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Abstract: Many problems in fluid mechanics and material sciences deal with liquid-vapour flows. In these flows, the ideal 

gas assumption is not accurate and the van der Waals equation of state is usually used. This equation of state is non-convex and 

causes the solution domain to have two hyperbolic regions separated by an elliptic region. Therefore, the governing equations 

of these flows have a mixed elliptic-hyperbolic nature. Numerical oscillations usually appear with standard finite-difference 

space discretization schemes, and they persist when the order of accuracy of the semi-discrete scheme is increased. In this 

study, we propose to use a new method called δ-ziti’s method for solving the governing equations. This method gives a new 

class of semi discrete, high-order scheme which are entropy conservative if the viscosity term is neglected. We implement a 

high resolution scheme for our mixed type problems that select the same viscosity solution as the Lax Friederich scheme with 

higher resolution. Several tests have been carried out to compare our results with those of [6] [9] [16], in the same situations, 

we obtained the same results but faster thanks to the CFL condition which reaches 0.8 and the simplicity of the method. We 

consider three types of pressure in these tests: Cubic, Van der Waals and linear in pieces. The comparison proved that the δ-

ziti's method respects the generalized Liu entropy conditions, e.g. the existence of a viscous profile. 

Keywords: Hyperbolic, Van Der Waals, δ-ziti’s Method, System Mixed Type, The Lax-Friedrichs Scheme, Shock Wave, 

Rarefaction Wave, Viscous Profile 

 

1. Introduction 

The dynamics of compressible fluids undergoing liquid-

solid or vapor-liquid phase transformations can be modeled  

by the standard balance laws (mass, momentum) 

supplemented with a nonconvex equation of state, such as the 

one introduced by van der Waals. Restricting attention to a 

model of two conservation laws (the temperature being, 

formally, kept constant), one knows that, above some 

(critical) temperature this model is hyperbolic but not 

globally genuinely nonlinear (the pressure is a decreasing but 

not a globally convex function of the specific volume); 

however, below the critical temperature, the model is a 

mixed (hyperbolic-elliptic) system of conservation laws (the 

pressure is decreasing except on some bounded interval). 

The one-dimensional isothermal motion of a compressible 

elastic fluid or solid can be described in lagrangian 

coordinates by the coupled system: 

� ����, �� − 
���, �� = 0; 		� ∈ ��, �����	� ∈ �0, ���,
���, �� + ������, ��� = 0; 		� ∈ ��, ��	���			� ∈ �0, ���,	 (1) 

Here u denotes the velocity, w the specific volume for a 

fluid (or displacement gradient for a solid), and p is the stress 

which must be determined as a function of w by a 

constitutive relation. For many materials a natural condition 

placed on p is that p’ (w) < 0 for all values of w (or all 

positive values of w) depending on the context of the 

problem. This makes (1) a coupled system of hyperbolic 

conservation laws. In this paper, however, we shall consider 

the case where p has a graph illustrated by figure 1. 
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Figure 1. Van der Waals pressure law. 

For convenience p will be globally defined, smooth, with p��w� < 0; !"	� < α$		or		w > α( ����� < 0; !"		)$ < � < )( ����)$� > 0,				����)(� < 0 

This type of constitutive relation is usually associated with 

a van der Waals fluid where  

���� = *+,-. − /,0                           (2) 

where c, d, T are numerical constants and where the 

temperature T>0 is fixed. 

First to begin at the case where the van der Waals pressure 

can be well approximated by the cubic equation ���� = � + 1 − �� − ��2                   (3) 

where c and d are numerical constants. 

Here we need nothing so specific as the van der Waals 

constitutive relation though our results will strongly depend 

at times on the global behavior of p as |�| → ∞. 

The reason for this non-standard choice of p is that it 

serves as a prototype problem for the dynamics of materials 

exhibiting changes of phase. For example in a van der Waals 

fluid the states � < )$ are viewed as liquid while states with � > )(  are viewed as vapor. Because p is not monotone, 

liquid and vapor phases may co-exist. 

