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Abstract: Let G be a simple connected graph, the vertex- set and edge- set of G are denoted by V(G) and E(G), respectively. 

The molecular graph G, the vertices represent atoms and the edges represent bonds. In graph theory, we have many invariant 

polynomials and many invariant indices of a connected graph G. Topological indices based on the distance between the 

vertices of a connected graph are widely used in theoretical chemistry to establish relation between the structure and the 

properties of molecules. The coefficients of polynomials are also important in the knowledge some properties in application 

chemistry. The Schultz and modified Schultz polynomials, Schultz and modified Schultz indices and average distance of 

Schultz and modified Schultz of Cog-complete bipartite graphs are obtained in this paper. 

Keywords: Schultz and Modified Schultz Polynomials, Cog-Complete Bipartite Graphs, Topological Indices,  

Boundary Average Distance 

 

1. Introduction 

Suppose that � = (�(��, �(���  is a simple undirected 

connected graph of order � = �(��  and size 	 = 	(�� . A 

graph G is called an n-partite graph, 
 ≥ 2, if it possible to 

partition vertex– set �(��  in to non empty subsets 

�
, ��, … , ��  (called partite sets) such that every element of 

�(�� joins a vertex of V� to a vertex of V�, for all r ≠ t for 

n = 2, such graphs are called bipartite graphs. A complete 

bipartite graph G is a 2- partite graph with petite sets V
 and 

V� having the added property that if � ∈ �
 and � ∈ ��, then 

�� ∈ �(�� with two partite sets V
  and V�  denoted by K�,� 

(or K(m, n� , where |V
| = m  and |V�| = n . The distance 

between any two vertices u and v of G is the length of a 

shortest (u,v)-path in a connected graph G, denoted by 

 (�, �� . In particular, if � = � , then  (�, �� = 0 . 

Topological indices in biology and chemistry was used for 

the first time in 1947 when chemist Harold Wiener [1] 

introduced Wiener index to demonstrate correlations between 

physicochemical properties of organic compounds of 

molecular graphs. The Wiener index is represent the total 

distance of a connected graph G, i.e. 

"(�� = ∑  (�, ��$,%∈&('� , in which the summation is taken 

over all unordered pairs {�, �} of distinct vertices of G. The 

diameter of G is the greatest distance in G and will be 

denoted by *. The number of pairs of vertices of G that are 

distance k is denoted by  (�, +�. Distance is an important 

concept in graph theory and it has applications to computer 

science, chemistry, and a variety of other fields [2-6]. 

For the definitions of concepts and notations used in this 

papers, vertices with distance k such that |,-(��| =  (�, .� 
and ∑  (�, .� = /0�12

-3
 , where /0�1  is representation the 

number of unordered pairs of distinct vertices in G. 

In chemical graph theory, there are two important 

polynomials are distinguished. Introduced: 

The Schultz polynomial of a graph G is defined as: 

45(�; 7� = ∑ (*$ + *%�79($,%�$,%∈&('� , 

and modified Schultz polynomial of a graph G is defined as: 

45∗(�; 7� = ∑ (*$*%�79($,%�$,%∈&('� . 

These based structure descriptors and their polynomials 

were extensively studied and computed before [7-9]. 

The molecular topological index (Schultz index) was 

introduced by Harry P. Schultz in 1989 [10] and the modified 

Schultz index was defined by S. Klavz?ar and I. Gutman in 

1997 [11]. 
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The Schultz index is defined as: 

45(�� = ∑ (*$ + *%�	 (�, ��$,%∈&('� , 

and modified Schulttz index is defined as: 

45∗(�� = ∑ (*$*%�	 (�, ��$,%∈&('� . 

where the summation for all above are taken over all 

unordered pairs of distinct vertices in V(G). 

The indices of Schultz and modified Schultz can be 

obtained by the derivative of Schultz and modified Schultz 

polynomials with respect to x at x = 1, respectively, i.e.: 

45(�� = 9
9A 45(�; 7�BA3
, and 45∗(�� = 9

9A 45
∗(�; 7�B

A3

. 

