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Abstract: Let p  be an arbitrary odd prime number greater than eleven and A be the mod p  Steenrod algebra. In this 

paper, it has proved that the product 
7,*

0 0 4 ( , )
s

s p pAh k Ext Z Zδ +
+ ∈ɶ  is nontrivial and converges to 1 2 4sα β δ +  nontrivially of 

order p  in 3 2[( 4) ( 3) ( 4) ( 3)] 7q s p s p s p s
Sπ + + + + + + + − , where 0 4s p≤ < − , 2( 1)q p= −  by making use of the Adams spectral 

sequence. 
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1. Introduction 

Let A  be the mod p  Steenrod algebra and S  be the 

sphere spectrum localized at an odd prime number p . To 

determine the stable homotogy groups of spheres *Sπ  is 

one of the central problems in homotogy theory. One of the 

main tools to reach it is the Adams spectral sequence (ASS): 

, ,
2 ( , )
s t s t

p p t sAE Ext Z Z Sπ −= ⇒ , 

where the ,
2
s tE −  term is the cohomology of A . So far, not 

so many family 1 3
0 nn p q q

Sζ π− + −≠ ∈ for 2n ≥  and is 

represented by 3,
0 1 ( , )

np q q
n p pAh b Ext Z Z+

− ∈  has been 

detected in [1] in the ASS, where 2( 1)q p= − . 

To determine the stable homotopy groups of spheres is one 

of the most important problems in algebraic topology. So far, 

several methods have been found to determine the stable 

homotopy groups of spheres. For example, we have the 

classical Adams spectral sequence (ASS) (cf. [2]) based on 

the Eilenberg-MacLane spectrum pKZ , whose 2E − term is 

,
( , )

s t
p pAExt Z Z  and the Adams differential is given by 

, , 1: s t s r t r
r r rd E E + + −→ɶ  

where A  denotes the mod p
 

Steenrod algebra. 

There are three problems in using the ASS: calculation of

2E − term 
*,*

( , )p pAExt Z Z , computation of the differentials 

and determination of the nontrivial extensions from E∞ to the 

stable homotopy groups of spheres. So, for computing the 

stable homotopy groups of spheres with the classical ASS, 

we must compute the 2E − term of the ASS, 
*,*

( , )p pAExt Z Z . 

Throughout this paper, p
 

denotes an odd prime and 

2( 1).q p= −
 

The known results on 
*,*

( , )p pAExt Z Z
 

are as 

follows. 
0,*

( , )p pAExt Z Z
 

is trivial by its definition. From [3],

1,*
( , )p pAExt Z Z

 
has pZ − basis consisting of 

1,1
0 ( , ),p pAa Ext Z Z∈ 1, ( , )

ip q
i p pAh Ext Z Z∈  

for all 0i ≥  and 
2,*

( , )p pAExt Z Z  has pZ − basis 

consisting of 2α , 2
0a , 0 ( 0)ia h i > , ( 0)ig i ≥ , ( 0)ik i ≥ , 

( 0)ib i ≥ and ( 2, 0)i jh h j i i≥ + ≥  whose internal degrees are 

2 1,q + 2 , 1ip q + , 1 2i ip q p q+ + , 12 i ip q p q+ + and i jp q p q+  

respectively. 

Let M  be the Moore spectrum modulo a prime number 

3p ≥ given by the cofibration 

p ji

S S M S→ → →∑ . 
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Let :
q
M Mα →∑  be the Adams map and K  be its 

cofibre given by the cofibration 

1
ji

q qM M K M
α ′′

+→ → →∑ ∑ , 

where 2( 1)q p= − . This spectrum which we briefly write as

K is known to be the Toda-Smith spectrum (1)V . Let (2)V  

be the cofibre of 
( 1)

:
p q

K Kβ + →∑  given by the 

cofibration 

( 1) ( 1) 1(2)
ji

p q p qK K V K
β

+ + +→ → →∑ ∑ . 