The evolution of the first and second equations of (1) will 

be governed by initial data. Here we pose piecewise constant 

data 

67��� = 86-		!"	� < 069		!"	� > 0,                         (4) 

which makes (1) and (4) into a mixed hyperbolic-elliptic 

Riemann initial value problem. 

Solutions of such systems of nonlinear PDEs are generally 

discontinuous and exhibit several distinct types of 

propagating waves: 

a. Compressive shock waves satisfying the standard Lax 

or Liu entropy criteria; 

b. Rarefaction waves, which are smooth and self-similar 

solutions; 

c. Supersonic phase boundaries, which propagate faster 

than the characteristic speed; 

d. In the mixed type case, stationary phase boundaries. 

Until recently the Riemann problem (for which the initial 

data is a single step function) was solved allowing only 

stationary and supersonic phase boundaries plus standard 

classical waves [10, 20]. Recently, after the works by James 

[15], Truskinovsky [25, 26], Slemrod [23], Abeyaratne and 

Knowles [1, 2], Le Floch [17-19], Shearer [14, 21], and 

Hayes and LeFloch [11-13], it became clear that 

nonstationary, subsonic phase interfaces (in the hyperbolic-

elliptic regime) and nonclassical shock waves (in the 

hyperbolic, but not genuinely nonlinear regime) should be 

included when solving the Riemann problem. 

Indeed, such waves are admissible in the sense that they do 

arise in viscosity-capillarity limits of the system. 

Subsonic phase boundaries and nonclassical shocks have a 

special flavor: they are not uniquely characterized by the 

standard Rankine-Hugoniot relations and their unique 

selection requires as additional jump relation called a kinetic 

relation. Recall that there is indeed no universal selection 

criterion for propagating phase boundaries. The basic reason 

is that such waves are under compressive, in the sense that-

compared with compressive shocks-fewer characteristics are 

impinging on the discontinuity. 

The numerical approximation of the model under 

consideration was initiated by Slemrod and followers [3, 8, 

16, 22, 24]. Computing kinetic relations to characterize under 

compressive waves such as no classical shocks and subsonic 

phase boundaries was first tackled by Hayes and LeFloch 

[13], who identified the basic issues arising numerically. The 

present paper is a natural extension of [13]. 

The resolution of the Riemann problem is still a very 

complicated task. For any Cauchy problem, the numerical 

schemes that lead to an admissible solution (entropy solution) 

are based on the exact solution of the Riemann problem 

which further complicates the situation. Other schemes 

require the existence of a viscous profile. 

In this work, a new scheme called zitis δ-scheme [4] is 

applied. We recall that our scheme has yielded impressive 

results especially for hyperbolic problems [5]. 

For the mixed system (1) we take the same scheme δ-ziti's 

scheme and we organize our work as following: 

In Section 2, we posed the problem, in Sections 3 and 4, 

we applied our scheme to the system (1) with a pressure p (w) 

of the form (2), (3) and at the end of the form (27). 

The results were compared with [6], with [9] and [16]. 

They are impressive. 

2. Problem Position 

In one dimension, the equation of isothermal motion for a 

compressible fluid in Langragian coordinates takes the form:  

:;<
;= ����, �� − 
���, �� = 0; 		� ∈ ��, ��				���			� ∈ �0, ���,
���, �� + ������, ��� = 0; 		� ∈ ��, ��				���			� ∈ �0, ���,>��,7�?>@���?		A>B		CD		�E7>F		CD		�G7										;							�∈�H,I�,JKJL�H,��?JKJL�I,��?7																												;						�∈�7,+M�	

,	 (5) 

Where, U=(w, u)
T
 is vector of IR

2
, Tf are constants, U0 is 
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the initial data function, w is the specific volume, u is the 

velocity, and p is the pressure, U-=(w-, u-)
T
 and U+=(w+, 

u+)
T
. 

The system (5) can be writing under a non-conservative 

form: 

N6���, �� � O�6�6���, �� � 0; 		� ∈ ��, ��				���			� ∈ �0, ���,>��,7�?>@���?		A>B		CD		�E7>F		CD		�G7										;										�∈�H,I�,JKJL�H,��?JKJL�I,��?7																												;						�∈�7,+M�
, (6) 

where,  

O�6� � P 0 1����� 0R 
is a constant matrix of 2 order. 