The average distance of a connected graph G with respect 

Schultz and modified Schultz are defined as: 

45(�� = 45(��//0�1, and 45∗(�� = 45∗(��//0�1. 

In 2005, Gutman find many relations between Hosoya, 

Schultz and modified Schultz polynomials of a tree graph 

and some properties [12]. Bo Zhou [13], find some lower and 

upper bounds for the Schultz index of a graph G. 

The Schultz and modified Schultz polynomial of some 

special graphs are summarized in the following theorem (See 

[14]). In addition, we have found the Schultz and modified 

Schultz polynomials of some Cog- special graphs which it 

under publication. 

In 2013, Hassani et al. computed the Schultz polynomials 

of isomeres of C
EE Fullerene by GAP program [15]. 

The Schultz indices have been shown to be a useful 

molecular descriptors in the design of molecules with desired 

properties, reader can be see the papers [16-18]. 

Finally, Farahani found Schultz and modified Schultz 

polynomials and topological indices of benzene molecules 

PAHs, coronene polycyclic aromatic hydro carbons and some 

Haray graphs [8, 19, 20] in 2017, Guo and Zhow studies the 

propeties of degree distance and Gutman index of uniform 

hypergraphs [21]. 

2. Main Results 

Definition: A Cog- complete bipartite graph +F,�
G  is the 

graph constructed from bipartite complete graph +F,�, H, 
 ≥ 2, 

of vertices set {u
, u�, … , u�, v
, v�, … , v�} with H + 
 − 2 of 

additional vertices {K
, K�, . . . , KFM
, N
, N�, . . . , N�M
} , and 

2m+2n−4 of additional edges {KP�P, KP�PQ
: S = 1,2, … ,H −
1} ∪ {NP�P , NP�PQ
: S = 1,2, … , 
 − 1}, see Figure 1. 

 

Figure 1. A Cog- complete bipartite graph +F,�
G . 

From Clearly that �/+F,�
G 1 = 2H + 2
 − 2 , 	/+F,�

G 1 =
H(
 + 2� + 2(
 − 2�  and * =  SVH+F,�

G = 4,  for all 

H, 
 ≥ 4. 

Theorem 2.1: For all H, 
 ≥ 4, then 

45/+F,�
G ; 71 = {H
(H + 
 + 8� + 4(H + 
 − 5�}7 + 2{H�(
 + 1� + (
 − 4�(
 + 1� + H(
 + 3�(
 − 1�}7� +

{H�(
 + 4� + H(
� − 2
 − 16� + 4(
� − 	4
 + 7�}7\ + 2{H(H − 5� + 
(
 − 5� + 12}7]. (1) 

45∗/+F,�
G ; 71 = {H
(H
 + 2H + 2
 + 8� − 20}7 + {H
(H
 + (7H/2� + (7
/2� − 4� + 2H(H − 4� + 	2
(
 − 4� +

2}7� + 2{H�(
 + 2� + 
�(H + 2� − 2(H
 + 4H + 4
 − 9�}7\ + 2{H(H − 5� + 
(
 − 5� + 12}7]. (2) 

Proof: For all vertices _
_� ∈ �/+F,�
G 1, there is  (_
, _�� = ., . = 1,2,3,4. 

From clearly that ∑ |,P| = (2H + 2
 − 3�(H + 
 − 1�]
P3
 . 

We will have four partitions for proof: 

P1. If  (_
, _�� = 1, then |D
| = m(n + 2� + 2(n − 2� and is equal to 	/+F,�
G 1, we have ten subsets of it: 

P1.1. Ba/u
(��, w
(�M
�1:	δde(f� + δge(fhe� = n + 3	&	δde(f�δge(fhe� = 2(n + 1�jB = 2. 

P1.2. kl(wm, umQ
�: δgn + δdnoe = n + 4	&	δgnδdnoe = 2(n + 2�, 1 ≤ i ≤ m − 2rk = m − 2. 

P1.3. kl(wm, um�: δgn + δdn = n + 4	&	δgnδdn = 2(n + 2�, 2 ≤ i ≤ m − 1rk = m − 2. 