Let 
2( 1): (2) (2)q p p V Vγ + + →∑  be the 3v − map. As we 

know, for 0t > , the α − element t
t j iα α= , the β −  

element t
t jj i iβ β′ ′= , the γ − element t

t jj j ii iγ γ′ ′= ɺ . 

In [4], we have the following results: 

(1) For 3p ≥ and 1t ≥ , 0tα ≠ in *Sπ . 

(2) For 5p ≥  and 1t ≥ , 0tβ ≠ in *Sπ . 

(3) For 7p ≥  and 1t ≥ , 0tγ ≠ in *Sπ . 

Studying higher-dimensional cohomology of the mod p  

Steenrod algebra A is an interesting subject and studied by 

several authors. For example, In 1980, Aikawa [5] 

determined 
3,*

( , )p pAExt Z Z  by λ −  algebra. Liu and Zhao 

[6] prove the following theorem. 

Theorem 1.1 For 11p ≥  and 4 s p≤ < , the product 

0 0 0sh b δ ≠ɶ  in the classical Adams spectral sequence, where 

sδɶ  is given in [7]. 

2. The May Spectral Sequence 

The most successful method to compute 
*,*

( , )p pAExt Z Z  

is the MSS. From [8], there is a May spectral sequence (MSS) 
, ,*{ , }s t

r rE d  which converges to 
,

( , )
s t

p pAExt Z Z with 1E −
term 

*,*,*
, ,1 ( 0, 0) ( 0, 0) ( 0)m i m i nE E h m i P b m i P a n= > ≥ ⊗ > ≥ ⊗ ≥   (1) 

where ( )E  is the exterior algebra, ( )P  is the polynomial 

algebra, and 
1

1,2( 1) ,2 1 2,2( 1) , (2 1) 1,2 1,2 1
, ,1 1 1, ,

m i m i n
p p m p p p m p n

m i m i nh E b E a E
+− − − − − +∈ ∈ ∈  

One has 

, , 1. ,: s t u s t u r
r r rd E E + −→              (2) 

and if , ,*s t
rx E∈ and , ,*s t

ry E
′ ′∈ , then 

( . ) ( ) ( 1) ( )s
r r rd x y d x y x d y= ⋅ + − ⋅          (3) 

In particular, the first May differential 1d is given by 

1 , , ,

0

( )i j i k k j k j

k i

d h h h− +
< <

= ∑ , 

1 ,

0

( )i i k k k

k i

d a h a−
≤ <

= ∑ , 1 ,( ) 0i jd b =        (4) 

There also exists a graded commutativity in the MSS: 

( 1)ss ttx y y x
′ ′+⋅ = − ⋅  for , ,, ,m i m ix y h b= or na . 

For each element , ,
1
s t ux E∈ , we define ,dim sx =  

deg , ( )x t M x u= = . Then we have that 

,

, 0

1
,

1
,

1

, 1

,

dim dim 1,

dim 2,deg 1,

deg ( ... ),

deg ( ... ),

deg ( ... 1) 1,

( ) ( ) 2 1,

( ) (2 1) ,

i j i

i j

i j j
i j

i j j
i j

i
i

i j i

i j

h a

b a

h q p p

b q p p

a q p

M h M a i

M b i p

+ −

+ +

−

−

= =


= =


= + +


= + +


= + + +
 = = −
 = −

         (5) 

where 1, 0.i j≥ ≥  

Note that by the knowledge on the p −  adic expression 

in number theory, for each integer 0t ≥ , it can be expressed 

uniquely as 1
1 1 0( ... )n n

n nt q c p c p c p c e−
−= + + + + +  

where 0 (0 ), 0,0 .i nc p i n p c e q≤ < ≤ < > > ≤ <
 

For the convenience of writing, we make the following 

rules: 

(i) If i j> , we put ia  on the left side of ja ;  

(ii) If j k< , we put ,i jh  on the left side of ,w kh ;  

(iii) If i w> , we put ,i jh  on the left side of ,w jh ;  

(iv) Apply the rules (ii) and (iii) to ,i jb . 

