
 

Applied and Computational Mathematics 
2017; 6(4): 202-207 

http://www.sciencepublishinggroup.com/j/acm 

doi: 10.11648/j.acm.20170604.18 

ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) 

 

A Robust Preconditioned Iterative Method for the 
Navier-Stokes Equations with High Reynolds Numbers 

Josaphat Uvah
1
, Jia Liu

1, *
, Lina Wu

2
 

1Department of Mathematics and Statistics, University of West Florida, Pensacola, USA 
2Department of Mathematics, Borough of Manhattan Community College, The City University of New York, New York, USA 

Email address: 

juvah@uwf.edu (J. Uvah), jliu@uwf.edu (Jia Liu), lwu@bmcc.edu (Lina Wu) 
*Corresponding author 

To cite this article: 
Josaphat Uvah, Jia Liu, Lina Wu. A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers. 

Applied and Computational Mathematics. Vol. 6, No. 4, 2017, pp. 202-207. doi: 10.11648/j.acm.20170604.18 

Received: June 30, 2017; Accepted: August 4, 2017; Published: August 14, 2017 

 

Abstract: In this paper, we proposed a new solver for the Navier-Stokes equations coming from the channel flow with high 

Reynolds number. We use the preconditioned Krylov subspace iterative methods such as Generalized Minimum Residual 

Methods (GMRES). We consider the variation of the Hermitian and Skew-Hermitian splitting to construct the preconditioner. 

Convergence of the preconditioned iteration is analyzed. We can show that the proposed preconditioner has a robust behavior for 

the Navier-Stokes problems in variety of models. Numerical experiments show the robustness and efficiency of the 

preconditioned GMRES for the Navier-Stokes problems with Reynolds numbers up to ten thousands. 
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1. Introduction 

High Reynolds-number incompressible flow has been 

investigated widely recently years. Turbulent flows with 

Reynolds number of the order of 10� and greater are of 

interest because this is the range of Reynolds numbers 

relevant to many industrial applications ([7-8]). The aim of 

this paper is to study the governing equations: unsteady and 

steady Navier-Stokes equations with high Reynolds numbers. 

We consider the incompressible viscous fluid problems with 

the following form: 

���� − �∆
 + (
 ∙ �)
 + 	�� = � in Ω	 × �0, Γ�   (1) 

∇ ∙ 
 = 0 in Ω	 × �0, Γ�             (2) 

�
 = � in �Ω	 × �0, Γ�              (3) 


(x, 0) = 	
� in Ω                (4) 

Equations (1) to (4) are also known as the Navier-Stokes 

equations. Here is an open set of, where d = 2, or d =3, with 

boundary Ω ; the variable 
 = 
(x,  ) ∈ ℝ#  is a 

vector-valued function representing the velocity of the fluid, 

and the scalar function � = �($,  ) ∈ ℝ  represents the 

pressure. The source function f is given on 	Ω. Here % > 0	 is 

a given constant called the kinematic viscosity, which is 	% = '(()*+). Re is the Reynolds number: () = ,-\/�, where 

V denotes the mean velocity and L is the diameter of Ω (see 

[4]). Also, ∆is the (vector) Laplacian operator in d dimensions, ∇	 is the gradient operator, and ∇	 is the divergence operator. 

In (3) �	  is some boundary operator; for example, the 

Dirichlet boundary condition 
 = � or Neumann boundary 

condition 
���/ = � , where 0  denotes the outward-pointing 

normal to the boundary; or a mixture of the two. Different 

types of flows may have different types of boundary 

conditions. If a flow is inside a container, then there must be 

no flow across the boundary. In this case, we have the 

boundary condition 
 ∙ 0 = 0	 on �Ω . The fundamental 

principles used to establish these partial differential equations 

(PDEs) are conservation of mass and conservation of 

momentum. Equation (1) represents the conservation of 

momentum, and it is called the convection form of the 

momentum equation. Equation (2) represents the conservation 

of mass, since for an incompressible and homogeneous fluid 

the density is constant both with respect to time and the spatial 

coordinates. Equations (1) – (4) describe the dynamic 

behavior of Newtonian fluids, such as water, oil and other 
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liquids.  

We use fully implicit time discretization and Picard 

linearization to obtain a sequence of Oseen problems, i.e. 

linear problems of the form 

1
 − �∆
 + (
 ∙ ∇)
 +	∇� = �	 in 	Ω	       (5) 

∇ ∙ 
 = 0	 in Ω	               (6) 

�
 = � on �Ω	               (7) 

Where 1 > 0, with 1 = '( +2�). Here 3  denotes the time 

step. Vector v is a known vector which is obtained from the 

previous Picard iteration. For an example 4 = 
5*+ . 

