.05, 0.15 and 0.35) of the pulse: Douglas-Gunn ADI scheme and exact (a), PHOC ADI scheme and exact (b), EHOC ADI scheme and 

exact (c), and RHOC ADI scheme and exact (d), in the subregion 1.2 , 1.8x y≤ ≤ , on 1.5z = at 
66.25 10t −∆ = × , 0.00125T = , 800p q r= = = , 

0.01a b c= = = , 0.025h = . Dot contour lines in (a) - (d) correspond to exact solution. 

4.3. Problem 3 

We consider a 3D unsteady pure convection problem which 

is defined with the periodic boundary condition in the unit cubic 

region [ ] [ ] [ ]0, 2 0, 2 0, 2× × . The initial conditions is given by  

( , , ,0) sin( ( ))u x y z x y zπ= + +  

This problem is revised by the 2D pure convection 

problem considered in [11, 34], which was used as a test 

problem of a sin-surface periodic flow. For this problem, the 

DHOC ADI, the PHOC ADI, and the EHOC ADI schemes 

become singular because 0a b c= = = , so these three HOC 

ADI schemes cannot be used. We just use the present RHOC 

ADI and the Douglas-Gunn ADI schemes to compute the 

numerical solution of this problem. The compared quantities 

are the L∞  and 2L  norm errors and convergence rate of 

the numerical solution with respect to the exact solution.  

Table 4. L∞  and L∞  norm errors and convergence rate at 
2t h∆ = , 0.2T = , Problem 3. 

h  
Douglas-Gunn ADI Scheme [16] RHOC ADI Scheme 

∞L  Error 2L  Error Rate ∞L  Error 2L  Error Rate 

0.2 0.862 5.216 (-1)  1.418 (-2) 8.403 (-3)  

0.1 1.648 5.747 (-1) -0.14 9.310 (-4) 5.343 (-4) 3.98 

0.05 3.354 7.375 (-1) -0.36 6.100 (-5) 3.380 (-5) 3.98 

0.025 4.683 8.208 (-1) -0.15 3.917 (-6) 2.119 (-6) 4.00 
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Table 5. L∞  and L∞  norm errors and convergence rate at 0.05h = , 0.2T = , Problem 3. 

Δt  
Douglas-Gunn ADI Scheme [16] RHOC ADI Scheme 

∞L  Error 2L  Error Rate ∞L  Error 2L  Error Rate 

0.08 4.249 1.167  6.351 (-2) 2.488 (-2)  

0.04 4.075 0.938 0.32 1.620 (-2) 6.320 (-3) 1.98 

0.02 3.661 0.814 0.20 3.151 (-3) 1.456 (-3) 2.12 

0.01 3.500 0.769 0.08 7.065 (-4) 3.572 (-4) 2.02 

 

In Table 4, we set 2t h∆ = , 0.2T =  and halve the spatial 

grid sizes h  from 0.2  to 0.025  to qualify the spatial 

fourth order accuracy. We see that the results of the present 

RHOC ADI scheme become more and more accurate with the 

reduction in spatial step sizes, while the ones of the 

Douglas-Gunn ADI scheme are almost invariable. In Table 5, 

we fix 0.05h =  and change t∆  from 0.08  to 0.01  to 

show the temporal accuracy order. We find that the present 

RHOC ADI scheme is second order accurate in time, whereas 

the Douglas-Gunn ADI scheme gives very poor solution. 

5. Conclusion  

In this article, a rational high order compact ADI method 

for solving the 3D unsteady convection diffusion equation is 

established. By using the fourth order compact method for 

spatial derivatives and using the second order Crank-Nicolson 

method for temporal derivative, the present RHOC ADI 

scheme is fourth order accurate in space, second order 

accurate in time and only involves three-point stencil for each 

1D operator. So, in each ADI solution step, it can be solved by 

simple tridiagonal Gaussian decomposition and may be used 

by application of the 1D tridiagonal Thomas algorithm with a 

considerable amount of saving in computing time. It is shown 

by a discrete Fourier analysis that the RHOC ADI scheme is 

unconditionally stable. Numerical experiments for three test 

problems are performed to demonstrate its performance and to 

show its superiority over the classical Douglas-Gunn ADI 

scheme and the other existing HOC ADI schemes. 
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