3. Proof of the Main Theorem 

Before showing the main theorem, we first give some 

important lemmas which will be used in the proof of it. The 

first one is a lemma on the representative of 4sδ +
ɶ  in the May 

spectral sequence. 

Lemma 3.1 [7] For 11p ≥  and 0 4s p≤ < − , then the 

fourth Geerk letter element 14, ( )
4 ( , )

s t s
s p pAExt Z Zδ +
+ ∈ɶ  is 

represented by 

14, ( ),*
4 4,0 3,1 2,2 1,3 1

s t ssa h h h h E
+∈  

in the 1E −  term of the May spectral sequence, where 4sδ +
ɶ

is actually (4)
4sα +ɶ  and 

2 3
1( ) [( 1) ( 2) ( 3) ( 4) ) .t s q s s p s p s p s= + + + + + + + +
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By (2), we know that to prove the non-triviality of the 

product 0 0 4sh k δ +
ɶ , we have to show that the representative of 

the product cannot be hit any May differential. For doing it, 

we give the following two lemma. 

Lemma 3.2 Let 11p ≥  and 0 4s p≤ < − . Then we have 

the May 1E − term 6, ( ),*
1 0
s t s

E
+ = , where 

2 3( ) [( 3) ( 4) ( 3) ( 4) )t s q s s p s p s p s= + + + + + + + + .
 

Now we give the proof of the above lemma. 

Proof Consider 6, ( ),*
1 2 1...

s t s
mh x x x E

+= ∈  in the MSS, 

where ix  is one of ,,k r ja h  or ,u zb , 0 4,k≤ ≤ 0 4,r j≤ + ≤

0 3u z≤ + ≤ , 0, 0r j> ≥ , 0,u >  0z ≥ . By (5) we can 

assume that 

deg
3 2

,3 ,2 ,1 ,0( )i i i i i ix q c p c p c p c e= + + + +  

where , 0i jc =  or 1 , 1ie =  if i kx a= , or 0ie = . It 

follows 

that dim 
1

dim 6

m

i

i

h x s

=

= = +∑  and 

1

deg deg

m

i

i

h x

=

=∑  

3 2
,3 ,2 ,1 ,0

1 1 1 1 1

[( ) ( ) ( ) ( )] ( )

m m m m m

i i i i i

i i i i i

q c p c p c p c e

= = = = =

= + + + +∑ ∑ ∑ ∑ ∑
3 2[( 4) ( 3) ( 4) ( 3)]q s p s p s p s s= + + + + + + + +  

Note that ,dim dim 1,i j ih a= =  ,dim 2,i jb =  and 0 s≤  

4.p< −  From 
1

dim dim 6,

m

i

i

h x s

=

= = +∑  we can have 

6 2.m s p≤ + < +
 

Using 0 4, 3,s s s p≤ + + <  and the knowledge on the p

-adic expression in number theory, we have that 

1

,0

1

,1

1

,2

1

,3

1

;

3;

4;

3;

4;

m

i

i

m

i

i

m

i

i

m

i

i

m

i

i

e s

c s

c s

c s

c s

=

=

=

=

=


=



 = +

 = +


 = +



 = +


∑

∑

∑

∑

∑

               (6) 

By ,2 0ic =  or 1 , one has 4m s≥ +  from 

,3

1

4

m

i

i

c s

=

= +∑ . 

Note that 6m s≤ + . Thus mmay equal 4, 5,s s+ + 6s + . 

Since 
1

m

i

i

e s

=

=∑ , ,deg 0(mod )i jh q≡  ( 0, 0)i j> ≥ , 

)0)((mod1deg ≥≡ iqai  and ,deg 0(mod )i jb q≡

( 0, 0)i j> ≥ , then by the graded commutativity of *,*,*
1E  and 

degree reasons, we can assume that 0 2 3 41
yx z k lh a a a a a h′=  with 

1 2...s s mh x x x+ +′ = , where  

0 , , , , ,x y z k l s≤ ≤ x y z k l s+ + + + =
. 