Equations (5) -- (7) are referred to as the generalized Oseen 

problem. If 1 = 0 , we have the steady-state problem. If 4 = 0, we have the Stokes problem. 

The discretization of equations (1)-(4) will result a linear 

system  

A$ = 7, 

where A writes as 8 9 :+;9 :<;−:+ −:< = >.  

Here 9 = 	1? − %@ + A, where H is the discretization of 

Laplacian operator in two dimensions, and I is the identity 

matrix. S is the discretization matrix of the convection term (
 ∙ ∇), the rectangular matrix :B;  (i = 1, 2) represents the 

discrete gradient operator while :B  represents its adjoint, the 

(negative) divergence operator. In order to make the matrix A 

invertible, we add a stabilization term = = ℎ<?, where ℎ = +/	 
with n the grid size of the discretization. If D is a zero matrix, 

then we obtain the coefficient matrix of the Stokes equations. 1 is the '( +∆�), where ∆  is the time step.  

An efficient solver for the Navier-Stokes problems can be 

realized by combining the good choice of preconditioners and 

Krylov subspace iterative methods. Details of preconditioning 

and iterative solvers can be found in many textbooks (see [1] 

and [2] [4]). Most existing methods work well for small 

Reynolds numbers but fail as the Reynolds number increases 

to the range 10� −	10D . In this paper, we propose a 

preconditioner with Hermitian and Skew-Hermitian splitting. 

The new preconditioned iterative solvers provide a robust 

behavior under the high Reynolds numbers (or small 

viscosity).  

2. Numerical Solvers 

Our aim is to study the numerical solver of the 

Navier-Stokes problems with high Reynolds numbers. We 

consider the Picard iteration to linearize the nonlinear 

problem (1) – (4). This corresponds to a simple fixed point 

iteration strategy. Although the rate of of convergence of 

Picard iteration is linear in general, its radius of convergence 

is bigger than Newton iteration.  

At each Picard iteration, a numerical solver for the linear 

system below is required.  

E9 :;: = F E�GF = 	 EHIF             (8) 

Where the structure of F is the discetization of the term 1 − �∆ + (
 ∙ ∇). For Picard iteration, F is a block diagonal 

matrix with each of the diagonal block is a discrete 

convection-diffusion operator. The matrix C is the 

stabilization term. If we use Marker-and-Cell (MAC) 

discretization, C is a zero matrix.  

The iterative method we used in this paper is the 

generalized minimum residual method (GMRES). For 

nonsymmetric problems, this method represents the standard 

approach for constructing iterates satisfying an optimality 

condition. We implemented GMRES with the proposed 

preconditioner to speed up the convergence of GMRES. In 

fact, we could also use other Krylov subspace iterative 

methods such as BICGSTAB. (see [4]). 

Krylov subspace iterative methods are tend to be low cost 

and faster convergence compared with the direct method such 

as Gaussian Eliminations. However, all Krylov subspace 

methods need accelerate convergence by applying 

preconditioning. Preconditioning is a key ingredient for the 

success of Krylov subspace methods. Preconditioning is a 

transformation of the original system into another system such 

that the new system has more favorable properties for iterative 

solutions. A preconditioner P is a matrix that effects such 

transformation. After we apply the preconditioner matrix P to 

the original matrix A, the preconditioned system J*+A is 

supposed to have a better spectral properties. If the matrix is 

symmetric, the rate of convergence of the Conjugate Gradient 

(CG) method or Minimum Residual Method (MINRES) 

depend on the distribution of the eigenvalues of the matrix A. 

If the preconditioned matrix P
1
A has a smaller spectral 

condition number or the eigenvalues are clustered around 1, 

then we can expect a fast rate of convergence. For 

nonsymmetric (nonnormal) problems the situation is more 

complicated and the eigenvalues may not describe the 

convergence of nonsymmetric matrix iterations like General 

Minimum Residual Method (GMRES); see the discussion in 

[4]. Nevertheless, a clustered spectrum (away from 0) often 

results in rapid convergence, especially if the departure from 

normality of the preconditioned matrix is not too high.  

The Hermitian and Skew-Hermitian splitting (HSS) 

preconditioner is based on Herimitian and skew-Hermitian 

splitting of the coefficient matrix. Letting  

@ = 	12 (L +	L;), M = 	12 (L −	L;),	 
we have the following splitting of A into its symmetric and 

skew-symmetric parts: 

0

0 0

T THA B K B
A H K

CB C B

    
= = + = +       − −      

Note that H, the symmetric part of A, is symmetric positive 

semidefinite since H and C are. K is a skew symmetric matrix. 