P1.4. Ba/v
(��, y
(�M
�1: δte(u� + δve(uhe� = m+ 3	&	δte(u�δve(uhe� = 2(m + 1�jB = 2. 

P1.5. kl(ym, vmQ
�: δvn + δtnoe = m+ 4	&	δvnδtnoe = 2(m + 2�, 1 ≤ i ≤ n − 2rk = n − 2. 

P1.6. kl(ym, vm�: δvn + δtn = m+ 4	&	δvnδtn = 2(m + 	2�, 2 ≤ i ≤ n − 1rk = n − 2. 
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P1.7. Ba/um, vw1: δdn + δtx = m+ n + 2	&	δdnδtx = (m + 1�(n + 1�, i = 1,m, j = 1, njB = 4. 

P1.8. Ba/um, vw1: δdn + δtx = m+ n + 3	&	δdnδtx = (m + 1�(n + 2�, 2 ≤ i ≤ m − 1, j = 1, njB = 2(m − 2�. 

P1.9. Ba/um, vw1: δdn + δtx = m+ n + 3	&	δdnδtx = (m + 2�(n + 1�, i = 1,m, 2 ≤ j ≤ n − 1jB = 	2(n − 2�. 

P1.10. Ba/um, vw1: δdn + δtx = m+ n + 4	&	δdnδtx = (m + 2�(n + 2�, 2 ≤ i ≤ m− 1, 2 ≤ j ≤ n − 1jB = (m − 2�(n − 2�. 

P2. If  (_
, _�� = 2, then |D�| = (4mn + m(m− 1� + n(n − 1� − 8�/2, we have twelve subsets of it: 

P2.1. kl(ym, ymQ
�: δvn + δvnoe = 4	&	δvnδvnoe = 4, 1 ≤ 	i ≤ n − 2rk = n − 2. 

P2.2. kl(wm, wmQ
�: δgn + δgnoe = 4	&	δgnδgnoe = 4, 1 ≤ i ≤ m − 2rk = m − 2. 

P2.3. kl(v
, v��: δte + δtu = 2(m + 1�&	δteδtu =	 (m + 1��rk = 1. 

P2.4. Ba/vm, vw1: δtn + δtx = 2m + 3	&	δtnδtx = (m + 1�(m + 2�, i = 1, n, 2 ≤ j ≤ n − 1jB = 2(n − 2�. 

P2.5. Ba/vm, vw1: δtn + δtx = 2(m + 2�&	δtnδtx =	 (m + 2��, 2 ≤ i ≤ n − 2, i + 1 ≤ 	j ≤ n − 1jB = (n − 2�(n − 3�/2. 

P2.6. kl(u
, u��: δde + δdf = 2(n + 1�&	δdeδdf = 	(n + 1��rk = 1. 

P2.7. Ba/um, uw1: δdn + δdx = 2n + 3	&δdnδdx = (n + 1�(n + 2�, i = 1,m, 2 ≤ 	j ≤ m − 1jB = 2(m − 2�. 

P2.8. Ba/um, uw1: δdn + δdx = 2(n + 2�&	δdnδdx = (n + 2��, 2 ≤ 	i ≤ m − 2, i + 1 ≤ j ≤ m − 1jB = (m − 2�(m − 3�/2. 

P2.9. Ba/vm, ww1: δtn + δgx = m+ 3	&δtnδgx = 2(m + 1�, i = 1, n, 1 ≤ 	j ≤ m − 1jB = 2(m − 1�  

P2.10. Ba/vm, ww1: δtn + δgx = m+ 4&	δtnδgx = 2(m + 2�, 2 ≤ i ≤ n − 1, 1 ≤ 	j ≤ m − 1jB = (m − 1�(n − 2�. 

P2.11. Ba/um, yw1: δdn + δvx = n + 3	&	δdnδvx = 2(n + 1�, i = 1,m, 1 ≤ 	j ≤ n − 1jB = 2(n − 1�. 