Notice that the eigenvalues of A (U) are ST	����� , 

which become real in the hyperbolic region and complex in 

the elliptic region. 

3. Numerical Approximation of Solution 

In this section we describe how to apply the δ-ziti's  

method to the system (5). 

We take an uniform mesh of the interval [a, b] with the 

step U � I-HV  where m is an integer such �$ � �, �V9$ � �, 

xi=a+(i-1)h, for i=1, m+1. 

The δ-ziti's method is based on the Galerkin method: 

First, we approximate the weak solution U(x, t) of (1) by: ���, �� W ∑ )DV9$D?$ YD���                 (7) 

and 


��, �� W Z [DV9$
D?$ YD��� 

where, �YD� is the orthonormal family defined as follow: 

YD��� � \] ^���_\] ^���_                                (8) 

where, `Yabc  is the orthogonal family  which satisfies the 

following recurrence relation: 

N Yd$��� � e$���																				∀	� ∈ ��$, �V9$�YdD � eD��� � gD-$YdD-$						∀	� ∈ ��$, �V9$�		; ! � 2,… ,j � 1�Uklm,					gD-$ � 	 En^,n^BoG_\] ^Bo_0
	 (9) 

�ea� is obtained from the test function (figure 2): 

Φ��� � � exp s $�0-*0t				 ; 				 |�|  u0																											v�Ukl�!mk              (10) 

where R is a positive constant, m is an integer such �$ � � 

and �V9$ � �. 

 

Figure 2. Illustration of the test function for R=1. 

As, the framework of the Galerkin method, we multiply 

the first and second equations of (1) by Ya and integrating it 

over [a, b] we obtain: 

w ����, ��IH Ya����� 	 w 
���, ��IH Ya����� �0 

w 
���, ��IH Ya����� � w ������, ���IH Ya����� �0  

Now, we use the x�y roots of YV9$ on the interval 

 [a, b] la as points of meshing instead of the �a, 

And put lV9$ � �V9$ [4]. 

From [4] we have, 

z ����, ��I
H Ya����� W ���la , ��Ya�la�  

w ������, ���IH Ya����� W {L�,�|},���\}�|}�  

therefore, 

w ∑ )D����V9$D?$IH YD���Ya����� 	 ~L�|},��\}�|}� � 0        (11) 

w ∑ [D����V9$D?$IH YD���Ya����� � {L`,�|},��c\}�|}� � 0       (12) 

By using the orthonormal property of the �YD� we obtain, 

z Z )D����V9$
D?$

I
H YD���Ya����� � Z )D����V9$

D?$ z YD���YaI
H ����� � )a� ��� 

z Z [D����V9$
D?$

I
H YD���Ya����� � Z [D����V9$

D?$ z YD���YaI
H ����� � [a� ��� 

Therefore the quantity (11) and (12) become, 
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)a� ��� − ~L�|},��\}�|}� = 0	                      (13) 

[a� ��� + {L�,�|},���\}�|}� = 0                     (14) 

To approximate (13) and (14), we denote by: �a� the approximate value of the ��la , ���� )a� the approximate value of the )a����� 
a� the approximate value of the 
�la , ���� [a� the approximate value of the [a����� 
For example, if we take the center finite difference 

approximation which is second order accuracy: 

���la , �� ≈ ��la9$, �� − ��la-$, ��la9$ − la-$  

�����la , ��� ≈ �`��la9$, ��c − �`��la-$, ��cla9$ − la-$  

then, for t=ndt, 

���la, �. ��� ≈ �a9$� − �a-$�la9$ − la-$  

�����la , �. ���� ≈ ���a9$� � − ���a-$� �la9$ − la-$  

From [4] we have, ��la , �� = )a���Ya�la� 
�la , �� = [a���Ya�la� 
and, 

)a��� = ��la, ��Ya�la� 	≈ ��la9$, �� + ��la-$, ��2. Ya�la�  

[a��� = 
�la , ��Ya�la� 	≈ 
�la9$, �� + 
�la-$, ��2. Ya�la�  

By taking the time semi discretization as following: 