Let ρ>0 be a parameter, the HSS preconditioner is defined as 
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follows: 

JNOO =	 12P	(@ + 	P?QR/)(M + 	P?QR/) 

where, Im+n is the identity matrix of size m+n. To Solve this 

preconditioner, it requires solving a shifted Hermitian system 

and a shifted Skew Hermitian system. This preconditioner was 

first proposed by Benzi and Golub. Then it is used as a 

preconditioner for the Oseen problem in rotation form in [3]. 

HSS preconditioner works better on the Navier-Stokes 

problems with small viscosity or high Reynolds number. 

Before we apply the HSS preconditioner, we modify the 

preconditioner in the following format: 

H = ES 00 0F, K = TαI + 	K BYB C [, 

Where M is the discretizaion of −%∆, K is the discretization 

of 
 ∙ ∇. Again in order to make both matrices invertible, we 

shift H and S.  

JQ =	 +<\ 	(@ + 	P?QR/)(M + 	P?QR/). 
The shifting parameter plays an important role here. It is 

quite challenging to identify the optimal choice of P since it 

is case dependent.  

To solve this preconditioner, we need to solve two 

individual systems:  

Hv = w; Sy= v; 

The shifted H is a shifted Laplacian. It is quite easy to solve. 

H can be solved by Conjugate Gradient (CG) with incomplete 

Cholesky preconditioner or multigrid method. The system 

with the coefficient matrix S is the main cost of applying the 

preconditioning. GMRES with incomplete LU 

preconditioning is considered. In both cases, the inner 

iterations contains incomplete Cholesky or incomplete LU 

factorizations. For the inexact inner iteration discussions, see 

[10].  

3. Numerical Experiments 

In this section, we show the numerical experimental results 

for the Navier-Stokes problems with Reynolds numbers varies 

from 10� −	10D . All results were computed in MATLAB 

7.1.0 on one processor of an AMD Opteron with 32 GB of 

memory.  

In all experiments, symmetric diagonal scaling was applied 

before forming the preconditioners. We found that this scaling 

is not only beneficial to convergence, but also it makes finding 

(nearly) optimal values of the shift ρ easier. Of course, the 

right-hand side and the solution vector were scaled 

accordingly. We used right preconditioning in all cases. The 

outer iteration (full GMRES) was stopped when 62

0
2

10
kr

r

−< , 

where rk denotes the residual vector at step k. For the results 

presented in this section, the symmetric positive definite 

systems were solved 'exactly' by means of the sparse Cholesky 

factorization available in MATLAB, in combination with an 

approximate minimum degree ordering to reduce fill-in. For 

the sparse, nonsymmetric Schur complement system, we used 

the sparse LU solver available in MATLAB with the original 

(lexicographic) ordering. We found this to be faster than a 

minimum degree ordering, probably because the need for 

pivoting makes the fill-reducing ordering ineffective or even 

harmful.  

3.1. The Unsteady Oseen Problem Using MAC 

Discretizations 

In this experiment, we tested the classic unsteady Oseen 

problem on a unit square domain (5) – (7). MAC 

discretization is used. In this case, no stabilization term is 

needed. Figure 1 shows the staggered grid using MAC 

discretizations.  

Table 1, 2 and Table 3 are the experimental results for the 

iteration counts of preconditioned GMRES for the unsteady 

Oseen problem with viscosity 0.001 to 10*D. We can see that 

the modified HSS preconditioner works even better for the 

smaller viscosity. The number of the iterations is bounded by 

20 for most of the cases and it is independent of the mesh 

size, viscosity and time step. We chose different time step in 

this case to test the behavior of the preconditioner. As we 

notice in the Table 1, 2, 3, the iteration numbers tend to large 

when the time step is large (small 1). The iteration number 

get stable when time step gets smaller.  

Table 1. Iteration counts of preconditioned GMRES for the unsteady-state 

Oseen problem with viscosity v = 0.001. 

Grid size α = 1 α = 10 α = 20 α = 50 α = 100 

8 by 8 10 10 11 13 15 

16 by 16 12 10 12 14 15 

32 by 32 16 11 14 16 16 

64 by 64 22 16 14 13 16 

128 by 128 27 13 16 16 16 

Table 2. Iteration counts of preconditioned GMRES for the unsteady-state 

Oseen problem with viscosity v = 10*]. 

Grid size α = 1 α = 10 α = 20 α = 50 α = 100 

8 by 8 11 12 11 12 13 

16 by 16 12 13 11 12 14 

32 by 32 18 12 13 15 14 

64 by 64 27 15 13 14 15 

128 by 128 38 13 15 12 14 

Table 3. Iteration counts of preconditioned GMRES for the unsteady-state 

Oseen problem with viscosity v = 10*D. 

Grid size α = 1 α = 10 α = 20 α = 50 α = 100 

8 by 8 17 16 18 17 13 

16 by 16 14 17 16 19 13 

32 by 32 17 17 17 15 13 

64 by 64 23 16 14 13 14 

128 by 128 28 18 15 12 13 
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Figure 1. Staggered Grid of MAC in 2D. 