P2.12. Ba/um, yw1: δdn + δvx = n + 4	&	δdnδvx = 2(n + 2�, 2 ≤ 	i ≤ m − 1, 1 ≤ j ≤ n − 1jB = (m − 2�(n − 1�. 

P3. If  (_
, _�� = 3, then |D\| = mn + m(m − 4� + n(n − 4� + 5, we have seven subsets of it: 

P3.1. Ba/u
, ww1: δde + δgx = n + 3	&	δdeδgx = 2(n + 1�, 2 ≤ j ≤ m − 1jB = m − 2. 

P3.2. Ba/u�, ww1: δdf + δgx = n + 3	&	δdfδgx = 2(n + 1�, 1 ≤ j ≤ m − 2jB = m − 2. 

P3.3. Ba/um, ww1: δdn + δgx = n + 4	&	δdnδgx = 2(n + 2�, 2 ≤ i ≤ m − 1,1 ≤ j ≤ m − 1, |i − j| ≠ 0,1jB = (m − 2�(m − 3�. 

P3.4. Ba/v
, yw1: δte + δvx = m+ 3	&δteδvx = 2(m + 1�, 2 ≤ j ≤ n − 1jB = n − 2. 

P3.5. kl(v�, ym�: δtu + δvn = m+ 3	&δtuδvn = 2(m + 1�, 1 ≤ i ≤ n − 2rk = n − 2. 

P3.6. Ba/vm, yw1: δtn + δvx = m+ 4	&δtnδvx = 2(m + 2�, 2 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1, |i − j| ≠ 0,1jB = (n − 2�(n − 3�. 

P3.7. Ba/wm, yw1: δgn + δvx = 4	&	δgnδvx = 4,1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1jB = (m − 1�(n − 1�. 

P4. If (_
, _�� = 4, then |,\| = (H(H − 5� + 
(
 − 5� + 12�/2, we have two subsets of it: 

P4.1. Ba/wm, ww1: δgn + δgx = 4	&	δgnδgx = 4,1 ≤ i ≤ m − 3, i + 2 ≤ j ≤ m − 1jB = (m − 2�(m − 3�/2. 

P4.2. kl(ym, ymQ��: δvn + δvnoz = 4	&	δvnδvnoz = 4,1 ≤ i ≤ n − 3rk = (n − 2�(n − 3�/2. 
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From P1-P4 and after the computational processes we get the two equations (1) and (2). 

Corollary 2.2: For all H, 
 ≥ 4, then 

45/+F,�
G 1 = 8H�(
 + 3� + 8
�(H + 3� + 10H
 − 96(H + 
� + 144.                                 (3) 

45∗/+F,�
G 1 = 3H
(H
 − 8� + 3H�(5
 + 8� + 3
�(5H + 8� − 104(H + 
� + 188.                      (4) 

Proof:  

To get equations (3) and (4), we derivative the equations (1) and (2) with respect to 7 and then compensation of the value of 

7 by 1. 
Corollary 2.3: For all H, 
 ≥ 4, then 

1. 	45(+F,�G � = (8H�(
 + 3� + 8
�(H + 3� + 10H
 − 96(H + 
� + 144�/(H + 
 − 1�(2H + 2
 − 3�. 
2. 	45∗/+F,�G 1 = (3H
(H
 − 8� + 3H�(5
 + 8� + 3
�(5H + 8� − 104(H + 
� + 188�/(H + 
 − 1�(2H + 2
 − 3�. 
Proof: obvious 

Corollary 2.4: For all H = 
 ≥ 4, then 

45/+F,�G ; 71 = 2(H\ + 4H� + 4H − 10�7 + 4(H\ + 2H� − 3H − 2�7� + 2(H\ + 3H� − 16H + 14�7\ + 4(H − 3�(H − 2�7]. (5) 

45∗/+F,�G ; 71 = (H] + 4H\ + 8H� − 20�7 + (H] + 7H\ − 16H + 2�7� + 4(H\ − 8H + 9�7\ + 4(H − 3�(H − 2�7].     (6) 

Proof: from possible to obtain formulas (5) and (6) from 

formulas (1) and (2) by equality 
,H	(H = 
�  and after 

simplified processes. 