)a� ��� = )a�9$ − )a��� 			��	� = �. �� 
[a� ��� = [a�9$ − [a��� 			��	� = �. �� 

Therefore (13) and (14) become, 

)a�9$ = ,}Fo� 9,}Bo�(.\}�|}� + ga ~}Fo� -~}Bo�\}�|}� 	 ; 					x = 2,… ,j,    (15) 

[a�9$ = ~}Fo� 9~}Bo�(.\}�|}� − ga {`,}Fo� c-{`,}Bo� c\}�|}� 	 ; 					x = 2,… ,j,  (16) 

where,		ga = /�|}Fo-|}Bo. 
On the other hand, the initial data U0 can be approximated 

by, 

�7��� ≈ Z �7�lD�YD�lD�
V9$
D?$ YD��� 


7��� ≈ Z 
7�lD�YD�lD�
V9$
D?$ YD��� 

therefore, 

)a$ = ,@�|}�\}�|}� 				 ; 					x = 1,… ,j + 1        (17) 

[a$ = ~@�|}�\}�|}� 				 ; 					x = 1,… ,j + 1          	(18) 

The Neumann conditions in (5) are approximated by, 

:;<
;=�$�9$ = �(�9$,
$�9$ = 
(�9$,�V9$�9$ = �V�9$,
V9$�9$ = 
V�9$,

 

therefore, 

:;;
<
;;= )$�9$ = ,0�Fo\o�|o�[$�9$ = ~0�Fo\o�|o�)V9$�9$ = ,��Fo\�Fo�|�Fo�[V9$�9$ = ~��Fo\�Fo�|�Fo�

						                    (19) 

By combining (15-19), we build an algorithm which 

enable to compute )a�  and [a�  at each level n (n ≥1) in 

accordance with the following scheme, 

:;;
;;<
;;;
;=)a$ = ,@�|}�\}�|}� 																 ; 																												x = 1,… ,j + 1,[a$ = ~@�|}�\}�|}� 																 ; 																												x = 1,… ,j + 1,

�}�Fo?�}Fo� F�}Bo�0.�}`�}c -�}�}Fo� B�}Bo��}`�}c 	;					a?(,…,V,
�}�Fo?�}Fo� F�}Bo�0.�}`�}c 9�}�s�}Fo� tB�s�}Bo� t�}`�}c 	;					a?(,…,V,

�o�Fo? �0�Fo�o��o�;	�o�Fo? �0�Fo�o��o�)V9$�9$ = ,��Fo\�Fo�|�Fo� ; 			[V9$�9$ = ~��Fo\�Fo�|�Fo�

  (20) 

where, ga = /�|}Fo-|}Bo 
4. Applications 

4.1. Cubic Pressure Law 

The van der Waals pressure can be well approximated by 

the cubic equation (3). See figure 3 for a representation of the 

graph of p. 
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Figure 3. Cubic pressure law. 

4.1.1. Test 1 and Comparison with [16] 

To compare our results, we take the same data as SHI JIN: 

c=0 and d=0. [16] 

The δ-ziti's scheme (20) Applied to the Riemann problem: 

6- = P �- = 0.7
- = −0.7R ;				69 = P�9 = −0.327
9 = −0.327R      (21) 

The system (1) change of type (hyperbolic-elliptic) 

following the sign of �����:  
The elliptic region is the domain � ∈ 	 �)$; )(� , the 

hyperbolic region is outside� ∈ ��-;)$� ∪ �)(; �9�, figure 4. 

Where, )$ = − √22 , and )( = √22  

 

Figure 4. Hyperbolic-elliptic region. 

The ziti's δ-method gives the same results founded in [16], 

figure 5. 

 

Figure 5. The numerical solutions of (1) obtained by ziti's δ-scheme (20) at 

t=2 with initial data (21). 