Consequently, we have 26, ( ),*
1 2 1...

t s
s s mh x x x E+ +′ = ∈ , 

where 

3 2
2 ( ) [( 4 ) ( 3 )t s q s l p s l k p= + − + + − − +

 

( 4 ) ( 3 )]s l k z p s l k z y+ − − − + + − − − −
. 

Form (6) we have 

1

,0

1

,1

1

,2

1

,3

1

0;

3 ;

4 ;

3 ;

4 ;

m

i

i s

m

i

i s

m

i

i s

m

i

i s

m

i

i s

e

c s l k z y

c s l k z

c s l k

c s l

= +

= +

= +

= +

= +


=



 = + − − − −

 = + − − −


 = + − −



 = + −


∑

∑

∑

∑

∑

       (7) 

By the reason of dimension, all the possibilities of h′  can 

be listed as 1 6...y y , 1 4 1...y y z , 1 2 1 2y y z z , 1 2 3z z z  where the iy  

is in the form of ,r jh , 0 4,r j≤ + ≤ 0, 0r j> ≥  and iz is in 

the form of ,u zb , 0 3u z≤ + ≤ , 0,u > 0z ≥ . 

Case 1. 4.m s= +  From 

4

,3

1

4

s

i

i s

c s l

+

= +

= + −∑  in (7), we 

have that 

4

,3

1

4

s

i

i s

l s c s

+

= +

= + − ≥∑ . Thus l s= , x=y=z=k=0. 

So 
3 26, (4 3 4 3),*

1 2 3 4 1
q p p p

s s s sh x x x x E
+ + +

+ + + +′ = ∈ , and it must 

be in the form of 1 2 1 2y y z z . But because the constant 

coefficient in 2 ( )t s  is 3 , h′  is impossible to exist in this 

case. Then h  doesn't exist either. 
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Case 2. 5.m s= +  From 

5

,3

1

4

s

i

i s

c s l

+

= +

= + −∑  in (7), we 

have that 

5

,3

1

4 1

s

i

i s

l s c s

+

= +

= + − ≥ −∑ . Thus 1l s= −  or s , 

and 

26, ( ),*
1 4 1 1...

t s
h y y z E′ = ∈

. 

(1) If 1l s= − , then 

3 2
2 ( ) [5 ( ) ( ) ( 3 )]t s q p p p s l k z y= + + + + − − − −

 

Because the coefficient of 3p  is 5 , 

26, ( ),*
1 4 1 1...

t s
h y y z E′ = ∈ , 

4,0 3,1 2,2 1,3, , ,h h h h  and some ,u zb ( 3u z+ = , 0,u > 0z ≥ .) 

must be contained in h′ . So the constant coefficient in 2 ( )t s  

should be 1 , this is conflict with 3 3s l k z y+ − − − − ≥ . 

h′  is impossible to exist and then h  doesn't exist either. 

(2) If l s= , then 3 2
2 ( ) [4 3 4 3]t s q p p p= + + + . 

Because 26, ( ),*
1 4 1 1...

t s
h y y z E′ = ∈ , the coefficient of 3p  is

4  and the constant coefficient in 2 ( )t s  is 3 , no matter 

whether the equation of 3u z+ =  in 1 ,u zz b=  is 

established or not, h′  is impossible to exist in this case and 

then h doesn't exist either. 

Finally, in order to express this result more intuitively, we 

list all the possibilities of case 2 in the following table 1. 