Corollary 2.5: For all H = 
 ≥ 4, then 

1. 45/+F,�
G 1 = 16H\ + 58H� − 192H + 144. 

2. 45∗/+F,�
G 1 = 3H] + 30H\ + 24H� − 208H + 188. 

Proof: similar to proof corollary 2.2. 

Corollary 2.6: For all H = 
 ≥ 4, then 

1. 14.5 < 45(+F,�G � < 2H + 10. 

2. 26.7 < 45∗(+F,�G � < 3(4H� + 45H + 87�/32. 

When 
 = 2 and 
 = 3 for all H ≥ 4, we obtain the same 

formulas in the Theorem 2.1 and corollary 2.2 after off 

setting the value 
 = 2  and 
 = 3  for all H ≥ 4 , in the 

Theorem 2.1 and corollary 2.2 respectively. 

As special case, if 
 = 2,H ≥ 4, then +F,�
G  is shown in 

Figure 2. 

 

Figure 2. A Cog- complete bipartite graph +F,�
G . 

Theorem 2.7: For H ≥ 4, then 

45/+F,�
G ; 71 = 2(H� + 12H − 6�7 + 2(3H� + 5H − 6�7� + 2(3H� − 8H + 6�7\ + 2(H − 3�(H − 2�7].     (7)  

45∗/+F,�
G ; 71 = 4(2H� + 6H − 5�7 + (13H� − 2H − 6�7� + 4(2H� − 6H + 5�7\ + 2(H − 3�(H − 2�7].    (8) 

Proof: For every vertices _
_� ∈ �(+F,�
G �, there is d(z1,z2)=k, k=1,2,3,4, and obvious ∑ |,P| = (2H + 1�(H + 1�]

P3
 . 

We will have four partitions for proof: 

P1. If  (_
, _�� = 1, then |D
| = 4m and is equal to 	/+F,�
G 1, we have six subsets of it: 

P1.1. Ba/u
(��, w
(�M
�1: δde(f� + δge(fhe� = 	5	&	δde(f�δge(fhe� = 6jB = 2. 

P1.2. kl(wm, um�: δgn + δdn = 6	&	δgnδdn = 8, 2 ≤ i ≤ m − 1rk = m − 2. 

P1.3. kl(wm, umQ
�: δgn + δdnoe = 6	&	δgnδdnoe = 8, 1 ≤ i ≤ m− 2rk = m− 2. 

P1.4. Ba/um, vw1: δdn + δtx = m+ 4	&	δdnδtx = 3(m + 	1�, i = 1,m, j = 1,2jB = 4. 

P1.5. Ba/um, vw1: δdn + δtx = m+ 5	&	δdnδtx = 4(m + 1�, 2 ≤≤ m − 1, j = 1,2jB = 2(m − 2�. 

P1.6. kl(y
, vm�: δve + δtn = m+ 3	&	δveδtn = 2(m + 2�, i = 1,2rk = 2. 

P2. If  (_
, _�� = 2, then |D�| = (m� + 7m − 6�/2, we have eight subsets of it: 
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P2.1. kl(wm, wmQ
�: δgn + δgnoe = 4	&	δgnδgnoe = 	4, 1 ≤ i ≤ m − 2rk = m − 2. 

P2.2. Ba/vm, ww1: δtn + δgx = m+ 3	&	δtnδgx = 2(m + 1�, i = 1,2, 1 ≤ 	j ≤ m − 1jB = 2(m − 1�. 

P2.3. kl(um, y
�: δdn + δve = 5	&	δdnδve = 6, i = 1,2rk = 2. 

P2.4. kl(um, y
�: δdn + δve = 6	&	δdnδve = 8,2 ≤ i ≤ m − 1rk = m − 2. 

P2.5. kl(u
, u��: δde + δdf = 6	&	δdeδdf = 9rk = 1. 