4.1.2. Test 2 and Comparison with [6] 

New, we take the LeFlock data (22) to compare our results: 

c=4 and d=6. [6] 

The δ-ziti's scheme (20) Applied to the following Riemann 

problem: 

w�x, 0� = Pw- = 3w9 = 5R; 
��, 0� = P
- = 0
9 = 2R          (22) 

The system (1) change of type (hyperbolic-elliptic) with 

the sign of �����:  
The elliptic region is the domain � ∈ 	 �)$; )(� , the 

hyperbolic region is the domain � ∈ ��-;)$� ∪ �)(; �9� . 

Where, )$ = 4 − √22 and )( = 4 + √22  

The δ-ziti's method gives the same results than founded in 

[6] figure 6. 

 

Figure 6. The numerical solutions of (1) obtained by ziti's δ-scheme (20) at 

t=1 with initial data (22). 

We present in the table below, a set of selected tests in 

different regions, not traited in [6] and [16]. 
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Table 1. Set of selected tests in different regions. 

Test number 

N 

Left state 

U- 

right state 

U+ 
IWW(*) U- → U9 Figure 

1 (1; 0) �√33 , 0.5� R1 S2 figure 7 

2 (1; 0.5) �√33 , 0.5� R1 S2 figure 8 

3 (1; 0.5) �√33 , 0� R1 S2 figure 8 

4 (1; -0.5) �√33 , 0.5� S1 R2 figure 10 

5 (1;-0.5) �√33 ,−0.1� S1 figure 11 

6 s− √22 , 0.5t  (-0.7; 0) S1 R2 figure 12 

7 (-0.6; 1) (-1; 0.5) S1 R2 figure 13 

8 (-0.6; -0.4) (-1; -1) S1 R2 figure 14 

9 (1; 0.5) (-1; 0.1) R1 DCR2 figure 15 
10 (1; -0.5) (-1; 0.1) R1 DCR2 figure 16 

11 (1; 0.5) (-1; -0.1) R1 DCR2 figure 17 

12 (1; -0.5) (-1; -1) R1 DCR2 figure 18 
13 (-1; -1) (1; -0.5) R1 DCR2 figure 19 

14 �√33 ,−0.5� �−√33 ,−0.5� S1 DCS2 figure 20 

15 (0; 0) �−√33 , 0� SSSSR figure 21 

16 (0.4; -1) (0; 1) S1 S2 figure 22 

17 (1; 0.5) (1; -0.5) RRSSRR figure 23 
18 (-0.6; -1) (-0.4; -1) SSSS figure 24 

(*) IWW: The Intermediate Wave Way. 

Where; Ri is the i-rarefaction, Sj is the j-shock and DC is 

the contact discontinuity. 

We present here the test given in the table 1: The are some 

numerical solutions of (1) obtained by δ-ziti's scheme (20) at 

t=1. 

 

Figure 7. With initial data (N=1). 

 

Figure 8. With initial data (N=2). 

 

Figure 9. With initial data (N=3). 

 

Figure 10. With initial data (N=4). 
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Figure 11. With initial data (N=5). 

 

Figure 12. With initial data (N=6). 

 

Figure 13. With initial data (N=7). 

 

Figure 14. With initial data (N=8). 

 

Figure 15. With initial data (N=9). 

 

Figure 16. With initial data (N=10). 
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Figure 17. With initial data (N=11). 

 

Figure 18. With initial data (N=12). 

 

Figure 19. With initial data (N=13). 

 

Figure 20. With initial data (N=14). 

 

Figure 21. With initial data (N=15). 

 

Figure 22. With initial data (N=16). 
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Figure 23. With initial data (N=17). 

 

Figure 24. With initial data (N=18). 

4.2. Van der Waals Pressure Law 

In this section we deal with the well-known van der Waals 

equation of state, given by (2) presented in figure 25. 

 

Figure 25. Van der Waals pressure law. 

4.2.1. Test 1 and Comparison with [16] 

For the same data that given in [16], the δ-ziti's scheme 

(20) applied to the following Riemann problem: 

w�x, 0� = Pw- = 0.54					w9 = 1.8517R; u�x, 0� = Pu- = 1					u9 = 1 R			    (25) 

where, a=0.9, � = $�, R=1 and T=1. 