Table 1. m=s+5. 

possibility  l  x y z k 26, ( ),*
1

t s
E  h′  

The 1st s-1 1 0 0 0 
3 26, (5 4 5 4),*

1
0

q p p p
E

+ + + =  Nonexistence 

The 2nd s-1 0 1 0 0 
3 26, (5 4 5 3),*

1
0

q p p p
E

+ + + =  Nonexistence 

The 3rd s-1 0 0 1 0 
3 26, (5 4 4 3),*

1
0

q p p p
E

+ + + =  Nonexistence 

The 4th s-1 0 0 0 1 
3 26, (5 3 4 3),*

1
0

q p p p
E

+ + + =  Nonexistence 

The 5th s 0 0 0 0 
3 26, (4 3 4 3),*

1
0

q p p p
E

+ + + =  Nonexistence 

Case 3. 6.m s= +  From

6

,3

1

4

s

i

i s

c s l

+

= +

= + −∑ in (7), we have that 

6

,3

1

4 2

s

i

i s

l s c s

+

= +

= + − ≥ −∑ . Thus 2l s= − , 1s − or s , and  

26, ( ),*
1 6 1...

t s
h y y E′ = ∈ . The coefficient of 3p in 2 ( )t s  is greater than or equal to 4 . So 4,0 3,1 2,2 1,3, , ,h h h h  must be contained 

in h′ . 

When 2l s= − or 1s − , the coefficient of 3p  in 2 ( )t s  is 6  or 5  and 26, ( ),*
1 6 1...

t s
h y y E′ = ∈  is impossible to exist. h  

doesn't exist either. 

When l s= , 3 2
2 ( ) [4 3 4 3]t s q p p p= + + + . Because 26, ( ),*

1 6 1...
t s

h y y E′ = ∈ , 4,0 3,1 2,2 1,3, , ,h h h h  must be contained in h′  

similarly. 

But 
3 2

4,0 3,1 2,2 1,3deg{ } [4 3 2 1]h h h h q p p p= + + + , in this case h′  is impossible to exist. Then h  doesn't exist either. 

We list all the possibilities in the following table. 

Table 2. m=s+6. 

possibility  l  x y z k  h′  

The 1st s-2 2 0 0 0 
3 26, (6 5 6 5),*

1
0

q p p p
E

+ + + =
 

Nonexistence 

The 2nd s-2 0 2 0 0 
3 26, (6 5 6 3),*

1
0

q p p p
E

+ + + =  Nonexistence 

The 3rd s-2 0 0 2 0 
3 26, (6 5 4 3),*

1
0

q p p p
E

+ + + =  Nonexistence 

The 4th s-2 0 0 0 2 
3 26, (6 3 4 3),*

1
0

q p p p
E

+ + + =  Nonexistence 

The 5th s-2 1 1 0 0 
3 26, (6 5 6 4),*

1
0

q p p p
E

+ + + =  Nonexistence 

The 6th s-2 1 0 1 0 
3 26, (6 5 5 4),*

1
0

q p p p
E

+ + + =
 

Nonexistence 

The 7th s-2 1 0 0 1 
3 26, (6 4 5 4),*

1
0

q p p p
E

+ + + =
 

Nonexistence 
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possibility  l  x y z k  h′  

The 8th s-2 0 1 1 0 
3 26, (6 5 5 3),*

1
0

q p p p
E

+ + + =
 

Nonexistence 

The 9th s-2 0 1 0 1 
3 26, (6 4 5 3),*

1
0

q p p p
E

+ + + =
 

Nonexistence 

The 10th s-2 0 0 1 1 
3 26, (6 4 4 3),*

1
0

q p p p
E

+ + + =
 

Nonexistence 

The 11th s-1 1 0 0 0 
3 26, (5 4 5 4),*

1
0

q p p p
E

+ + + =
 

Nonexistence 

The 12th s-1 0 1 0 0 
3 26, (5 4 5 3),*

1
0

q p p p
E

+ + + =
 

Nonexistence 

The 13th s-1 0 0 1 0  Nonexistence 

The 14th s-1 0 0 0 1 
3 26, (5 3 4 3),*

1
0

q p p p
E

+ + + =
 

Nonexistence 

The 15th s 0 0 0 0  Nonexistence 

 
According to above mentioned analysis, Lamma 3.2 

follows. 