3.2. The Navier-Stokes Equations Using Finite Elements 

Discretizaitons 

In this experiment, the authors used the software IFISS 

(Incompressible Flow & Iterative Solver Software) by 

Silvester, Elamn and Ramage. (see [5], [9]).  

The second example we tested Represents Slow Flows in a 

Rectangular Duct with a Sudden Expansion, or Flow over a 

Step. The domain is the L-shaped region generated by taking 

the complement in (−1, 20� � ��1,1�  of the quadrant 

��1,0� � ��1,0�. A Poiseuille flow profile is imposed on the 

inflow boundary �$ � 	�1; 	0	 _ `	 _ 1�. For high Reynolds 

number flow, longer steps are required in order to allow the 

flow to fully develop. A Neuman condition is applied at the 

outflow boundary which automatically sets the mean outflow 

pressure to zero. Figure 2 shows the Stokes flow solution plot. 

We used the solution of the Stokes flow as the initial 

approximation of the Picard’s iteration. Figure 3 shows the 

solution plot of the Navier-Stokes equations after the 

nonlinear iterations, and Figure 4 shows the error plot of the 

Navier-Stokes flow solution.  

We applied the modified HSS preconditioned GMRES 

methods to solve the linear system at each step of the 

nonlinear step.  

 

Figure 2. Stoke flow solution. 
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Figure 3. Navier-Stokes flow solution plot with stabilized Q 2-P 1 

approximation. 

 

Figure 4. Estimated error in the computed solution. 

Table 4 is the experimental results for the iteration 

counts of preconditioned GMRES for the resulting Oseen 

problem with viscosity 0.001 to 10*D. Table 4 shows the 

iteration number of GMRES with the viscosity 0.001, 

10*] and 10*D. The corresponding Reynolds number is 

of O (10�). In each case, we used IFISS to generate the 

linear system Ax = b. Where A is the discretization of the 

Naviver-Stokes problem with different viscosity and grid 

size. The discretization we chose is the Q 2-P 1 

approximation. In all table, we can see the iteration 

number are bounded and it is robust with respect to the 

grid sizes and viscosity. The iteration numbers increase 

compared with the unsteady Oseen cases.  

Table 4. Iteration counts of preconditioned GMRES for Navier-Stokes 

problem with viscosity v = 0.001,10*], 10*D. 

Grid size v = ab*c v = ab*d v = ab*e 

8 by 8 28 22 21 

16 by 16 30 27 22 

32 by 32 35 26 22 

64 by 64 43 25 23 

128 by 128 56 25 22 

In the third example, we used the classical test problem in 

fluid dynamics, known as driven-cavity flow. The models 

describes a lid moving from left to right in a square domain. 

A Dirichlet no-flow condition is applied on the side and 

bottom boundaries. We chose a leaky cavity in this model. 

That is a nonzero horizontal velocity on the lid is given: 

fy � 1;	�1	 _ x	 _ 1|uj � 1k.  

Figure 5. shows the grid plot of the finite element 

discretization using Q 1-P 0. Figure 6 is the plot of the 

computed solutions.  

 

Figure 5. Q 1-P 0 finite element grid. 

 

Figure 6. Computed solution plot of leaky driven-cavity problem. 

Table 4 is the experimental results for the iteration 

counts of preconditioned GMRES for the resulting Oseen 

problem with viscosity 0.001 to 10*D. It has the similar 

behavior with the previous case. We can see that the 

modified HSS preconditioner works even better for the 

smaller viscosity.  

Table 5. Iteration counts of preconditioned GMRES for Navier-Stokes 

problem with viscosity v = 10*�. 

Grid size v = ab*c v = ab*d v = ab*e 

8 by 8 29 23 22 

16 by 16 34 29 23 

32 by 32 37 25 22 

64 by 64 38 26 23 

128 by 128 41 27 23 
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4. Conclusion 

The numerical solver that is reported here has been shown 

to be a reliable solver of the Navier-Stokes equations with 

high Reynolds number. We choose the examples with small 

viscosities varies from 10*D to 10*�. Numerical data shows 

the robustness of the preconditioned GMRES methods 

applying to all small viscosity cases. The cost of solving the 

Hermitian part is low. It can be linear if multigrid method is 

applied. However, solving the skew-Hermitian part is 

expensive. With the scaling and shifting, the skew-Hermitian 

matrix can be diagonal dominant. The choice of the shifting 

parameter is quite challenging. We are still unclear how to find 

a mathematical formula to find the optimal P . We used 

numerical test to find the optimal parameters. However it 

seems like that this optimal parameters has the similar range.  
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