The system (1) change of type (hyperbolic-elliptic) 

following the sign of �����:  
The elliptic region is the domain � ∈ 	 �)$; )(� , the 

hyperbolic region is the domain  � ∈ ��-;)$� ∪ �)(; �9�. 
Where, )$ = 0.5749122774 and )( = 1.0362512534 

The δ-ziti's method gives the same results than founded in 

[16]. Figure 26. 

 

Figure 26. The numerical solutions of (1) obtained by ziti's δ-scheme (20) at 

t=4 with initial data (25). 

4.2.2. Test 2 and Comparison with [9] 

Applying the δ-ziti's scheme (20) to the following 

Riemann problem: 

���, 0� = P�- = 0.787�9 = 1.33		R; 
��, 0� = P
- = −2					
9 = 0								R		     (26) 

where a=3, � = $2 , u = �2 and T=0.95. 

The system (1) change of type (hyperbolic-elliptic) 

following the sign of �����:  
The elliptic region is the domain� ∈ 	 �)$; )(�, 

the hyperbolic region is the domain � ∈ ��-;)$� ∪ �)(; �9�. 
Where, )$ = 0.684 and )( = 1.2354 

The δ-ziti's method gives the same results than founded in 

[9], figure 27. 
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Figure 27. The numerical solutions of (1) obtained by ziti's δ-scheme (20) at 

t=3.2 with initial data (26). 

4.3. Piecewise-Linear Equation of State 

To compare our results, we take the same data as SHI JIN. 

We test the δ-ziti's scheme for a piecewise-linear equation of 

state: 

���� = � −20�												!"		� < 0.1,−3 + 10�				!"		0.1 ≤ � < 0.2,												−5�										!"		0.2 ≤ �       (27) 

In our numerical experiments we take the initial data: 

���, 0� = P �- = 0.05	�9 	= 0.07		R; 
��, 0� = P 
- = 0	
9 	= 0.5		R			    (28) 

The system (2) change of type (hyperbolic-elliptic) 

following the sign of �����:  
The elliptic region is the domain � ∈ 	 �)$; )(� , the 

hyperbolic region is the domain � ∈ �−∞; )$� ∪ �)(; +∞� 
Where, )$ = 0.1 and )( = 0.2 

The δ-ziti's method gives the same results than founded in 

[16], figure 28. 

 

Figure 28. The numerical solutions of (1) obtained by ziti's δ-scheme (20) at 

t=0.05 with initial data (28). 

5. Conclusions 

The application of δ-ziti’s method to the hyperbolic-

elliptic mixed system has proven to be very robust, fast and 

efficient without using the exact solution of the Riemann 

problem. Its ability is to approach the entropy solution 

(physically admissible) of the system. The comparison with 

the exact solution or with the results of [6] [9] [16] showed 

that for the same Riemann problems, the δ-ziti’s scheme 

detects the same intermediate states in different phase 

positions. 

The comparison with the exact solution showed the 

existence of the viscous profile [23]. 

We have enriched our investigation with other untreated 

tests in [6] [16] to complement the numerical study of our 

system. 

The comparison of our numerical results with [6] [16] has 

shown us several advantages: 

a. The stability condition CFL is near 0.8 and approaches 

1, whereas that of [6] [16] for some cases the CFL is 

less than 0.25 and for other CFL is less than 0.5. 

b. The amelioration of the CFL saves time for advanced 

previsions (less iteration to achieve the required time). 

c. In [16], small oscillations appear from a certain time in 

order schemes and disappear in 2-order schemes. In our 

scheme, there are no oscillations. 

d. In presence of shock waves, the scheme of [16] smooths 

the solution a little, giving the impression that it is a 

rarefaction wave; Contrary to the scheme of δ-ziti 

which makes the difference between the two waves. 

In conclusion, with scheme of δ-ziti, we were able to 

obtain the same results as those [6] [16]; the same 

intermediate states, the same waves and the same solution but 

with a simplicity, an incredible rapidity. 
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