Lemma 3.3 Let 11p ≥  and 0 4s p≤ < −  then in the 

cohomology of the mod p Steenrod algebra A , the product  

7, ( )
0 0 4 ( , )

s t s
s p pAh k Ext Z Zδ +
+ ∈ɶ  

is nontrivial, where  

2 3( ) [( 3) ( 4) ( 3) ( 4) ]t s q s s p s p s p s= + + + + + + + + . 

Proof Since 1,0h , 2,0 1,1h h and
*,*,*

4 4,0 3,1 2,2 1,3 1
s

a h h h h E∈  are 

permanent cycles in the MSS and converge nontrivially to 0h ,

0k ,
*,*

4 ( , )s p pAExt Z Zδ + ∈ɶ  for 0n ≥ , so 

7, ( ),*
1,0 2,0 1,1 4 4,0 3,1 2,2 1,3 1

s t ss
h h h a h h h h E

+∈
 

is a permanent cycle in the MSS and converges to 

7,*
0 0 4 ( , )

s
s p pAh k Ext Z Zδ +
+ ∈ɶ . 

From Lamma 3.2, we see that 6, ( ),*
1 0
s t s

E
+ = , where 

2 3( ) [( 3) ( 4) ( 3) ( 4) )t s q s s p s p s p s= + + + + + + + + . 

Then we can have 

2 36, [( 3) ( 4) ( 3) ( 4) ],* 0s q s s p s p s p
rE + + + + + + + + =  for 1r ≥ . 

Thus the permanent cycle  

7, ( ),*
1,0 2,0 1,1 4 4,0 3,1 2,2 1,3

s s t s
rh h h a h h h h E

+∈  

does not bound. That is to say, 

7, ( ),*
1,0 2,0 1,1 4 4,0 3,1 2,2 1,3

s s t s
rh h h a h h h h E

+∈  

can not be hit by any differential in the MSS. It follows that 

7, ( ),*
1,0 2,0 1,1 4 4,0 3,1 2,2 1,3

s s t s
rh h h a h h h h E

+∈  

is a permanent cycle in the May spectral sequence and 

converge nontrivially to 
7,*

0 0 4 ( , )
s

s p pAh k Ext Z Zδ +
+ ∈ɶ . 

It follows that 

2 37, [( 3) ( 4) ( 3) ( 4) ] ,*
0 0 4 0 ( , )s q s s p s p s p s

s p pAh k Ext Z Zδ + + + + + + + + +
+ ≠ ∈ɶ

and the theorem is proved. 

Lemma 3.4 Let 11p ≥ , 0 4s p≤ < −  and 2 7r s≤ ≤ + , 

then the groups  

2 37 , [( 3) ( 4) ( 3) ( 4) ] 1( , ) 0s r q s s p s p s p s r
p pAExt Z Z+ − + + + + + + + + − + = . 

Proof The proof is divided into two parts. 

Case 1. 7r s= + . In this case, 

2 37 , [( 3) ( 4) ( 3) ( 4) ] 1( , ) 0s r q s s p s p s p s r
p pAExt Z Z+ − + + + + + + + + − + =  

by 2 3[( 3) ( 4) ( 3) ( 4) ] 6 0q s s p s p s p+ + + + + + + − >  (cf. 

[3]). 

Case 2. 2 6r s≤ ≤ + . 

To prove that 
7 ,

( , ) 0
s r t

p pAExt Z Z
′′+ − = , it suffices to prove 

that 7 , ,*
1 0s r tE

′′+ − =  in the MSS [9, 10], where 

2 3[( 3) ( 4) ( 3) ( 4) ] 1t q s s p s p s p s r′′ = + + + + + + + + − +
 

Consider 7 , ,*
1 2 1... s r t

mh x x x E
′′+ −= ∈ in the MSS, where ix

is one of ,,k r ja h  or ,u zb , 0 4,k≤ ≤ 0 4,r j≤ + ≤  

0 3u z≤ + ≤ , 0, 0r j> ≥ , 0,u > 0z ≥ . Assume that 

deg 
3 2

,3 ,2 ,1 ,0( )i i i i i ix q c p c p c p c e= + + + +  

where , 0i jc =  or 1 , 1ie =  if i kx a= , or 0ie = . It 

follows that dim 
1

dim 7

m

i

i

h x s r

=

= = + −∑  and 

1

deg deg

m

i

i

h x

=

=∑

3 2
,3 ,2 ,1 ,0

1 1 1 1 1

[( ) ( ) ( ) ( )] ( )