P2.6. Ba/um, uw1: δdn + δdx = 7	&	δdnδdx = 12,2 ≤ i ≤ m − 1, j = 1,mjB = 2(m − 2�. 

P2.7. Ba/um, uw1: δdn + δdx = 8	&	δdnδdx = 16,2 ≤ i ≤ m − 2, i + 1 ≤ j ≤ m − 1jB = (m − 2�(m − 3�/2. 

P2.8. kl(v
, v��: δte + δtz = 2(m + 1�&	δteδtz = (m + 1��rk = 1. 

P3. If (_
, _�� = 3, then|D\| = (m − 1��, we have four subsets of it: 

P3.1. kl(y
, wm�: δve + δgn = 4	&	δveδgn = 4,1 ≤ i ≤ 	m − 1rk = m− 1. 

P3.2. kl(u
, wm�: δde + δgn = 5	&	δdeδgn = 6,2 ≤ i ≤ m − 1rk = m − 2. 

P3.3. kl(u�, wm�: δdf + δgn = 5	&	δdfδgn = 6,1 ≤ i ≤ m − 2rk = m − 2. 

P3.4. Ba/um, ww1: δdn + δgx = 6	&	δdnδgx = 8,2 ≤ i ≤ m− 1, 1 ≤ j ≤ m − 1, |i − j| ≠ 0,1jB = (m − 2�(m − 3�. 

P4. If(_
, _�� = 4, then |,\| = ((H − 2� + (H − 3� + 12�/2, we have: 

Ba/wm, ww1: δgn + δgx = 4	&	δgnδgx = 4,1 ≤ i ≤ m − 3, i + 2 ≤ j ≤ m − 1jB = (m − 2�(m − 3�/2 

From P1-P4 and after the computational processes we get 

the two equations (7) and (8). Also we can obtain the same 

formula when compensating the value of n by 2 in the 

Theorem 2.1. 

Corollary 2.8: For H ≥ 4, we have: 

1. 45/+F,�
G 1 = 4(10H� − 11H + 12�. 

2. 45∗/+F,�
G 1 = 2(33H� − 46H + 38�. 

Corollary 2.9: For H ≥ 4, we have: 

1. 11.3 < 45(+F,�
G � < 20. 

2.	16.9 < 45∗(+F,�
G � < 33. 

Theorem 2.10: For H ≥ 4, we have: 

1. 45/+F,\
G ; 71 = (3H� + 37H − 8�7 + (8H� + 24H −

	8�7� + (7H� − 13H + 16�7\ + (2H� − 10H + 12�7]. 

2. 45∗/+F,\
G ; 71 = (15H� + 42H − 20�7 + {(43H� + 23H −

8�/2}7� + (10H� − 22H + 24�7\ + (2H� − 10H + 12�7]. 
Proof: By the same way proof the Theorem 2.1. 

Corollary 2.11: For H ≥ 4, we have: 

1. 45/+F,\
G 1 = 48H� + 6H + 72. 

2. 45∗/+F,\
G 1 = 96H� − 41H + 92. 

Corollary 2.12: For H ≥ 4, we have: 

1. 14 < 45/+F,\
G 1 < 24. 

2. 25 < 45∗/+F,\
G 1 < 48. 

Remark: 

1. 45/+�,�G ; 71 = 447 + 327� + 47\. 

45/+\,�G ; 71 = 787 + 727� + 187\. 

45/+\,\G ; 71 = 1307 + 1367� + 407\. 

2. 45∗/+�,�G ; 71 = 607 + 427� + 47\. 

45∗/+\,�G ; 71 = 1247 + 1057� + 207\. 

45∗/+\,\G ; 71 = 2417 + 2247� + 487\. 

3. Conclusion 

In this paper we managed to find the Schultz and modified 

Schultz polynomials and Schultz and modified Schultz 

indices of Cog- complete bipartite graph +F,�
G  of order 

2H + 2H − 2, H, 
 ≥ 2. Also, we given the boundary lower 

and upper of average distance of Schultz and modified 

Schultz of Cog- complete bipartite graph +F,�
G . 
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