m m m m m

i i i i i

i i i i i

q c p c p c p c e

= = = = =

= + + + +∑ ∑ ∑ ∑ ∑
3 2[( 4) ( 3) ( 4) ( 3)] 1q s p s p s p s s r= + + + + + + + + − +  
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Note that dim 1ix =  or 2 , we get that  

dim 7 5 5 5m h s r s p p≤ = + − ≤ + ≤ − + = . 

By the knowledge about p − adic expression in number 

theory, we have  

,3

1

4

m

i

i

c s

=

= +∑ , ,2

1

3

m

i

i

c s

=

= +∑ , ,1

1

4

m

i

i

c s

=

= +∑ , 

,0

1

3

m

i

i

c s

=

= +∑ ,
1

1

m

i

i

e s r

=

= − +∑ . 

When 3r > , we can get dim 7 4h s r s= + − < + . 

Meanwhile, we have 4m s≥ +  from ,3

1

4

m

i

i

c s

=

= +∑ , so 

dim 4h s≥ + . This is a contradiction. 

When 3r = , we can get dim 7 4h s r s= + − = + . By an 

argument similar to that used in the proof of Lamma 3.1, 

we can show that  

3 24, [( 4) ( 3) ( 4) ( 3)] ( 2),*
1 0
s q s p s p s p s s

E
+ + + + + + + + + − = . 

When 2r = , then we can get dim 5h s= + , 5m s≤ + . 

But from ,3

1

4

m

i

i

c s

=

= +∑ , we get that 4m s≥ + . There are 

two possiblities: 4m s= + or 5m s= + . By an argument 

similar to that used in the proof of lamma 3.2, we can prove 

that 
3 24, [( 4) ( 3) ( 4) ( 3)] ( 1),*

1 0
s q s p s p s p s s

E
+ + + + + + + + + − = .  

4. Conclusion 

Theorem Let 11p ≥ , then in the cohomology of the mod 
p  Steenrod algebra A , the product  

7, ( )
0 0 4 0 ( , )

s t s
s p pAh k Ext Z Zδ +
+ ≠ ∈ɶ  

is a permanent cycle in the ASS and converges to 1 2 4sα β δ +  

nontrivially of order p  in 

3 2[( 4) ( 3) ( 4) ( 3)] 7q s p s p s p s
Sπ + + + + + + + − , 

where 0 4s p≤ < − , 2( 1)q p= − . 

Proof  First, by Lamma 3.3 we know that 

2 37, [( 3) ( 4) ( 3) ( 4) ] ,*
0 0 4 0 ( , )

s q s s p s p s p s
s p pAh k Ext Z Zδ + + + + + + + + +
+ ≠ ∈ɶ  

Next, it is known that 
*,*

0 0, ( , )p pAh k Ext Z Z∈  converge 

nontrivially to the α − element 1α  and the β − element 

2β  in the ASS respctivly. The δ − element 4sδ +  is 

represented by
3 2

4, [( 4) ( 3) ( 2) ( 1)]
4 ( , )s q s p s p s p s s

s p pAExt Z Zδ + + + + + + + + +
+ ∈ɶ  in 

the ASS (cf [11]). Then the map 1 2 4 *s Sα β δ π+ ∈  is 

represented by 
7, ( )

0 0 4 0 ( , )
s t s

s p pAh k Ext Z Zδ +
+ ≠ ∈ɶ , where 

2 3( ) [( 3) ( 4) ( 3) ( 4) )t s q s s p s p s p s= + + + + + + + + . 
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